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ABSTRACT

This paper focusses on a new clustering method called ev-

idence accumulation clustering with dual rooted prim tree

cuts (EAC-DC), based on the principle of cluster ensembles

also known as “combining multiple clustering methods”. A

simple weak clustering algorithm is introduced based upon

the properties of dual rooted minimal spanning trees and it

is extended to multiple rooted trees. Co-association mea-

sures are proposed that account for the cluster sets obtained

by these methods. These are exploited in order to obtain

new ensemble consensus clustering algorithms. The EAC-

DC methodology applied to both real and synthetic data sets

demonstrates the superiority of the proposed methods.

1. INTRODUCTION

Data clustering (or unsupervised learning) is the task con-

sisting of partitioning a set of data into non-overlapping sub-

sets such that the inter-cluster variance is maximized and

the intra-cluster variance is minimized ; patterns belonging

to a same cluster share more similarity with each other than

with patterns belonging to different cluster. Notion of sim-

ilarity does not have a widely accepted definition and re-

mains context dependent. This problem has been addressed

in many fields of research: data mining, pattern recognition,

machine learning. Many approaches have been developed

to tackle this problem, among them hierarchical methods

and partitioning algorithms are the most popular, see e.g.

[1] or [2]. In this paper, we focus our attention on a more

recent concept derived from studies on multi-learner sys-

tems. This new trend has recently emerged from the idea of

combining multiple clustering results, called evidence accu-

mulation clustering or consensus clustering. Since different

clustering methods or initializations can produce different

partitions on the same data, many approaches have been de-
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veloped to extract significant clusters from a ensemble of

partitions.

In [3], Fred and Jain propose to combine different data

partitions by using a co-association measure (see next sec-

tion for a definition). In [4], the authors explore the same

idea but consider a set of clustering partitions obtained by

varying the initialization parameters of a K-means algo-

rithm [5]. Such approaches were extended to the problem

of clustering different subsets of objects and to combining

clusters from a set of projections onto subspaces [6], [7]. All

these methods require the definition of consensus functions

based on either co-association matrix [8], majority voting

[9], hypergraph partitioning [10] or mixture of models [6].

A common appealing feature of these approaches is that

combination of weak clustering methods can significantly

enhance the quality of the clustering algorithms [6].

In this paper, we present a method for data clustering

that combines the concepts of cluster ensembles and mini-

mal spanning tree (MST) -based clustering, called evidence

accumulating clustering with dual rooted prim tree cuts (EAC-

DC). As in other work [11] basis for the method is the evolu-

tion of Prim’s algorithm for constructing the minimal span-

ning tree. An attractive feature of Prim-based clustering

comes from its ability to account for both local and global

geometrical information about the distribution of the data

that is partitioned. Starting from the work of Grikschat et

al. [11], we present modified dual rooted MST distances

that account for higher order neighborhood information in

the distance matrix. We propose a clustering method which

extracts sets of clusters from dual rooted and multi rooted

diffusion trees. A K-rooted tree defines K clusters within

the initial dataset without the need to define a partition of the

dataset because not all vertices need to be connected. How-

ever, like most other clustering methods, the K-rooted tree

exhibits variability with respect to the set of initializations

of parameters. Ensemble clustering methods are applied to

the K-rooted tree clusters to reduce variability and enhance

clustering performance. We define new co-association mea-

sures, which compute the percentage of time a pair of points



is classified in the same group. The final cluster set is com-

puted by applying a spectral clustering algorithm [12] on

co-association matrices and applying ensemble consensus

approaches.

In Section 2, Prim’s algorithm for constructing a MST

is reviewed. Dual rooted and multi rooted MST-based clus-

tering approaches are developed and discussed, then co-

association measures that make use of the obtained MST-

based cluster sets are proposed. The consensus clustering is

presented to combine the cluster partitions. Different clus-

ter validity indices are described in Section 3. Section 4

presents experimental results on both synthetic and real data

sets.

2. EVIDENCE ACCUMULATION BASED ON

MULTIPLE GRAPH CUTS

In this section, we consider the set V of N data points

∈ R
L, which we want to partition into K clusters. Let

Pi = {C1, . . . , CK} stands for a set of clusters, as obtained

from the data by applying Pi. Notice that Pi and Pj may be

identical algorithms with different initialization parameters,

or different clustering algorithms. M different partitions of

the data are available ; P represents the cluster ensemble:

P = (P1, . . . , PM ).
Let G = (V,E) be an undirected graph where V =

(v1, . . . , vN ) is the set of N vertices and E = (e1, . . . , eN−1)
denotes the set of edges. The weight of an edge measures

the dissimilarity or separation between two vertices. Here,

only Euclidean distances will be examined although other

metrics can be used [13].

There exist different algorithms for constructing the MST

[14]; in this paper, the proposed method is the Prim con-

struction algorithm [15]. The MST is fully connected, acyclic

and the full MST does not depend upon the initial vertex on

to which it is rooted. At iteration i, the Prim’s algorithm

connects the closest non-connected vertex to the tree con-

structed at iteration i − 1. Subtrees obtained after N − 1
iterations of the Prim’s algorithm are equivalent MSTs de-

fined over the set of N connected vertices. If Prim’s algo-

rithm is initialized at a vertex x and is stopped prematurely

after k iterations, k < N − 1, one obtains a subtree that

we call a “Prim subtree rooted at x”. The weight of a MST

is minimal, where the weight is defined as the sum of the

weights of edges connecting the vertices. There exist two

principal ways to obtain clusters from the MST: 1) forward

algorithms that successively add edges to a MST subtree

until a cluster criterion is reached; 2) pruning algorithms

that successively remove edges from the MST [2]. For ex-

ample in a pruning method one segments the MST graph

into k clusters by removing the k − 1 largest edges. This

method, similar to single-linkage clustering [2], is known to

be unstable, especially when the data contain outliers or are

corrupted by noise. On the other hand, the proposed method

of evolving several rooted Prim subtrees over the data set is

an example of a forward algorithm. Forward algorithms are

often less sensitive to outliers, as shown in the K-MST work

of Hero and Michel [16].

2.1. Dual-rooted tree

In this paper, we propose to construct a cluster ensemble P

by applying Prim construction with different initializations.

In [11], Grikschat et al. propose a graph-based distance

measure between two vertices derived from the hitting-time

of the two Prim subtrees rooted at each pair of distinct ver-

tices. In Grikschat paper, each Prim subtree is grown si-

multaneously at each iteration. A slight modification of the

distance measure is proposed here where at each step of the

tree growing procedure, only one of the two Prim subtrees is

grown at each iteration, namely the one for which the new

edge has minimal weight. As [11], this process continues

until the two subtrees collide. However, unlike in [11] num-

bers of vertices connected within each subtree are no longer

always identical.

The tree obtained by the union of the two Prim subtrees

is referred to as Dual Rooted Prim (Droopi) 1. This Droopi

tree enjoys many interesting properties, among which one

will be extensively used in the rest of the paper : for a

given couple of vertices {v1, v2} serving as roots of two

subtrees, the last constructed edge, of weight noted wlast

connects the two subtrees together, is always the largest

(with maximum weight) among the set of all edges from

both subtrees. This maximum weight edge defines a dis-

tance - d(v1, v2) = wlast - that is symmetric, positive and

satisfies the triangular inequality. Consequently, each pair

of root vertices is associated with a distance defined by the

Droopi tree that connects a subset of vertices. This subset

is easily partitioned into two clusters by applying a single

graph cut to remove the largest, and last constructed edge.

For each pair of root vertices considered, the members of

a given cluster receive the same label, and these labels are

recorded. In Fig. 1, the Droopi tree is illustrated. We ob-

serve two labeled classes corresponding to vertices belong-

ing to each subtree and a set of unlabeled vertices that are

the unconnected vertices.

For each run of the graph-partitioning algorithm with

different initializations, let Pi = {C1i, C2i} be the result-

ing partition of the set of connected vertices for the couple

of roots {v1i, v2i} (where i indexes this particular choice of

roots). It is important to emphasize that C1i ∪C2i 6= V and

therefore, the algorithm exhibits two labeled classes and a

set of unlabeled vertices. This will lead to some refinements

in the definition of co-association measure (see Section 2.3).

1Details and properties of this new measure will be published sepa-

rately.
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Fig. 1. Dual rooted tree built on a data set. Symbol X marks

the rooted vertices. The dashed edge is the last connected

edge.

2.2. Multi-rooted tree

Dual rooted tree approaches as introduced in the previous

section, are straightforwardly extended to multi-rooted tree

constructions. Starting with K initial vertices, K subtrees

are constructed until all subtrees collide. At each step of

construction, only one subtree is grown : among the K can-

didates (K new vertices associated with K subtrees grown

by Prim’s algorithm) one connects the vertex that requires

the shortest (smallest weight) edge.

The algorithm could be stopped as soon as the K subtrees

grown from the K roots are all connected. The K − 1 cuts

that will be considered are given by the longest edge that

connects a subtree to the other subtrees. However, to cir-

cumvent the problem that some vertices are not included in

any of the K subtrees (therefore not labeled), a slight mod-

ification is suggested. Once the K − 1 candidate cuts are

identified, the Prim’s algorithm is iterated until all points

are connected. The full MST is thus constructed and each

vertex will receive a label according to a subtree to which

it is ultimately connected. In this manner, for each run

of the graph-partitioning algorithm with different initializa-

tions set of K roots, a partition Pi = {C1i, . . . , CKi} is

stored. Note that C1i ∪ . . . ∪ CKi = V . In Fig. 2, a multi

rooted tree with K = 4 rooted vertices is shown.

2.3. Co-association measures

In this section, we propose a new way of combining clus-

tering methods, based upon an evidence accumulation ap-

proach. Our approach relies on the assumption that two

vertices belonging to the same cluster tend to receive the

same cluster label every time that a different clustering al-

gorithm is applied.
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Fig. 2. Multi-rooted tree built on a data set. Symbol X

marks the rooted vertices.

From the cluster ensemble P = {P1, . . . , PM}, obtained

by applying M different clustering processes, and following

the ideas introduced in [10], [8], we compute the following

co-association measure

co assoc1(xi, xj) =
n(xi, xj)

M
, (1)

where n(xi, xj) stands for the number of times the two ver-

tices received the same label, and therefore belong to the

same cluster.

When Droopi tree based clustering is implemented, there

may be some instances when not all vertices receive a label

(see Section 2.1). In order to account for this behaviour, a

modified co-association measure is proposed

co assoc2(xi, xj) =
n(xi, xj)

m(xi, xj)
, (2)

where n(xi, xj) is defined as above and m(xi, xj) stands

for the number of times (among M ) both vertices xi and xj

receive a label. By construction, 0 ≤ m(xi, xj) ≤ M .

Although these definitions of co-association measures rely

upon some reasonable heuristics, we propose to modify them.

We consider all unlabeled vertices as being the elements

of a “rejection cluster”. If nn(xi, xj) stands for the num-

ber of times both xi and xj belong to this rejection clus-

ter, a natural modification of the definition (1) can thus be

co assocmod = n+nn
M . As this measure gives an equal im-

portance to the actual detected clusters and to the rejection

cluster, we propose here to consider instead

co assoc3(xi, xj) =
n(xi, xj)

m(xi, xj)
+

nn(xi, xj)

M
, (3)

As m ≤ M , this will apply a larger weight to the detected

clusters, and a lower weight to the rejection cluster.



2.4. Evidence accumulation clustering

For a given co-association criterion consider the set of all

pairwise co-association measures co assoc(xi, xj). We pro-

pose to apply spectral clustering with consensus to extract

the final clusters. This differs from the approach of Fred

and Jain [8], who apply hierarchical clustering algorithms

on the co-association measures, and from Strehl and Gosh

use a graph partitioning algorithm [10].

Here, we propose to construct an affinity matrix A de-

fined as:

A(i, j) ∝ β exp

{

+
coassoc(xi, xj)

σ

}

(i, j) ∈ [1, N ]2,

where σ and β are constants to be adjusted. Note that σ

defines the size of the neighborhood of significant pairwise

influence between xi and xj .

Following the work of Ng et al. [12], we propose to identify

the clusters by using a spectral clustering algorithm, which

extracts the eigenstructure of A.

In the remainder of the paper, we will denote the ap-

plication of spectral clustering to an affinity matrix of dual

rooted Prim distances as EAC-DC (Evidence Accumulation

Clustering by Droopi tree Cut). The co-association mea-

sures used to construct the affinity matrix will be denoted

by adding an index: EAC-DC i means that co associ was

used. Multi rooted tree algorithm (Multi EAC-DC) leads to

label all vertices. Therefore, only co assoc1 measure will

be considered for such multi-tree algorithms..

Before we present the experimental results, the cluster

validity indices used to evaluate the performances of the

proposed approaches are introduced in the next section.

3. CLUSTER VALIDITY INDICES

Validity indices are used to compare two cluster partitions

P and P ∗. If P ∗ is some known ground truth reference par-

tition, these indices can be used to benchmark the perfor-

mances of the methods. For sake of completeness, we will

also estimate the overall accuracy index which computes the

percentage of points correctly labelled.

The Rand (R) index [17] is defined as

R(P, P ∗) =
a + b

a + b + c + d

where a is the number of pairs of points in V which have

been classified as belonging to in the same set in P and in

the same set in P ∗, b is the number of pairs of points in V

which have been classified in different sets in P and in dif-

ferent sets in P ∗, c is the number of pairs of points in V

which have been classified in the same set in P and in dif-

ferent sets in P ∗ and d is the number of pairs of points in V

which have been classified in different sets in P and in the

same set in P ∗.

By construction, 0 < R(P, P ∗) < 1. 1 is obtained when the

partitions are exactly the same, up to an arbitrary permuta-

tion of partition labels.

The adjusted Rand (AR) index is defined as

AR(P, P ∗) =
a − t1t2

a+b+c+d
1

2
(t1 + t2) −

t1t2
a+b+c+d

,

where t1 =
∑K

i=1

(

Ni.

2

)

and t2 =
∑K

j=1

(

N.j

2

)

. Ni. is the

number of instances of cluster i in partition P and N.j is the

number of instances of cluster j in partition P ∗. A discus-

sion of the motivation and the properties of this index may

be found in [18].

The Jaccard (J) index [17] is expressed as

J(P, P ∗) =
a

a + c + d

Strehl and Gosh [10] defined an index based on some no-

tions of information theory: the normalized mutual informa-

tion (NMI). The latter aims at defining information shared

partitions P and P ∗ and reads

NMI(P, P ∗) =
2.I(P, P ∗)

H(P ∗) + H(P )

H(P ) = −
∑k

i=1

ni

N log (ni

N ), where ni is the number of

points classified in cluster Ci, Ci ∈ P .

I(P ∗, P ) =
∑K

i=1

∑K
j=1

n∗

ij

N log(
n∗

ij/N

ni/N.n∗

j
/N ), n∗

ij is the num-

ber of shared points in Ci ∈ P and C∗

j ∈ P ∗. H(P )
represents the Shannon entropy of partition P ; I(P, P ∗) =
I(P ∗, P ) -mutual information- measures the agreement be-

tween P and P ∗.

4. EMPIRICAL STUDY

In order to validate and evaluate the performances of the

proposed approaches, tests on both synthetic data and real

data sets from the UCI Machine Learning Repository [19]

were conducted. In all our experiments, for each tested al-

gorithm, a set of M = 100 random different intialization

parameters was considered. We compare our method to sev-

eral of the most commonly used algorithms in the literature:

co-association measure, voting, graph representation:

- evidence accumulation clustering with average-link algo-

rithm (EAC - AL) [8], [3],

- graph and hypergraph representation as described in [10]:

cluster-based similarity partitioning algorithm (CSPA), hy-

pergraph partitioning algorithm (HPGA) and meta-clustering

algorithm (MCLA),

- cumulative voting, see [9] for definitions: unnormalized

reference based cumulative voting (URCV), reference based

cumulative voting (RCV), adaptive cumulative voting (ACV),

- median partition: quadrature mutual information (QMI)

[6].
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Fig. 3. Results obtained with our methods on synthetic data sets: (a) two rings, (b) two spirals, (c) two half-moons. Clusters

labels are indicated by symbols.

4.1. Numerical comparisons of synthetic data sets

Table 1 reports the results obtained with the methods in-

troduced in the previous section. Performances are mea-

sured with the simple accuracy criterion (percentage of cor-

rectly labeled points). Results of our proposed methods on

the synthetic data are shown in Fig. 3. Our method clearly

outperforms the previous methods proposed in the litera-

ture: this is due to the fact that the clusters in Fig. 3 are

not convex. The multi rooted tree based approaches allow

to solve this difficulty in the sense that the local geome-

try of distribution is explored through the Prim construc-

tion, whereas most other implemented methods rely on the

constructions of partitions into convex subsets. Note that

all these methods are unsupervised, except that the correct

number of clusters is assumed to be known. Grikschat’s

method gives the same results as the EAC-DC but subtrees

are computed with each pair of vertices, whereas in our ap-

proach only few subtrees are computed to obtain a distance

matrix. Therefore, our method is less consuming in comput-

ing time. Further studies will be realized in a larger version

of this paper.

Methods Half moons Two spirals Two circles

EAC-DC (1, 2, 3) 1 1 1

Multi EAC-DC 1 1 1

EAC-AL 0.7675 0.5550 0.5200

QMI 0.7550 0.5050 0.5150

URCV 0.7600 0.5000 0.5200

RCV 0.7650 0.5300 0.5200

ACV 0.5000 0.5000 0.5000

CSPA 0.7300 0.5025 0.5550

HGPA 0.5000 0.5000 0.5000

MCLA 0.7275 0.5050 0.5400

Table 1. Results obtained on synthetic data

4.2. Results on real data sets

The first data set considered is Iris (150 points in a 4-dimen-

sional feature space) [19]. It contains three classes of flower

features with one class well separated from the others and

two close classes. The obtained results are presented in Ta-

ble 2 for different algorithms and validity indices. It appears

that for these data set, the proposed multi EAC-DC signifi-

cantly outperforms the other methods for any validity index.

A second data set, breast cancer Wisconsin data [19], has

been analyzed. It consists of 683 9-dimensional feature vec-

tors separated into two classes. For these data, the EAC-

DC dominates the other methods (Table 3), the voting ap-

proaches also give good results and notice that multi EAC-

DC seems to be better in the case of more than two clusters.

It will be valuable to investigate this point further on.

Methods Accuracy Rand Adjusted Rand Jaccard NMI

EAC-DC 1 0.9067 0.8893 0.7509 0.7577 0.7637

EAC-DC 2 0.9267 0.9124 0.8032 0.8010 0.8315

EAC-DC 3 0.9200 0.9045 0.7853 0.7863 0.8022

Multi EAC-DC 0.9600 0.9495 0.8858 0.8876 0.8705

EAC - AL 0.8733 0.8580 0.6809 0.6944 0.6914

CSPA 0.9267 0.9124 0.8015 0.8100 0.7900

HGPA 0.9200 0.9055 0.7859 0.7956 0.7773

MCLA 0.8933 0.8797 0.7294 0.7360 0.7496

URCV 0.8800 0.8664 0.6997 0.7096 0.7130

RCV 0.9000 0.8859 0.7455 0.7414 0.7980

ACV 0.9067 0.8923 0.7592 0.7557 0.8057

QMI 0.8800 0.8664 0.6989 0.7114 0.7065

Table 2. Results obtained on the Iris data set

5. DISCUSSIONS

We have introduced a new clustering algorithm called EAC-

DC, that is developed in two steps. First, Prim-based clus-

tering algorithms are used to compute co-association mea-

sures. Secondly, the co-association measures are analysed



Methods Accuracy Rand Adjusted Rand Jaccard NMI

EAC-DC 1 0.9678 0.9376 0.8743 0.9184 0.7889

EAC-DC 2 0.9605 0.9240 0.8466 0.8991 0.7458

EAC-DC 3 0.9606 0.9240 0.8466 0.8969 0.7458

Multi EAC-DC 0.9385 0.7884 0.5744 0.7268 0.4502

EAC - AL 0.9429 0.8922 0.7816 0.8488 0.6827

CSPA 0.8448 0.7374 0.4749 0.6523 0.4809

HGPA 0.6501 0.5444 0 0.4856 0

MCLA 0.9575 0.9186 0.8355 0.8869 0.7363

URCV 0.9590 0.9223 0.8409 0.8907 0.7427

RCV 0.9663 0.9348 0.8685 0.9106 0.7755

ACV 0.9649 0.9321 0.8630 0.8067 0.7684

QMI 0.9356 0.8793 0.7561 0.8366 0.6376

Table 3. Results obtained on Breast Cancer Wisconsin data

in order to provide a final consensus partition. For this

purpose, we have used spectral clustering approaches. Al-

though it seems clear that Prim-based methods handle prob-

lem of non-convex subsets, the efficiency of the proposed

methods may also be due to the non-convex adaptive prop-

erties of spectral clustering algorithms. We think that the

primary strength of the EAC-DC approach is its simultane-

ous use of Prim-based co-association measures and spectral

clustering approaches. However further study is needed to

confirm the relative contribution of the two steps in EAC-

DC.

6. CONCLUSION

In this paper, we have presented new clustering methods,

based on the concept of evidence accumulation and on the

combination of multiple clustering results. We proposed

to exploit the properties of Prim-based co-association mea-

sures to form the cluster ensemble. We also proposed to ex-

tend this method to a multi-rooted aproach. This graph con-

struction better captures both the local and the global intrin-

sic geometry of the data set. Multiple realizations of MST-

cut clustering are performed for a set of random initializa-

tion parameters and allow to construct a cluster ensemble

from which new co-association measures are proposed. The

performances of these methods have been evaluated over a

set of both synthetic and real data, thus highlighting very in-

teresting and promising features of the proposed algorithms.
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