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Elastic energy of a straight dislocation

and contribution from core tractions

Emmanuel Clouet†

CEA, DEN, Service de Recherches de Métallurgie Physique,

F-91191 Gif-sur-Yvette, France

(June 29, 2009)

We derive an expression of the core traction contribution to the dislocation elastic energy
within linear anisotropic elasticity theory using the sextic formalism. With this contribution,
the elastic energy is a state variable consistent with the work of the Peach-Koehler forces.
This contribution needs also to be considered when extracting from atomic simulations core
energies. The core energies thus obtained are real intrinsic dislocation properties: they do not
depend on the presence and position of other defects. This is illustrated by calculating core
energies of edge dislocation in bcc iron, where we show that dislocations gliding in {110}
planes are more stable than the ones gliding in {112} planes.

Keywords: dislocation theory; anisotropic elasticity; core tractions; elastic energy; core
energy

1. Introduction

One important quantity controlling the physics of dislocations is their elastic en-
ergy. It is defined as the integral of the elastic energy density over the whole volume
except a small core region surrounding the dislocation line. This excludes the re-
gion around the dislocation core where elasticity does not apply because of the too
high strains. Using Gauss theorem, the elastic energy can be decomposed in two
contributions:

• the one corresponding to an integration along the dislocation cut of the work
necessary to create the dislocation. As it is well known, this contribution varies
with the logarithm of a characteristic distance of the dislocation microstructure.

• the contribution arising from the work done by the tractions exerted on the tube
which isolates the dislocation core. The corresponding contribution to the elastic
energy is known as the contribution of the core tractions.

This last contribution is sometimes forgotten. Indeed, the cut contribution is usu-
ally the dominant one. Moreover, the core traction contribution disappears when
one tries to define the elastic energy of an isolated infinite straight dislocation
because of the external cylinder that has to be introduced to prevent the elastic
energy from diverging. Nevertheless, if one wants the dislocation elastic energy to
be a state variable, i.e. a variable that only depends on the current state and not
on the transformation path used to reach this state, both contributions need to be
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taken into account. Bullough and Foreman [1] already showed that the elastic en-
ergy of a dislocation loop does not depend on the hypothetical creation mechanism
only when both contributions are considered. Lothe and Hirth [2] also noticed that
the definition of the elastic energy of a straight dislocation could not be consistent
with the work of the Peach-Koehler forces if the contribution of the core tractions
was not included in the elastic energy. Finally, Gavazza and Barnett [3] showed
that the dislocation elastic energy part associated with the core tractions leads to
a contribution to the self-force acting on a dislocation loop.

Despite its importance, no analytical expressions of the core traction contribu-
tion to the elastic energy seems to exist in the literature when the elastic anisotropy
is considered. The anisotropic linear elasticity theory of dislocations has been de-
veloped in the past sixty years. Eshelby, Read and Shockley [4] were the first to
express the anisotropic elastic field created by a straight infinite dislocation. Their
formalism was then enriched by Stroh [5, 6], leading to what is known as the sextic
formalism. Latter, it was shown that the elastic field of a dislocation of arbitrary
shape can be obtained from the fields of straight infinite dislocations1. But no ex-
pression of the contribution of the core tractions to the elastic energy has been
obtained until now. The variation of this contribution with a rotation of the dislo-
cation cut is known [8, 9]. It actually corresponds to the angular dependence of the
interaction energy between two dislocations derived by Stroh [5]. But an expres-
sion of the absolute value of this contribution is not available. Such an analytical
expression exists under the assumption that the elastic constants are isotropic [1].
The few studies that considered the elastic anisotropy as well as the contribution
of the core tractions [10, 11, 12, 13] calculated this contribution with a numerical
integration along the surface of the core cylinder. It is the purpose of this article
to obtain an analytical expression of this contribution in the framework of the
sextic formalism. Such an expression could be used then in further studies. Poten-
tial applications are the extraction from atomic simulations of dislocation energy
properties like core energies [8, 9, 14, 15, 16, 17, 18], calculations of dislocation
loop self energy [1, 10, 13], or computation of the self-force acting on a dislocation
loop [3]. Such an application is presented in this article where core energies of edge
dislocation in α-iron are determined.

In the first section, we define the elastic energy of a straight dislocation so as to
clearly make appear the contribution of the core tractions. We then use isotropic
elasticity to illustrate this definition and highlight the importance of this contribu-
tion for the coherency of the elastic energy definition. The analytical expression of
the core traction contribution within anisotropic linear elasticity is obtained in the
following section using the sextic formalism. We finally illustrate the consistency
of our results by studying edge dislocations in α-iron and calculating their core
energies with different simulation methods.

2. Elastic energy of a straight dislocation

We assume in this article that the elastic field created by a dislocation can be
reduced to the Volterra solution. Eshelby et al. [4] have indeed shown that a straight
dislocation in an infinite elastic medium creates in a point defined by its cylindrical

1For a review, see Ref. [7].
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coordinates r and θ a displacement given by the Laurent series

u(r, θ) = v ln (r) + u0(θ) +

∞
∑

n=1

un(θ)
1

rn
.

The two first terms of this series, v ln (r)+u0(θ) correspond to the Volterra solution:
this describes the elastic field of the dislocation far enough from its core. The
remaining terms of the series (n ≥ 1) are the dislocation core field [19], which
arises from non-linearities in the crystal elastic behavior and from perturbations
due to the atomic nature of the core. We do not consider this part of the elastic field
in our definition of the dislocation elastic energy (un = 0 ∀n ≥ 1) and take only
the Volterra solution. The elastic field creates nevertheless tractions on the surface
which isolates the dislocation core. As a consequence, a contribution of the core
tractions to the dislocation elastic energy exists even when the dislocation core field
is neglected. As it will be shown below, this contribution needs to be considered
so as to obtain an unambiguous definition of the dislocation elastic energy.
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Figure 1. Definition of the contour used to calculate the dislocation elastic energy. (a) Isolated dislocation.
(b) Isolated dislocation dipole.

We first consider an isolated dislocation. Two cylinders centered on the disloca-
tion need to be introduced so as to define the elastic energy (Fig. 1a). The inner
cylinder of surface Sc isolates the dislocation core. Strains are much too high close
to the dislocation core to be described by elasticity theory. As a consequence,
elastic fields are diverging at the origin and one needs to exclude the core region
from the elastic description. As the elastic energy integrated on an infinite volume
tends to infinity, one also needs the external cylinder to prevent the elastic energy
from diverging. The dislocation elastic energy per unit-length of dislocation is thus
defined in the volume V comprised between both cylinders

Eelas
dislo =

1

2

∫∫∫

V
σijεijdV ,

where σ and ε are respectively the stress and strain created by the dislocation.
The use of Gauss theorem allows to transform this volume integral into a surface
integral:

Eelas
dislo =

1

2

∫∫

S
σijuidSj, (1)
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where S is a surface enclosing the volume V and isolating any discontinuity of
the elastic displacement u generated by the dislocation. A dislocation is by defi-
nition the frontier of a surface that has been sheared by the Burgers vector b. A
displacement discontinuity therefore occurs on the dislocation cut which needs to
be isolated by the surfaces S0+ and S0− (Fig. 1a). We would like to stress that
this cut does not necessary correspond to the dislocation glide plane. The surface
appearing in the integral 1 is then composed of Sc, S0− , S∞, and S0+ .

The integrals along the surfaces Sc and S∞ cancel because the resultant of forces
located in the core is null, and the normals to the surfaces Sc and S∞ have an
opposite orientation [5, 6]. As a consequence, the elastic energy of an isolated
dislocation integrated between the cylinders of radii rc and R∞ is limited to the
contribution corresponding to the dislocation cut, leading to the the well-known
result

Eelas
dislo =

1

2
biK

0
ijbj ln

(

R∞

rc

)

, (2)

where the tensor K0 only depends on the elastic constants, and rc and R∞ are
respectively the radii of the inner and external cylinders.

We consider then an isolated dislocation dipole. The first dislocation of Burgers
vector b is located at the origin and the second one of Burgers vector −b at the
point defined by its cylindrical coordinates (d, φ) (Fig. 1b). The two dislocation
cuts need to be orientated so that the displacement discontinuity cancel except
in the surface bounded by both dislocations. This ensures that no displacement
discontinuity occurs far from the dipole and allows the dipole to be mechanically
isolated. The elastic energy created by the dipole in the infinite volume is then

Eelas
dipole =

1

2

∫∫

S

(

σ
(1)
ij + σ

(2)
ij

)(

u
(1)
i + u

(2)
i

)

dSj,

where σ(1) and σ(2) are the stresses created by each dislocation, and u(1) and u(2)

the corresponding elastic displacements. The integration surface is composed of

the two cylinders S
(1)
c and S

(2)
c of radii rc removing the elastic divergence at the

dislocation cores, and of the two surfaces S0− and S0+ removing the displacement
discontinuity along the dislocation cut (Fig. 1b). One does not need to introduce
an external surface like for the isolated dislocation because the elastic energy inte-
grated on the infinite volume now converges.

The integration on both core cylinders leads to the same contribution

Eelas
c (φ) =

1

2

∫∫

S(1)
c

σ
(1)
ij u

(1)
i dSj =

1

2

∫∫

S(2)
c

σ
(2)
ij u

(2)
i dSj. (3)

The elastic energy of the dislocation dipole is then

Eelas
dipole = 2Eelas

c (φ) + biK
0
ijbj ln

(

d

rc

)

. (4)

We will show in the following that the contribution Eelas
c of the core tractions

only depends on the angle φ defining the azimuthal position of the dislocation
dipole. It does not depend on the core radius rc nor on the separation distance
d. This contribution is not present in the elastic energy of an isolated dislocation
(Eq. 2). This is a consequence of the introduction of an external cylinder to prevent
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the elastic energy from diverging. But an isolated dislocation cannot exist: another
defect, like a dislocation with opposite Burgers vector or a surface, is always needed
to close the dislocation cut and allows mechanical equilibrium. Therefore, one has
to use the “trick” of the external cylinder so as to define the elastic energy of an
isolated dislocation. This gives birth to an artefact as the core traction contribution
Eelas

c then disappears.

3. Isotropic elastic media

We first consider that the elastic constants are isotropic. This allows to obtain
simple expressions of the elastic energy which can be easily manipulated so as to
illustrate the importance of the core traction contribution. We assume that the
crystal is oriented in such a way that e3 corresponds to the dislocation axis and e1

is collinear with the edge component of the Burgers vector (b2 = 0). With such an
orientation, the tensor K0 appearing in the elastic energy of an isolated dislocation
(Eq. 2) or of a dislocation dipole (Eq. 4) writes [20]

K0 =
µ

2π (1 − ν)





1 0 0
0 1 0
0 0 (1 − ν)



 ,

where µ is the shear modulus and ν Poisson’s ratio.
The core traction contribution has been calculated by Bullough and Foreman [1]:

Eelas
c (φ) =

µb1
2

16π (1 − ν)

[

1

1 − ν
− 2 cos (2φ)

]

.

One sees that this contribution is null for a pure screw dislocation (b1 = 0), but this
result does not hold anymore when elastic anisotropy is considered (§ 4). For a pure
edge or a mixed dislocation, if the dislocation cut corresponds to the dislocation
glide plane, one has then φ = 0 or φ = π, and one recovers the expression given by
Hirth and Lothe (Eq. (3-53) in Ref. [20]):

Eelas
c (φ = 0) = −µb1

2

16π

1 − 2ν

(1 − ν)2
. (5)

As Poisson’s ratio is smaller than 1/2, this shows that the core traction contribution
reduces the dislocation elastic energy when the dislocation cut corresponds to its
glide plane.

1

23

rc

rc

1

23

rc

rc

Figure 2. Reversible thermodynamic cycle for a dipole of edge dislocations.



June 29, 2009 18:24 Philosophical Magazine clouet2009˙PhilMag.hyper21259

6 E. Clouet

To understand the importance of the core traction contribution, one can look
at the variation of energy for a dipole of edge dislocations subjected to the cycle
sketched in Fig. 2. This cycle has been proposed by Hirth and Lothe (Ref. [2] and
section 8-3 in Ref. [20]). The dipole is first created with both edge dislocations
lying on the same glide plane and separated by a distance rc. The energy required
to create the dipole is 2Ecore + 2Eelas

c (φ = 0), where Ecore is the dislocation core
energy, i.e. the part of energy which cannot be described by linear elasticity. One
dislocation is then displaced through the cycle 1 → 2 → 3. The work performed
by the Peach-Koehler force during this displacement is µb2 (1 − ν) /2π. When the
dislocations are at a distance rc, the dipole is destroyed and one recovers the energy
2Ecore + 2Eelas

c (φ = π/2). The variation of energy through the complete cycle is
then 2Eelas

c (φ = π/2) − 2Eelas
c (φ = 0) + µb2 (1 − ν) /2π = 0. If one had neglected

the core traction contribution to the dipole elastic energy, the energy variation
would have been non-null which violates the law of thermodynamics. The proper
consideration of all energy contributions in the Volterra elastic field thus allows
a coherent definition of dislocation energetics. Such a coherency does not require
more complex descriptions which assume a spreading of the dislocation like in the
Peierls-Nabarro model or in the standard core model proposed by Lothe [21].

4. Anisotropic elastic media

4.1. Sextic formalism

We consider a dislocation of Burgers vector b located at the origin and we orient
the crystal so that the axis e3 corresponds to the dislocation line. We assume that
the angle φ in Fig. 1 is equal to −π: the dislocation cut corresponds with the half
plane defined by x1 < 0 and x2 = 0. We will generalize in a second stage to a
different angle φ.

The elastic displacement and the elastic stress created by the dislocation are
given to the first order by the Volterra solution. They can be expressed using the
formalism1 developed by Eshelby et al. [4] and extended by Stroh [5, 6]. The dis-
placement and the stress calculated in a point of Cartesian coordinates (x1, x2, x3)
are then

uk(x1, x2) =
1

2

6
∑

α=1

∓ 1

2πi
Aα

kDα log (x1 + pαx2)

σij(x1, x2) =
1

2

6
∑

α=1

∓ 1

2πi
Bα

ijkA
α
kDα

1

x1 + pαx2

(6)

The sign ∓ appearing in these equations2 means − for 1 ≤ α ≤ 3 and + for
4 ≤ α ≤ 6.

The matrices Bα
ijk are obtained from the elastic constants Cijkl expressed in the

dislocation reference frame:

Bα
ijk = Cijk1 + pαCijk2.

1For a more detailled presentation of the sextic formalism, cf. chap. 13 in Ref. [20] of Refs. [7] and [22].
2We use the same sign convention as Hirth and Lothe [20]. Eshelby et al. [4] and Stroh [5, 6] use the
opposite sign in Eq. 6.
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The roots pα are solution of the sextic equations corresponding to the following
determinant being equal to zero

|{Bα
i1k + pαB

α
i2k}| = 0,

and the non-null vectors Aα
k , associated to each root pα, check the following equa-

tion

(Bα
i1k + pαB

α
i2k)A

α
k = 0. (7)

In all equations, we use the Einstein summation convention on repeated indexes,
except for indexes written in Greek letters. When summation on the six different
roots pα is required, it will be explicitly written like in Eq. 6.

The six roots pα are necessary complex. If pα is solution of Eq. 7, its complex
conjugate pα

∗ is also a solution of this equation. We can therefore assume that the
six different roots have been sorted in such a way that

ℑ(pα) > 0 and pα+3 = pα
∗, 1 ≤ α ≤ 3, (8)

where ℑ(pα) is the imaginary part of pα.
The elastic field given by Eq. 6 corresponds to the one of a dislocation with a

Burgers vector b and a line direction e3 if the constants Dα check the equations:

1

2

6
∑

α=1

Aα
kDα = −bk,

1

2

6
∑

α=1

Bα
i2kA

α
kDα = 0.

(9)

We choose the principal determination for the complex logarithm appearing in
Eq. 6. The elastic displacement created by the dislocation therefore presents a dis-
continuity in the half plane of equations x1 < 0 and x2 = 0 defining the dislocation
cut.

The system of linear equations 9 can be easily solved following Stroh method
[5, 6]. To do so, we define a new vector

Lα
i = Bα

i2kA
α
k = − 1

pα
Bα

i1kA
α
k . (10)

Both definitions are equivalent because of Eq. 7. As the vector Aα
k is an eigenvector

defined by Eq. 7, its norm is not fixed. One can therefore choose it so as to check
the following normalization condition:

2Aα
i L

α
i = 1, ∀α.

Using the orthogonality properties [5, 6, 7, 22] of the vectors Aα
i and Lα

i , the
solution of the system of equations 9 is given by

Dα = −2Lα
i bi. (11)

With such definitions, the tensor K0 appearing in the elastic energy of an isolated
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dislocation (Eq. 2) or of a dislocation dipole (Eq. 4) is given by

K0
ij =

6
∑

α=1

± 1

2πi
Lα

i L
α
j . (12)

4.2. The core tractions contribution

The contribution of the core tractions to the elastic energy (Eq. 3) is given by

Eelas
c = −1

2

∫

π

θ=−π

[σi1(rc, θ) cos (θ) + σi2(rc, θ) sin (θ)] ui(rc, θ)rcdθ. (13)

The expression 6 shows that the elastic displacement u(r, θ) is the sum of an
angular function and a term depending only on ln (rc). This last term leads to
a contribution in Eq. 13 which is null because the resultant of forces located in
the core is null for a pure dislocation [5, 6]. Only the angular part of the elastic
displacement leads to a contribution in Eq. 13. One thus obtains

Eelas
c = −1

8

6
∑

α=1

∓ 1

2πi
Aα

i Dα

6
∑

β=1

∓ 1

2πi
Aβ

kDβ

∫

π

−π

Bβ
i1k cos (θ) +Bβ

i2k sin (θ)

cos (θ) + pβ sin (θ)
log [cos (θ) + pα sin (θ)]dθ.

This expression already shows that the contribution of the core tractions to the
elastic energy does not depend on the radius rc of the core cylinder. Using the

property 7 of the matrices Bβ
ijk and the vectors Aβ

k , as well as the definition 10 of

the vector Lβ
i , one gets

Eelas
c =

1

8

6
∑

α=1

± 1

2πi

6
∑

β=1

± 1

2πi
DαA

α
i L

β
i DβJ

1(pα, pβ), (14)

where the integral J1(p, a) is defined by

J1(p, q) =

∫

π

−π

−p cos θ + sin θ

cos θ + p sin θ
log (cos θ + q sin θ)dθ. (15)

An analytical expression of this integral is obtained in the appendix A. Using this
expression with the properties 8 checked by the roots pα, one obtains

Eelas
c =

1

8

6
∑

α=1

log (i ± pα)

6
∑

β=1

± 1

2πi
Dα

(

Aα
i L

β
i − Lα

i A
β
i

)

Dβ

+
1

8πi

3
∑

α=1

6
∑

β=4

Dα

(

Aα
i L

β
i − Lα

i A
β
i

)

Dβ log (pα − pβ). (16)

We therefore obtained an analytical expression of the core traction contribution
within the sextic formalism.
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4.3. Angular dependence of the dipole elastic energy

We now examine how the dipole elastic energy varies when it is rotated with re-
spect to the crystallographic axes. The answer could be obtained by rotating the
dislocations and the elastic constants so as to calculate in the new reference frame
all quantities needed to express the elastic energy. But a closed-form expression
of the angular dependence of the elastic energy can be obtained in a fixed refer-
ence frame. We will show that this expression is consistent with the dislocation
interaction energy derived by Stroh [5].

The angle φ can now deviate from the value −π considered above. A rotation of
the dislocation dipole is equivalent to a rotation of the corresponding cut (Fig. 1).
Such a rotation does not modify the vectors Aα

i and Lα
i [7, 22]. As a consequence,

the tensor K0 appearing in the dipole elastic energy (Eq. 4) is unchanged. Only
the contribution Eelas

c of the dislocation core tractions depends on this angle φ. We
then call ∆Eelas

c (φ) the variation of the dipole elastic energy, with the convention
∆Eelas

c (−π) = 0. To calculate this energy variation, it is useful to write the roots
of the sextic equations in the form pα = tan (ψα). Such a transformation can be
performed as long as the roots differ from ±i which only happens in degenerate
cases due to some isotropy of the elastic constants1 [7]. We can now rewrite the
integral (Eq. 15) appearing in the energy contribution of the core tractions (Eq. 14)

J1(pα, pβ) =

∫

π

−π

− tan (ψα − θ) log

[

cos (ψβ − θ)

cos (ψβ)

]

dθ.

The rotation of the cut modify the roots through the relation pα(φ) = tan (ψα − φ)
[7]. As a consequence, the elastic energy variation is given by

∆Eelas
c (φ) =

1

8

6
∑

α=1

± 1

2πi

6
∑

β=1

± 1

2πi
DαA

α
i L

β
i Dβ∆J1

φ(pα, pβ),

with

∆J1
φ(pα, pβ) =

∫

π

−π

− tan (ψα − θ)

{

log

[

cos (ψβ − θ)

cos (ψβ − φ)

]

− log

[

cos (ψβ − θ)

cos (ψβ)

]}

dθ

=

∫

π

−π

−pα cos θ + sin θ

cos θ + pα sin θ
[

log

(

cos θ + pβ sin θ

cosφ+ pβ sinφ

)

− log (cos θ + pβ sin θ)

]

dθ.

This integral is calculated in the appendix B. With the result of this appendix, one
obtains

∆Eelas
c (φ) =

1

8

6
∑

α=1

6
∑

β=1

± 1

2πi
DαA

α
i L

β
i Dβ log (cos φ+ pβ sinφ)

− 1

8

6
∑

α=1

± 1

2πi

6
∑

β=1

DαA
α
i L

β
i Dβ log (cosφ+ pα sinφ).

1The degeneracy can be lifted by adding some noise to the elastic constants.
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Using the orthogonality properties checked by the vectors Aα
i and Lα

i , as well as
the definition 11 of Dα, one gets

∆Eelas
c (φ) =

1

2

6
∑

α=1

± 1

2πi
biL

α
i L

α
j bj log (cosφ+ pα sinφ). (17)

One recovers an angular dependence which is in agreement with the expression
of the interaction energy between two dislocations given by Stroh [5], as well as by
Cai et al. [8]. 1

This expression 17 shows too that the core traction contribution Eelas
c is periodic

of period π, i.e. is insensitive to an inversion of the cut direction. We have indeed

∆Eelas
c (φ+ π) =

1

2

6
∑

α=1

± 1

2πi
biL

α
i L

α
j bj log (− cosφ− pα sinφ).

Using the property of log (−z), we obtain

∆Eelas
c (φ+ π) =∆Eelas

c (φ) − 1

4

6
∑

α=1

biL
α
i L

α
j bj if 0 < φ < π

=∆Eelas
c (φ) +

1

4

6
∑

α=1

biL
α
i L

α
j bj if − π < φ < 0.

Finally, the closure properties of the vectors Lα
i [6, 7, 22] lead to the desired result:

∆Eelas
c (φ+ π) = ∆Eelas

c (φ).

5. Edge dislocations in α-iron

So as to illustrate the need to take into account the contribution of core tractions
to the dislocation elastic energy, we study now edge dislocations in α-iron, and
determine their core energies Ecore. The core energy is the amount of the dislocation
excess energy that arises from atomic interaction close to the dislocation core that
cannot be described by linear elasticity. This is therefore a supplementary energy
contribution that should be added to the elastic energy. One expects that such
an energy contribution is an intrinsic property of the dislocation: its value should
only depend on the dislocation and not on the surrounding environment, like other
dislocations.

We use the Fe empirical potential developed by Mendelev et al. [23] in its mod-
ified version published in Ref. [24]. Thanks to the existence of a cut-off for the
interactions between atoms, two different methods can be used to determine the
dislocation core energy. One can either work with an isolated dislocation in an infi-
nite elastic medium (the cluster approach), or with a dislocation dipole in periodic
boundary conditions (the dipole approach). In the following section, we will show

1The expression used by Li et al. [9], based on the work of Cai et al. [8], is different from Eq. 17. Li

obtained ∆Ec(φ) = 1

2π

P

3

α=1
ℑ

n

biLα
i
Lα

j
bj

o

ℜ{log (cos φ + pα sin φ)}, whereas Eq. 17 can be rewritten

∆Ec(φ) = 1

2π

P

3

α=1
ℑ

n

biL
α
i Lα

j bj log (cos φ + pα sinφ)
o

. Both definitions may be equivalent in the case

of a screw dislocation studied by Li et al., but we could not demonstrate it.
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that both methods are coherent and lead to the same core energy as long as all
contributions are considered in the elastic energy.
α-Fe has a body-centered cubic lattice and the Burgers vector of the most com-

mon dislocations is b = a/2 〈111〉, where a = 2.8553 Å is the lattice vector. Depend-
ing on the temperature, different slip planes are observed, either {110} or {112}
planes. It is therefore interesting to study the energetics of both 1/2 〈111〉 {110} and
1/2 〈111〉 {112} edge dislocations, which both can exist. We will therefore determine
the core energy of these two dislocations. For the 1/2 〈111〉 {110} edge dislocation,
we use a simulation box with the orientation e1 = [111] /

√
3, e2 = [1̄01] /

√
2,

and e3 = [12̄1] /
√

6; for the 1/2 〈111〉 {112} edge dislocation e1 = [111] /
√

3,
e2 = [1̄21̄] /

√
6, and e3 = [1̄01] /

√
2. In both cases, e1 is collinear with the Burgers

vector and e3 corresponds to the dislocation line. The dislocation glide plane is
therefore the plane of normal e2 (φ = 0 in Fig. 1).

5.1. The cluster approach

In the cluster approach, a single dislocation is introduced at the center of a unit
cell which is periodic only along the dislocation line and with surface in other
directions. Atoms are displaced according to the anisotropic elastic Volterra dis-
placement (Eq. 6). Atoms closer from the external surface than the interatomic
potential cut-off are kept fixed while the positions of inner atoms are relaxed so as
to minimize the energy calculated with the potential. This therefore simulates an
isolated dislocation in an infinite elastic medium. A variant of the method consists
in relaxing atoms at the surface using lattice Green functions [25, 26, 27]. This
may be necessary in ab-initio calculations because of the small size of the unit cell
that can be simulated. As, in the present work, we use empirical potential, the
unit cell is large enough so that the Volterra elastic field correctly describes the
displacements of atoms at the surface and one does not need to use lattice Green
function to relax them.
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Figure 3. Variation with the cylinder radius R∞ of the energy difference ∆E (R∞) = E (R∞) −
1

2
biK0

ij
bj ln (R∞/rc) showing the convergence to Ecore for 1/2 〈111〉 {110} and 1/2 〈111〉 {112} edge dislo-

cations in α-iron (rc = b ≃ 2.473 Å).

Once inner atoms are relaxed, we calculate the excess energy E (R∞) given by
the interatomic potential and contained in a cylinder centered on the dislocation,
of axis e3 and of radius R∞. This excess energy is the difference of energy between
the system with the dislocation and the perfect crystal for the same number of
atoms. Only the excess energy of atoms contained in the cylinder is considered.
This can be performed for different values of the radius R∞ in the limit of the
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Table 1. Parameters defining the energies of both edge dis-

locations in α-iron. All quantities are given in meV Å−1.

The core energies are given for a core radius rc = b.

Ecore Eelas
c (φ = 0) 1

2
biK0

ij
bj

1/2 〈111〉 {110} 286 −87 370
1/2 〈111〉 {112} 329.5 −89 378

maximal radius allowed by the unit cell. According to the section 2 (Eq. 2), this
excess energy should vary as

E (R∞) = Ecore +
1

2
biK

0
ijbj ln

(

R∞

rc

)

.

In this expression, the tensor K0 is given by Eq. 12. It is different for the
1/2 〈111〉 {110} and 1/2 〈111〉 {112} edge dislocations because of elastic anisotropy
(Tab. 1). Looking at the variations of the energy difference ∆E (R∞) = E (R∞)−
1
2biK

0
ijbj ln (R∞/rc), one expects this quantity to be a constant defining Ecore. This

quantity actually varies but rapidly converges to a constant value for an increas-
ing radius R∞ (Fig. 3). Variations for small R∞ arises from the dislocation core
field, which may be important close to the dislocation core but is not taken into
account in the present approach. This core field needs only to be considered when
one cannot reach large enough simulation boxes like in ab initio calculations [18].
The convergence of ∆E (R∞) allows us anyway to define a dislocation core energy.
Values of this core energy are given for both dislocation in Tab. 1.

5.2. The dipole approach

e1

e2

e3

lx

lx/2

ly

e1

e2

e3 e1

e2

e3

lx

lx/2

ly

Figure 4. Sketch of the periodic unit cell used to study a dipole of edge dislocations.

In the dipole approach, full periodic boundary conditions are used. The total
Burgers vector of the unit cell has to be zero. Therefore a dislocation dipole is
introduced in the unit cell. The periodic unit cell we used for the present work is
sketched in Fig. 4. Both dislocations composing the dipole share the same glide
plane and then φ = 0.

The energy of the unit cell is minimized by relaxing all atomic positions. Accord-
ing to section 2, the excess energy of the unit cell should be

E = 2Ecore + 2Eelas
c (φ = 0) + biK

0
ijbj ln

(

d

rc

)

+ Eelas
inter, (18)

with d = lx/2. E
elas
inter is the elastic interaction energy between the dislocation dipole
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Figure 5. Variation with the size of the simulation cell of the dislocation core energy deduced from atomic
simulations of a dislocation dipole in periodic boundary conditions for 1/2 〈111〉 {110} and 1/2 〈111〉 {112}

edge dislocations in α-iron (rc = b ≃ 2.473 Å). Symbols correspond to result of the dipole approach for
different geometries of the unit cell and the horizontal line to the result of the cluster approach.

contained in the unit cell and all its periodic images. This elastic interaction energy
is calculated using the method of Cai et al. [8]. One can therefore deduce the core
energy from the atomic simulations using Eq. 18: the excess energy E is directly
given by atomic simulations and all elastic contributions are calculated using a
code based on anisotropic linear elasticity.

The obtained core energies are presented in figure 5 for different sizes of the
unit cells as well as different geometries characterized by the aspect ratio lx/ly.
All geometries converge with the size of the unit cell to the same limit and the
converged value of the core energy is in perfect agreement with the value obtained
in the cluster approach. The table 1 shows that this agreement is possible only
if one does not forget the contribution of the core tractions to the elastic energy.
Without this contribution, the core energies would have been about 90 meV Å−1

lower in the dipole approach than in the cluster approach.

5.3. Stability of an edge dipole
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Figure 6. Variation with the angle φ of the energy contribution Ecore + Eelas
c (φ) (rc = b).

Eq. 18 shows that the energy of a dislocation dipole is the sum of a constant
term (Ecore + Eelas

c (φ)) and a term depending on the distance d between the two
dislocations composing the dipole. The values obtained from atomic simulations
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and anisotropic linear elasticity (Tab. 1) shows that the 1/2 〈111〉 {110} edge dipole
is more stable than the 1/2 〈111〉 {112} one, whatever the distance d. This result is
strictly valid only when both dislocations share the same glide plane (φ = 0). We
now need to look to the variation of the distant independent term Ecore +Eelas

c (φ)
with the angle φ, i.e. with the orientation of the dipole.

Fig. 6 shows the variation of Ecore+Eelas
c (φ) with the angle φ for both dislocation.

Whatever the orientation of the dipole, this energy contribution is smaller for the
1/2 〈111〉 {110} than for the 1/2 〈111〉 {112} edge dipole. The 1/2 〈111〉 {110} is
therefore found as the most stable edge dipole.

6. Conclusions and discussion

We obtained within the sextic formalism an expression of the core traction con-
tribution to the elastic energy (Eq. 16). We showed that this expression agrees
with the angular dependence of the interaction energy between two dislocations
previously derived by Stroh [5]. This energy contribution is actually important so
that the dislocation elastic energy can be a state variable consistent with the work
of the Peach-Koehler forces.

This contribution to the elastic energy needs also to be considered when one
wants to extract from atomic simulations core energies which does not depend on
the simulation conditions. Both the core traction contribution and the core energy
do not depend on the length scale of the dislocation microstructure. Their physical
meaning is nevertheless different. The core energy is a dislocation intrinsic property
which takes into account the fact that atomic interactions cannot be described
by elasticity close to the dislocation core. On the other hand, the core traction
contribution is a part of the elastic energy and depends on the positions of other
dislocations through the angle φ defining the dislocation cut.

The application to edge dislocations in iron showed that dislocation core energies
could be obtained consistently from different simulation approaches, i.e. the cluster
or the dipole approaches. Both approaches lead to the same core energy when one
does not forget to take into account the energy contribution of core tractions in the
dipole approach. This allowed us to conclude that 1/2 〈111〉 {110} edge dislocations
are more stable than 1/2 〈111〉 {112} ones.

The contribution of core tractions is also important when defining the elastic
energy of a dislocation loop as pointed by Bullough and Foreman [1]. For a glissile
loop, this contribution generally reduces the elastic energy of edge segments: this
is true at least for an isotropic crystal (Eq. 5). As a consequence, this would lead to
loop shapes which are more rounded than with a simple line tension model where
this contribution is omitted [28]. As this contribution does not depend on the loop
size, smaller loops should be more rounded than larger ones, in agreement with
experimental observations [29]. This energy contribution could therefore explain
some discrepancies obtained between a simple line tension model and, either ex-
perimental observations [29], or results deduced from simulations of the loop self
stress [30].

Gavazza and Barnett [3] showed that part of the self-force acting on a loop is
associated with the core traction contribution to the elastic energy. The obtained
expression of this contribution to the elastic energy (Eq. 16) could therefore be
used in dislocation dynamics simulations to compute the self-force acting on a
dislocation segment.

To conclude, we would like to stress that we obtained the expression of the
core traction contribution to the elastic energy within the framework of the sextic
formalism. Anisotropic linear elasticity of line defects can also be handled within
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the integral formalism[7, 22]. In the integral method, all quantities defining the
elastic fields are obtained from angular integrals, so that one does not need to
look for the solutions of the sextic equations. The recasting of our result within
the integral formalism stills needs to be done. But this may not be possible as the
expression 16 we obtained does not make appear any known integral. Getting an
expression of the core traction contribution to the elastic energy within the integral
formalism may be therefore a challenge.
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Appendix A. Integral J1(p, q)

In this appendix, we calculate the integral appearing in the contribution to the
dislocation elastic energy of the core tractions:

J1(p, q) =

∫

π

−π

−p cos θ + sin θ

cos θ + p sin θ
log (cos θ + q sin θ)dθ.

An integration by parts leads to

J1(p, q) = − [log (cos θ + p sin θ) log (cos θ + q sin θ)]π−π

+

∫

π

−π

log (cos θ + p sin θ)
− sin θ + q cos θ

cos θ + q sin θ
dθ.

We can conclude that

J1(p, q) = −J1(q, p) (A1)

It is not possible to directly perform the integration, because of the logarithm
function appearing in the definition of J1(p, q). To circumvent the problem, we
derive J1(p, q) with respect to the parameter q

∂J1(p, q)

∂q
=

∫

π

−π

−p cos θ + sin θ

cos θ + p sin θ

sin θ

cos θ + q sin θ
dθ.

We thus obtain an integral of a rational function of cos(θ) and sin(θ). It can be
integrated using the residues theorem [31]:

∂J1(p, q)

∂q
= − 2πi

i + q
if ℑ(p) > 0 and ℑ(q) > 0,

= − 2πi

i − q
+

4πi

p− q
if ℑ(p) > 0 and ℑ(q) < 0,

= − 2πi

i + q
+

4πi

q − p
if ℑ(p) < 0 and ℑ(q) > 0,

= − 2πi

i − q
if ℑ(p) < 0 and ℑ(q) < 0.
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Now, we can integrate this result with respect to the parameter q:

J1(p, q) = − 2πi log (i + q) + f1(p) if ℑ(p) > 0 and ℑ(q) > 0,

=2πi log (i − q) − 4πi log (p− q) + f2(p) if ℑ(p) > 0 and ℑ(q) < 0,

= − 2πi log (i + q) + 4πi log (q − p) + f3(p) if ℑ(p) < 0 and ℑ(q) > 0,

=2πi log (i − q) + f4(p) if ℑ(p) < 0 and ℑ(q) < 0,

where f1, f2, f3 and f4 are four functions depending solely on the parameter p.
They can be determined by using the property A1 and the result J1(i,−i) = 2π2.
This leads to the final result:

J1(p, q) =2πi log (i + p) − 2πi log (i + q) if ℑ(p) > 0 and ℑ(q) > 0,

=2πi log (i + p) + 2πi log (i − q)

− 4πi log (p − q) if ℑ(p) > 0 and ℑ(q) < 0,

= − 2πi log (i − p) − 2πi log (i + q)

+ 4πi log (q − p) if ℑ(p) < 0 and ℑ(q) > 0,

= − 2πi log (i − p) + 2πi log (i − q) if ℑ(p) < 0 and ℑ(q) < 0.

Appendix B. Integral ∆J1

φ(p, q)

The angular dependence of the dipole elastic energy makes appear the following
integral

∆J1
φ(p, q) =

∫

π

−π

−p cos θ + sin θ

cos θ + p sin θ
[

log

(

cos θ + q sin θ

cosφ+ q sinφ

)

− log (cos θ + q sin θ)

]

dθ.

We use the same integration method as for J1 (p, q). A derivation with respect to
the parameter q leads to

∂

∂q
∆J1

φ(p, q) =

∫

π

−π

−p cos θ + sin θ

cos θ + p sin θ

− sinφ

cosφ+ q sinφ
dθ.

Using the residues theorem, we obtain

∂

∂q
∆J1

φ(p, q) =2πi
sinφ

cosφ+ q sinφ
if ℑ(p) > 0,

= − 2πi
sinφ

cosφ+ q sinφ
if ℑ(p) < 0.

We then integrate with respect to the parameter q and we use the property
∆J1

φ(p, q) = −∆J1
φ(q, p) deduced from an integration by parts of the initial in-
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tegral. This leads to the final result

∆J1
φ(p, q) =2πi log [cosφ+ q sinφ]

− 2πi log [cosφ+ p sinφ] if ℑ(p) > 0 and ℑ(q) > 0,

=2πi log [cosφ+ q sinφ]

+ 2πi log [cosφ+ p sinφ] if ℑ(p) > 0 and ℑ(q) < 0,

= − 2πi log [cosφ+ q sinφ]

− 2πi log [cosφ+ p sinφ] if ℑ(p) < 0 and ℑ(q) > 0,

= − 2πi log [cosφ+ q sinφ]

+ 2πi log [cosφ+ p sinφ] if ℑ(p) < 0 and ℑ(q) < 0.
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