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Clouds on Titan result from the condensation of methane and ethane and, as on other planets, 21 

are primarily structured by the atmosphere circulation1-4. At present time, cloud activity mainly 22 

occurs in the south (summer) hemisphere, arising near the pole5-12 and at mid-latitudes7,8,13-15 23 

from cumulus updrafts triggered by surface heating and/or local methane sources, and at the 24 

north (winter) pole16,17, resulting from the subsidence and condensation of ethane-rich air into 25 

the colder troposphere. General Circulation Models1-3 predict that this distribution should seaso-26 

nally change moving from an hemisphere to another on a 15-year timescale, and that clouds 27 

should develop under certain circumstances at temperate latitudes (~40°) in the winter hemis-28 

phere2. The models, however, have hitherto been poorly constrained and their long-term predic-29 

tions have not been observationally verified yet. Here we report that the global spatial cloud cov-30 

erage on Titan is in general agreement with the models, confirming that cloud activity is mainly 31 

controlled by the global circulation. The non-detection of clouds at ~40°N latitude and the persis-32 

tence of the southern clouds while the southern summer is ending are, however, both in contra-33 

diction with models predictions. This suggests that Titan's equator-to-pole thermal contrast is 34 

overestimated in the models and that Titan’s atmosphere responds to the seasonal forcing with a 35 

greater inertia than expected. 36 

 37 

The Visual and Infrared Mapping Spectrometer18 (VIMS) onboard Cassini provides a unique oppor-38 

tunity to regularly and accurately chart cloud activity from a close vantage point, hence with high spa-39 

tial resolution and good spectral coverage. We developed a semi-automated algorithm to isolate clouds 40 

from other contributions in VIMS images (cf. Fig. 1) and applied it to 10,000 images of Titan. These 41 

images encompass several millions of spectra, acquired during 39 monthly flybys of Titan between Ju-42 

ly 2004 and December 2007.  43 

 44 
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The total distribution of cloud events derived from our detections (Fig. 2) and the time variation of 45 

their latitudinal distribution (Fig. 3a) indicates that cloud activity is clustered at three distinct latitudes 46 

during the 2004-2007 period: the south polar region (poleward of 60°S), the north polar region (pole-47 

ward of 50°N), and a narrow belt centered at ~40°S. Individual detection maps are provided for each 48 

flyby in the online supplementary information materials (Fig. S1 to S4). 49 

 50 

Our study clearly shows the stability of the north polar cloud, which is systematically detected over 51 

the 2004-2007 period. We observe this extensive meteorological system poleward of 50-60°N. All of 52 

these clouds spectrally differ from the southern clouds, which are presumably formed by wet convec-53 

tion and made of large, tens of microns in size, liquid/solid methane droplets2,16. They produce much 54 

less signal at 5-µm than any other cloudy features we detect elsewhere on Titan, indicating a lower 55 

backscattering at 5-µm. Given that complex indices of refraction of methane and ethane are not that 56 

different at this wavelength, the difference in backscattering comes essentially from the particle size. A 57 

realtive lower backscattering at 5-µm is consistent with north polar clouds composed of smaller, mi-58 

cron-sized, particles more probably made of solid ethane2,16,17. We also detect small elongated clouds at 59 

~60-70°N in March and April 2007. Surrounded by the large north polar ethane cloud, these clouds are 60 

thought to be convective methane clouds connected to the underlying lakes19. Their higher brightness 61 

at 5-µm confirms that they are similar to the methane clouds found in the southern hemisphere. 62 

  63 

 A few tropical clouds, thought to be rare during Titan’s summer, are detected close to the equator 64 

(~15°S) on 12 December 2006. Their areas never exceed 10,000 km2. These clouds were therefore un-65 

detectable from ground-based observations. More details about tropical clouds are given in ref. (20). 66 

We also observe more than one hundred isolated and transient temperate clouds near 40°S (Fig. 2 and 67 

3a). Most of them are elongated in the east-west direction, as was previously reported7,8,13-15, possibly 68 

due to orographic waves over zonally oriented topography and/or shearing and stretching by strong 69 
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zonal winds of tens of meter per second7. This type of clouds appeared during two periods, in 2004 and 70 

then regularly (on the two-thirds of the flybys) between July 2006 and October 2007. Between Decem-71 

ber 2004 and August 2006, temperate clouds have been observed very rarely (only in October 2005 72 

(ref. 10) and January 2006 (this study)). This could be attributed to the combination of less frequent 73 

Titan’s flybys by Cassini and/or a momentary decline in cloud activity.  74 

 75 

Our latitudinal and time distribution of clouds (Fig.3a) is compared with predictions of the atmos-76 

pheric Global Circulation Model from ref. (2) (IPSL-TGCM) which is, up to date, the only one to in-77 

clude a microphysical cloud scheme and thus predict the cloud cover (see Fig. 3b). Except for the lack 78 

of winter mid-latitude clouds (40°N), we find that the main spatial characteristics of our cloud distribu-79 

tion are well reproduced by the IPSL-TGCM. Clouds appear in the model near 12 km altitude around 80 

40° in the summer hemisphere (the southern hemisphere until 2009), associated to the ascending mo-81 

tion of the convergence zone of a Hadley-type cell1-3. Clouds are also predicted very near the summer 82 

pole (actual southern) where methane, driven from the warmer region below, condenses generating 83 

convective structures2,21-23. In the winter polar region, the cloud formation is related to the downwel-84 

ling stratospheric circulation, which drives an ethane and aerosol enriched stratospheric air into the 85 

cold tropopause of the polar night (above 40 km). The observed stability of the north polar clouds is 86 

interpreted, with the IPSL-TGCM, as the result of a constant incoming flux of ethane and aerosols from 87 

the stratosphere24, producing a mist of micron-sized droplets of ethane and other products which slowly 88 

settles. However, present observations do not confirm the ~40°N clouds predicted by the IPSL-TGCM. 89 

In the model, these clouds should result from the horizontal diffusive transport by inertial instabilities 90 

of air, partially humid (RH=50%) in tropical regions, toward the colder north pole. At the altitude 12 91 

km, where these clouds are formed, the model predicts T80°N-T0° = -4K. Such a contrast makes the air 92 

to become saturated and to produce clouds around 40°N.  The lack of such clouds in observations could 93 

be explained by an actual equator to pole temperature contrast T80°N-T0° of about -1.5K instead of the -94 
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4K as predicted by the IPSL-TGCM. Such a small thermal contrast would allow air parcels with 95 

RH=50% in tropical regions to move toward the pole without condensing. Conversely, it could also 96 

enable the north polar region (where lakes are observed), saturated in methane, to wet the tropical re-97 

gions up to 50% humidity. If we consider the conditions at the surface, computations, including phase 98 

equilibrium with N2-CH4 mixture, show that with an equator-to-pole contrast near the ground of -4.2K 99 

(instead of -6.5K in the IPSL-TGCM), an air parcel at methane saturation near the pole (fed by lakes) 100 

would be at 50% humidity if transported at tropics. Only 80% humidity would be needed at the north 101 

pole if the temperature contrast at surface drops to -3 K, which is actually observed25. 102 

 103 

By contrast, the timing of the summer-hemisphere clouds as constrained by our observations is 104 

poorly reproduced by the IPSL-TGCM. Fig. 3b shows that the southern cloud activity should gradually 105 

decrease as the equinox approaches, as a consequence of a progressive change in the south polar circu-106 

lation pattern. This forecasted decline of southern meteorological activity is not supported by our data. 107 

According to the IPSL-TGCM, the south polar clouds should have disappeared in mid-2005 and the 108 

mid-latitudes clouds should have progressively faded out since 2005, whereas in our observations the 109 

southern clouds are still present even late in 2007 and are particularly active at 40°S until mid-2007. 110 

The significant latency to the predicted disappearance of summer clouds suggests that the response of 111 

Titan’s atmosphere to seasonal forcing presents certainly a greater inertia than expected. Yet, since 112 

August 2007, south polar clouds’ occurrences seemed to be less frequent in our data and the mid-113 

latitude clouds seemed to be scarcer. These very subtle declining trends may indicate that we are wit-114 

nessing the forthcoming seasonal circulation turnover as we approach the equinox, but with a different 115 

timing pattern than forecasted by the IPSL-TGCM.  116 

 117 

Fig. 4 shows that, between July 2004 and December 2007, the mid-latitude clouds are not uniformly 118 

distributed in longitude, as already noticed during previous ground-based observations14 (December 119 
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2003-February 2005). The clouds’ propensity for 0° longitude found in 2003-2005 was attributed to 120 

localized geological forcings from the surface possibly related to an active cryovolcanic province14. 121 

Yet, three years later, our distribution differs markedly, showing more structures (Fig. 4c). Contrary to 122 

ref. (14), we observe mid-latitudes clouds at almost all longitudes with an excess at longitudes (from 123 

60°E to 180°E corresponding to the leading hemisphere of Titan) where ref. (14) detected none. The 124 

strong clouds’ density peak, along with the secondary bump, both reported by ref. (14) have drifted 125 

eastward by 30° with an estimated rate of ~10° by terrestrial year. In addition, we found two troughs at 126 

longitudes facing Saturn (0°) and anti-Saturn (180°). Though the strong link of the clouds to the lati-127 

tude indicates that global circulation plays a major role in their formation1-3, the wavy pattern of our 128 

clouds’ distribution suggests a secondary forcing mechanism. The 30° longitude shift in the cloud dis-129 

tribution between the periods 2003-2004 (ref. 14) and 2005-2007 (this study), as well as the loose cor-130 

relation of clouds with surface location, exclude surface geological activity as the primary triggering 131 

mechanism. Both the drift in longitude and the discovery of two diametrically opposite minima rather 132 

favour processes taking place in Titan’s atmosphere, that we attribute to external forcing by Saturn’s 133 

tides. Saturn’s tides are predicted to generate tidal winds in Titan’s dense atmosphere, particularly sig-134 

nificant in the troposphere26 at altitudes where temperate clouds are found to develop2,3,13-15. These 135 

winds manifest themselves as eastward travelling planetary-scale waves of degree-two and change 136 

east-west direction periodically through the tidally locked orbit of Titan26. In consequence, tidally-137 

induced winds periodically modify the convergence of air masses, mostly at two preferential longitudes 138 

180° apart, potentially resulting in perturbations to cloud formations26.  139 

The extension of the Cassini mission possibly up to the summer solstice in 2017 and the 140 

continuation of ground-based observations will feed the GCMs with further observational constraints. 141 

The refined GCMs will provide a better knowledge of the global atmospheric circulation, which is 142 

crucial for understanding the carbon-cycle on Titan. 143 
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Figure captions: 212 

Figure 1: Method of spectral detection of Titan’s clouds illustrated on a representative VIMS data 213 

cube. The VIMS onboard Cassini acquires a 352-channels spectrum from 0.3 to 5.1 µm for each pixel 214 

of an image18. (a) shows a scatter plot of the 2.75 µm window integrated area versus the 5 µm window 215 

integrated area of the VIMS color-image shown in (b) with Red=2.03-µm, Green=2.78-µm, Blue=5-216 

µm. The integrated window areas correspond to the integral of I/F within the spectral range shown in 217 

gray in spectra. (c) and (d) correspond to the 2.75-µm and 5-µm integrated window area images re-218 

spectively, coded in grayscale (high values appear in bright). Characteristic spectra are inseted within 219 
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(a), showing clouds (red), limb (violet), typical surface (cyan) and a high 5-µm signal surface feature 220 

(Tui Regio27) in green. ”Surface” windows correspond to peaks at 1.27, 1.59, 2.03, 2.75 and 5 µm. Be-221 

cause clouds are efficient reflectors and reduce the path-length of solar photons, their spectra present a 222 

brightening of all “surface” windows relative to other spectra. We found that the most robust spectral 223 

criterion to separate clouds’ pixels from other contributions (surface and limb) is the simultaneous in-224 

creased integrated areas of the 2.75-µm and 5-µm windows. Conservative, two-sigma thresholds on the 225 

integrated areas of these two windows are automatically calculated in order to isolate pixels corres-226 

ponding to clouds (red triangles in (a)). We deliberately choose a conservative threshold to avoid false 227 

positives. This can lead to the rare non-detection of optically thin or low-altitude clouds, of clouds 228 

much smaller than a VIMS pixel, or of clouds that are too close to the limb. (e) shows the resulting 229 

cloud pixels detection (in red) which are then reprojected on a global map (see Fig. 2). 230 

 231 

Figure 2: Maps of Titan’s clouds derived from VIMS observations from July 2004 to December 232 

2007. Our detections are presented in cylindrical (top) and polar orthographic (bottom) projections. 233 

The colors of the clouds correspond to the date of each cloud observation. A VIMS grayscale mosaic of 234 

Titan’s surface (adapted from RGB color composite global mosaics in ref. (28)) is used as background. 235 

Clouds are found to be distributed in three clustered regions: the two poles and the southern temperate 236 

latitudes. Only very few occurrences of clouds are found in equatorial regions. One cloud event is 237 

found on December 2005 just above a particularly interesting terrain thought to be of cryovolcanic ori-238 

gin (Tui Regio27) and may witness possible recent cryovolcanic activity. 239 

 240 

Figure 3: Latitudinal Titan’s cloud coverage with time compared with Global Circulation Model3 241 

predictions. Top: We reported here the latitudinal distribution of clouds we detected with VIMS ver-242 

sus time from July 2004 to December 2007. The thin blue vertical lines mark the time of the VIMS ob-243 

servations. The latitude extent of the clouds we detect is enhanced with thicker vertical lines, in blue 244 
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when in dayside and in green when in polar night. Isolated temperate clouds are colored in purple. The 245 

previous Cassini and ground-based observations reported in the literature are superimposed over our 246 

latitudinal distribution by colored dots and diamonds respectively. Our detections are in very good 247 

agreement with the previous observations. Bottom: Integrated Titan’s cloud opacity above 10 km, 248 

summed each year, predicted by ref. (2)’s GCM (IPSL-TGCM) between 2004 and 2011. The thick 249 

black lines show the edge of the polar night. Spatial distribution of clouds forecasted by the IPSL-250 

TGCM, confining clouds at the two poles and around 40°S, is in very good agreement with our obser-251 

vations (see top and Fig. 2). On the contrary, the observed clouds timing is poorly reproduced by the 252 

IPSL-TGCM. In the time interval monitored by VIMS for this work, the IPSL-TGCM predict that the 253 

south pole cloud should vanish before the equinox for more than one year, and that the 40°S cloud belt 254 

should have reached a maximum of intensity between 2004 and 2007 and then should gradually vanish 255 

with the incoming circulation turnover. This seems to be lately observed by VIMS, with a significant 256 

delay (see text for details). 257 

  258 

Figure 4: The southern temperate clouds distribution in longitudes. (a): The total number observa-259 

tions that cover each 10° bin of longitude is shown with the solid red line for our study and the black 260 

dotted line for ref. (14). (b): The number of clouds observed by VIMS between July 2004 and Decem-261 

ber 2007 (our study - solid red line) and ref. (14) between December 2003 and February 2005 (black 262 

dotted line) in each 10° bin of planetocentric longitude summed within 60°S and 0° of latitudes. Blue 263 

bars indicate the Poisson standard deviation for each VIMS clouds count. The statistics indicate that 264 

the overall shape of the longitudinal distribution is significant. (c): Normalized numbers of clouds 265 

(number of clouds divided by the number of observations) from ref. (14) and from this study are com-266 

pared. Our distribution shows two minima at the sub- (0°E), where ref. (14) saw a maximum, and anti-267 

Saturn points (180°E). Two others minima are also present in the neighbourhood of 70°E and -110°E 268 

longitude. But, due to Cassini’s Saturn tour limitation, the detection of clouds was heavily precluded 269 
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here by particularly low spatial resolution (Fig. S5a) and very unfavourable conditions of observations 270 

(resulting to high airmass – Fig. S5b), so that these two minima cannot be interpreted with confidence. 271 

272 
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