
HAL Id: hal-00400022
https://hal.science/hal-00400022

Submitted on 17 Aug 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

INTERACTION BETWEEN GAS DIFFUSION AND
MULTISTABLE HETEROGENEOUS CHEMICAL
KINETICS IN C/C COMPOSITE PROCESSING

Gerard L. Vignoles, Olivier Baconneau, Claude-Michel Brauner

To cite this version:
Gerard L. Vignoles, Olivier Baconneau, Claude-Michel Brauner. INTERACTION BETWEEN GAS
DIFFUSION AND MULTISTABLE HETEROGENEOUS CHEMICAL KINETICS IN C/C COM-
POSITE PROCESSING. Fundamentals of Gas-Phase and Surface Chemistry of Vapor-Phase Depo-
sition II/ Process Control, Diagnostics and Modeling in Semiconductor Manufacturing IV, Mar 2001,
Washington, United States. pp.237–244. �hal-00400022�

https://hal.science/hal-00400022
https://hal.archives-ouvertes.fr


INTERACTION BETWEEN GAS DIFFUSION AND MULTISTABLE
HETEROGENEOUS CHEMICAL KINETICS IN C/C COMPOSITE

PROCESSING

Gérard L. VIGNOLES
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Abstract

The sharpness of the smooth laminar/rough laminar (SL/RL) CVD/CVI
pyrocarbon nanotexture transition is addressed in terms of a possible
hysteretical chemical deposition mechanism, based on a bimolecular
heterogeneous deposition reaction step. Interaction of the hystereti-
cal heterogeneous chemistry with the diffusive transport of the source
species enhances the parameter domain of hysteresis, and even bet-
ter at high Thiele modulus values. A “toy-model” is also studied to
explain such a behavior.

Key Words and Phrases. Heterogeneous chemistry, dynamical system,
hysteresis, free boundary.

1 Introduction

Aimed at high-temperature, high-performance structural applications, ther-
mostructural composites are made of ceramic or carbon fibers, an interphase
which coats them (usually carbon or hexagonal boron nitride), and a matrix
which is again either ceramic or carbon. Rocket propeller pieces, aircraft and
F-1 racing car brakes are frequently made of carbon/carbon (C/C) compos-
ites. To deposit the composite interphase and matrix, a process commonly
used is the Isothermal-isobaric Chemical Vapor Infiltration (I-CVI)[1, 2],
involving low pressure cracking of gaseous species (precursors), which are
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transported mainly by diffusion inside a fibrous preform, where heteroge-
neous reaction yields a solid deposit which densifies the preform [3]. The
gaseous species used for pyrocarbon deposition are hydrocarbons.

Hydrocarbon pyrolysis is well known to lead to various nanotextural forms
of pyrocarbon (pyC) in the context of Chemical Vapor Deposition(CVD)
and/or Infiltration (CVI) [5, 4]. Among them, two varieties, referred to as
Rough Laminar (RL) and Smooth Laminar (SL) because of their appearances
when imaged by Optical Microscopy with Polarized Light, differ by their
degree of structural anisotropy, and have distinct mechanical and optical
properties. A key issue in pyrocarbon CVD/CVI is the control of pyrocarbon
nanostructure during processing. It has been shown that the processing
parameters are important for this, since SL deposition would be related to
small precursor molecules and RL deposition to larger molecules, obtained
at later stages of gas-phase hydrocarbon pyrolysis (the so-called gas phase
maturation) [7, 8, 11, 10, 9]. Additionally, some interesting dynamical
behaviors have been discovered for such chemical systems. In the case of
pyrocarbon deposition, the transition between SL and RL is “sharp and
well defined, without any noticeable transition zone” [8], as confirmed by
a more recent study [12]. In the case of silicon carbide deposition from
CH3SiCl3/H2 on a plane substrate (i.e. CVD), chemical hysteresis between
SiC and pyrocarbon deposition regimes has been evidenced as a function
of either temperature or added chlorine amount [13]. An explanation for
such a fact has been given in terms of a nonlinear Langmuir-Hinshelwood
heterogeneous chemical mechanism. The effect of transport was not included
in this model, since it is of lesser importance in CVD.

The aim of the present work is to extend to pyrocarbon deposition the
modeling approach used for SiC/C codeposition, and in addition to study the
effect of gas-phase transport in combination with multistable heterogeneous
chemistry. Indeed, as soon as two intermediate species are considered for
the deposition of two different pyrocarbons, it is greatly possible that both
interact between themselves at the surface, leading naturally to a non-linear
cross-reaction term, as is the case for SiC deposition.

The mathematical originality of this problem lies in the fact that it is
not the transported species which undergo the multistable chemistry, but
another intermediate.
In this work, we set up and analyze simplified model equations collecting
the phenomena of interest, in order to better understand the behavior of
such a complex physico-chemical system in the context of chemical vapor
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infiltration, and also to understand how the hysteretical behavior is modified
in the presence of source species diffusion.

2 Model set-up

2.1 Chemical mechanisms

The gas-phase maturation may be translated in a very simplified fashion
through a series of homogenenous reactions. The first is the transformation
of the initial species R into the first intermediate of interest A, and the second
is the transformation of A into another intermediate species B. A and B are
respectively precursors of SL and RL pyrocarbons [10, 6].

In our present study, mainly devoted to the reactions occurring close to
the substrate, i.e. inside the porous medium, we consider for simplicity that
the first reaction is already complete, and that the second reaction is similar
to a polymerization reaction. So we choose a kinetic model of the form :
nA → B where n is a small integer.

The precise heterogeneous chemical mechanisms are not well known. We
choose a classical Langmuir kinetic scheme (reversible adsorption of the pre-
cursor on a surface active site E, followed by an irreversible transformation
of the former into the product and a new adsorption site). The fact that the
adsorption of B needs n sites is owed to the idea that B is n times larger
than A and both A and B are flat (possibly aromatic) molecules.

The whole chemical reaction scheme is summarized below :
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The resulting set of equations arising from this chemical scheme is







































L ([R]) = −k0[R],
L ([A]) = k0[R] − k1[A][E] + k−1[AE] − nk5[A]n,
L ([B]) = k5[A]n − k3[B][E]n + k−3[BEn],
L ([AE]) = k1[A][E] − (k−1 + k2) [AE] − k6[AE][BEn],
L ([BEn]) = k3[B][E]n − (k−3 + k4) [BEn] − k6[AE][BEn],
[E]0 = [E] + [AE] + 3[BE3],

(2.1)

where : (i) the L(•) operators denote transport and accumulation operators;
(ii) the braced symbols denote concentrations ; (iii) [E]0 is the total quantity
of adsorption sites per unit surface times the internal surface area; (iv) the
constants concerning heterogeneous reactions are implicitly homogenized by
taking the internal surface area σv (m−1) into account : k(eff) = σvk(het).

2.2 General equations

Two kinds of transport of the gaseous species may be considered : convection
and diffusion. In the case of isobaric CVI, and taking only account of the
porous medium, convection may be safely neglected; diffusion of adsorbed
species is considered as a very slow phenomenon with respect to the others
; accordingly, we will approximate L(•) by ∂t • −Di∂xx• (in 1D geometry)
for gaseous species, and ∂t• for adsorbed species. Moreover, we will restrict
ourselves to the case where the precursor species is already completely con-
verted into species A at the entrance of the pores, so that [R] = 0 everywhere
in the domain of study.

The value of n, the polymerization coefficient, will be set to 3 for the rest
of the study, so that the reaction could be 3 C2H2 −→ C6H6. Under such
conditions, the following equations arise from our hypothesis :











































∂t[A] − DA∂xx[A] = −k1.[A][E] + k−1[AE] − 3k5[A]3,

∂t[B] − DB∂xx[B] = −k3[B][E]3 + k−3[BE3] + k5[A]3,

∂t[AE] = k1[A][E] − k−1[AE] − k2[AE] − k6[AE][BE3],

∂t[BE3] = k3[B][E]3 − k−3[BE3] − k4[BE3] − k6[AE][BE3],

[E]0 = [E] + [AE] + 3[BE3],

(2.2)

where DA and DB are the respective diffusivities of A and B, considered as
constants. We have moreover boundary conditions for A and B, Dirichlet
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type at x = 0, Neumann type at x = L/2. As a matter of fact, one should
take into account that the porous medium gets progressively plugged by the
deposit, usually in a spatially non-homogeneous way [14]. The assumptions
that we have made on the diffusion and reaction constants are thus over-
simplifications and are only adapted to the study of the initial stage of the
process, where the deposit thickness is still very small.

2.3 Dimensionless equations

We define the dimensionless unknowns by

a = [A]/[A]ref , b = [B]/[A]ref , e = [E]/[E]0, c1 = [AE]/[E]0, c2 = [BE3]/[E]0 ,

where [A]ref is a reference concentration. Via the scalings x′ = x/L, t′ =
tDA/L2, we get the following dimensionless evolution system (the primes for
x and t being omitted) :







































∂ta − ∂xxa = −µ1 ae + µ−1 c1 − 3βa3,
∂tb − (DB/DA) ∂xxb = −µ3 be3 + µ−3 c2 + βa3,
ε1 ∂tc1 = αa ae − c1 − µ2 c1c2,
ε2 ∂tc2 = αb be3 − c2 − µ4 c1c2,
c1 + 3c2 + e = 1,
a(0) = a0 = 1, b(0) = b0, a′(1

2
) = b′(1

2
) = 0

(2.3)

where :

µ1 =
k1L

2[E]0
DA

, µ−1 =
k−1L

2[E]0
DA[A]ref

, β =
k5L

2[A]2ref

DA

, µ3 =
k3L

2[E]30
DA

, µ−3 =
k−3L

2[E]0
DA[A]ref

,

αa =
k1[A]ref

k−1 + k2

, αb =
k3[A]ref [E]20

k−3 + k4

, µ2 =
k6[E]0

k−1 + k2

, µ4 =
k6[E]0

k−3 + k4

,

ε1 =
DA

L2(k−1 + k2)
, ε2 =

DA

L2(k−3 + k4)
.

The parameter set is provided at Table 1.

3 Hysteretical behavior of the heterogeneous

chemical submechanism

Assuming a quasi-steady state, or, in a more mathematical analysis, taking
the asymptotic limits as ε1, ε2 go to 0, the last 3 equations of (2.3) define an
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Coefficient Value Unit Coefficient Value Unit

Heterogeneous chemistry Gas-phase transport and chemistry

k1 10.0 mol−1.m3.s−1 k5 0.0 mol−2.m6.s−1

k−1 5.0 10−2 s−1 [A]ref 0.16 mol.m−3

k2 3.86 10−2 s−1 DA 10−3 m2.s−1

k3 509.36 mol−3.m9.s−1 DB 5.77 10−4 m2.s−1

k−3 0.2 s−1 l 0.05 m
k4 6.57 10−2 s−1

k6 7.0 mol−1.m3.s−1

[E]0 0.443 mol.m−3

Table 1: Parameter set for the study.

(algebraic) subsystem for (e, c1, c2), a and b being given :











0 = αa ae − c1 − µ2 c1c2,
0 = αb be3 − c2 − µ4 c1c2,
c1 + 3c2 + e = 1.

(3.1)

Rearranging Subsystem (3.1), we are led to the computation of the real
roots of a polynomial of degree 6 in the unknown c2 ∈ [0, 1

3
] for a given pair

(a, b). Then c1 and e are easily computed. Therefore (3.1) can be described
by an equation of the form :

G (c2, (a, b)) = 0. (3.2)

Standard numerical computations show that, for suitable values of k6, (3.2)
has 3 branches of solutions, see Figure 1a) where we plot c2 vs. b, a being
fixed (this parameter is a measure of the degree of gas-phase maturation).
Moreover, it is not difficult to compute the eigenvalues of the associated
linearized problem and see that the intermediate branch is unstable. The
existence of a branch of solutions consisting of unstable equilibria, connecting
two stable branches, gives rise to a relay-type hysteresis relationship, say :

c2 = W[(a, b)], or (e, c1, c2) = W[(a, b)], (3.3)

(a, b) being the input and c2 – or equivalently the triplet (e, c1, c2) – the
output. W is often called a hysteresis operator [15]. This situation is related
to the non-convexity of the underlying potential F with G = ∇c2F . Each
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a) b)

Figure 1: a) Diagram of the solution c2 vs. b in subsystem 3.1. b) Two-parameter
bifurcation diagram of the subsystem representing heterogeneous chemistry. Pa-
rameter b represents the extent of gas-phase maturation, while parameter k6 rep-
resents the importance of the bimolecular heterogeneous step.

minimum of the potential corresponds to one kinetic regime of the chemical
deposition rate, with a corresponding deposit nanotexture : we may also
call them “kinetic phases” by analogy with phase transitions, which are well
known as driving mechanisms for hysteresis [16].

It has been conjectured, from a chemical point of view, that this hystereti-
cal behavior is owed to the presence of the cross-reaction term. In order to
confirm this guess, we have represented the plan (b, k6) : actually, Figure
1b) shows that the domain where multiple solutions occur does not intersect
k6 = 0, which tends to confirm this conjecture.

4 Numerical results for the full system

System (2.3) can now be replaced by :






























∂ta − ∂xxa = −µ1 ae + µ−1 c1 − 3βa3,
∂tb − (DB/DA) ∂xxb = −µ3 be3 + µ−3 c2 + βa3,
(e, c1, c2) = W[(a, b)],
c1 + 3c2 + e = 1,
a(0) = a0 = 1, b(0) = b0, a′(1

2
) = b′(1

2
) = 0,

(4.1)

that we call hereafter the full or complete system. We are interested in
the steady solutions of System (4.1), especially in a hysteresis cycle upon
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parameter b0 and its connection to the hysteresis cycle of Subsystem (3.1).
The lack of regularity of some steady solutions close to turning points of the
subsystem prevents the use of continuation methods; accordingly, we have
limited ourselves to the numerical research of stable steady solutions, thanks
to a transient, Crank-Nicholson, finite difference solver, using the result at
b0−δb0 as an initial guess for the result at b0 and waiting until a steady-state
is reached. Two oriented branches have been followed, either starting from
b0 = 0 or from b0 large. Figure 2 shows the hysteresis phenomenon for the
complete system, as compared to the heterogeneous subsystem, and answers
the above addressed question : one sees readily that diffusion has the effect
of enlarging the hysteresis domain. If the diffusion coefficient is increased,
then we have a less pronounced enlargement. There are parts of the upper
and lower branches of the complete system, lying close to the turning points,
which display a Free Boundary (FB) in space between two domains : for
example, at the lower branch, close to the center, c2 is high (RL deposit
predominates), and close to the border, c2 is low (SL deposit predominates),
as seen on the inserted plot of c2(x). The same remark holds at the other
side of the hysteresis graph, with inverted geometrical dispositions of SL and
RL. Finally, it is also to be noted that the gas-phase species concentrations

Figure 2: Curves of c2(1/2) (plain line), and c2(0) (i. e. subsystem (3.1), dotted
line) vs. b0 for the full system. Inserted is an example of FB-solution c2(x).
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a and b also undergo a hysteretical behavior, except at x = 0.

5 A simple model

For a better understanding of the dynamical behavior of the system, it has
been tried to design “the simplest model showing similar behavior” for which
solutions would be straightforward to find. For this “toy-model”, we choose
to represent the heterogeneous subsystem with, as “hysteresis operator”, a
double Heaviside operator provided with a “path orientation”. This operator
H is defined as :

H (u) =

{

H (d1 − u) if u is increasing,
H (d2 − u) if u is decreasing.

(5.1)

In (5.1) we take d1 > d2. However it is worthwhile to begin with the
simplest case d1 = d2 = d. Therefore let d > 0 fixed and λ be positive
constant. We look for continuously differentiable solutions u :

u
′′

= λ2uH(d − u), x ∈ (0, 1), u′(0) = 0, u(1) = b0, (5.2)

where b0 is a positive parameter. The nonlinear problem (5.2) admits the triv-
ial solutions u(x) = b0 if b0 > d (case H(d−u)u ≡ 0), and u(x) = b0 cosh(λx)/ cosh(λ)
if b0 < d (case H(d − u)u = u). However, there may exist solutions inter-
secting the line y = d, i.e. FB-solutions, with Free Boundary x0 ∈ (0, 1).
Problem (5.2) reads :







u′′(x) = λ2u(x) if x ∈ [0, x0), u′′(x) = 0 if x ∈ (x0, 1),

u′(0) = 0, u(1) = b0, u(x0) = d, u′(x−

0 ) = u′(x+
0 ).

(5.3)

Solving (5.3) is straightforward :

u(x) =
b0 − d

1 − x0

x+
d − b0x0

1 − x0

, x ∈ [x0, 1], u(x) =
d

cosh(λx0)
cosh(λx), x ∈ [0, x0].

(5.4)
The regularity of u′ at the Free Boundary provides then an equation for the
unknown x0,

fλ(x0) = λ(1 − x) tanh(λx) =
b0 − d

d
. (5.5)

It is not difficult to prove the following properties :

9



Figure 3: Transformation of the bifurcation diagram by incorporation of diffusion.

• (i) fλ has a unique maximum M(λ) over the interval [0, 1], achieved at
x = xm(λ) ∈ (0, 1/2);

• (ii) the function λ 7→ xm(λ) is decreasing, whereas the function λ 7→
M(λ) is increasing;

• (iii) for b0 = d(1 + M(λ)), there is a unique FB-solution of (5.2);

• (iv) for d < b0 < d(1 + M(λ)), problem (5.2) admits 2 FB-solutions;

• (v) for b0 < d and d(1+M(λ)) < b0, problem (5.2) has no FB-solutions.

From a chemical viewpoint, the increase of M with λ , the Thiele modulus,
reproduces qualitatively the results for the full system (4.1) with β = 0. Thus
the size of the hysteresis cycle increases when diffusion becomes more and
more limiting. We now come back to hysteresis operator (5.1) with d1 > d2

: when b0 increases, the d1 branch (upper branch) is used, and the step
transition occurs at b0 = d1(1 + M) while when b0 decreases, the d2 branch
(lower branch) is followed. The step transition occurs at b0 = d2, as sketched
at figure 3.
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We observe that the result is qualitatively similar to the previous section.
It is interesting to note that hysteresis in the reaction-diffusion system is not
directly owed to the presence of hysteresis in the heterogeneous subsystem,
but rather to the presence of a discontinuity in the source term.

6 Conclusions and perspectives

In order to explain sudden transitions in deposit nanotexture in pyrocarbon
CVD/CVI, a dynamical model has been set up, which represents the inter-
action between gas-phase diffusion and a non-linear heterogeneous chemical
mechanism possibly exhibiting hysteresis behavior. It is shown, both nu-
merically and analytically on a simple analogue, that the diffusion of the
source species does not destroy the hysteresis behavior, but on the contrary
enhances its parameter domain of existence. Indeed, two distinct sources of
hysteresis have been evidenced : i) the non-linear cross-reaction term arising
in the heterogeneous chemistry, and ii) the fact that the source term in the
diffusion-reaction equation for the gas-phase species is not monotonous. We
have verified that these two causes combine together in one broader hystere-
sis loop. Moreover, close to the turning points, free boundary solutions are
found, corresponding to CVI samples containing e.g. SL pyrocarbon inside
and RL pyrocarbon close to the surface. On the simple analogue, it has
been proved that there is only one free boundary point in 1 dimension on the
half-domain, in the absence of strong maturation.

The results concerning the simplified model may be extended to some-
what more complicated cases, such as taking maturation into account under
the form of a constant negative term in the right-hand side of the b equation
of system (5.2). In such a case, the uniqueness of the free boundary point is
not any more guaranteed, and “multilayered” solutions could appear. Exper-
imentally, this has been found for the SiC/C codeposition chemical system
[17].
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