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Abstract This paper is devoted to the study of the Monge-Kantorovich theory of optimal mass transport
and its applications, in the special case ofone-dimensional and circular distributions. More precisely, we
study the Monge-Kantorovich distances between discrete sets of points on the unit circleS1, in the case
where the ground distance between two pointsx andy is defined ash(d(x, y)), whered is the geodesic
distance on the circle andh a convex and increasing function. We first prove that computing a Monge-
Kantorovich distance between two given sets of pairwise different points boils down to cut the circle at a
well chosen point and to compute the same distance on the realline. This result is then used to obtain a
metric between 1D and circular discrete histograms, which can be computed in linear time. A particular
case of this formula has already been used in [RDG09] for the matching of local features between images,
involving circular histograms of gradient orientations. In this paper, other applications are investigated, in
particular dealing with the hue component of color images. In a last part, a study is conducted to compare
the advantages and drawbacks of transportation distances relying on convex or concave cost functions,
and of the classicalL1 distance.

Keywords Optimal mass transportation theory· Earth Mover’s Distance· Circular histograms· Image
retrieval
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1 Introduction

The theory of optimal transportation was first introduced byMonge [Mon81] in its Mémoire sur la th́eorie
des d́eblais et des remblais(1781) and rediscovered by Kantorovich [Kan42] in the late ’30s. The Monge-
Kantorovich problem can be described in the following way. Given two probability distributionsf andg
onX andc a nonnegative measurable cost function onX×X, the aim is to find the optimal transportation
cost

MK c(f, g) := inf
π∈Π(f,g)

∫∫

x,y

c(x, y) dπ(x, y) (1)
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whereΠ(f, g) is the set of probability measures onX × X with marginalsf andg (such measures are
called transportation plans). The existence, uniqueness and behavior of optimal transportation plans has
been thoroughly studied in the last decades[Vil03, ACB+03, McC99, Vil08, McC95, GM96].

This framework is nowadays widely used in many fields of research, such as cosmology [FMMS02],
meteorology [Cul06], fluid mechanics or electromagnetic (see [ACB+03] for a complete review).

The use of the Monge-Kantorovich framework in image processing and computer vision has been
popularized by Rubneret al. [RTG00] for image retrieval and texture classification with the introduction
of the so-called Earth Mover’s Distance (EMD). Although thedefinition of the EMD is slightly different
from the original Monge-Kantorovich formulation, these are equivalent when considering distributions
having the same total weight. In the following years and up tonow, a large body of works has relied on the
use of such distances for image retrieval, see e.g. [GDR00, LCL04, LZLM05, ZWG06, HGS08, PW09].
This extensive use of transportation distances is largely due to their robustness when comparing his-
tograms or discrete distances. For the same reason, these distances are also successfully used to compare
local features between images, see [LO07, PW08, RDG08, RDG09, PW09]. Other uses of transporta-
tion distances for images include: image registration [HZTA04], image morphing [ZYHT07] or junction
detection [RT01].

The strongest limitation of transportation distances is their computational cost. Standard approaches
quickly become intractable when dealing with a large amountof data in dimensions more than two. In-
deed, the simplex algorithm, interior point methods or the Hungarian algorithm all have a complexity of
at least0(N3) (N being the size of the data, either the number of samples or thenumber of histogram
bins). Therefore, several works have proposed to speed up the computation or the approximation of op-
timal transport, in particular in the field of image processing, where the amount of data is often massive,
see [IT03, GD04, LO07, SJ08]. One particular case in which the computation is elementary and fast is the
case ofone-dimensional histograms, for which it is well known that optimal transport, in the case of acon-
vex cost function, reduces to the pointwise difference between cumulative distribution functions [Vil03].
A question that arises is then the possibility to perform such simple and efficient computations in the case
of circular histograms, i.e. histograms in which the first and last bins are neighbors.

Indeed, circular histograms are especially important in image processing and computer vision. First,
the local geometry is often efficiently coded by the distribution of gradient orientations. Such represen-
tations offer the advantage of being robust to various perturbations, including noise and illumination
changes. This is in particular the case for the well known SIFT [Low04] descriptor and its numerous vari-
ants. In such a situation, the comparison of local features reduces to the comparison of one-dimensional
circular histograms. Other local features involving circular histograms include the so-called Shape Con-
text [BMP02]. Second, the color content of an image is often efficiently accounted for by itshue, in
color spaces such as HSV or LCH. In such cases again, information is coded in the form of circular
one-dimensional histograms. Several works in the field of computer vision have explicitly addressed the
use of transportation distances in the case of circular histograms, either using thresholded concave cost
functions [PW08, PW09] or L1 cost functions [RDG08, RDG09].

The goal of this paper is first to give a general formulation oftransportation distances when the cost
function is a convex function of the Euclidean distance on the circle. This formulation gives a practical
way to compute distances in linear time in this case. Second,we provide various experiments of image
manipulation or retrieval for which the interest of circular transportation distances is shown. Eventually,
we conclude with a discussion (that actually applies to bothcircular and non-circular cases) on the re-
spective interest of transportation distances with eitherconvex or concave cost functions when compared
to classical bin-to-bin distances. It is shown that the choice between these three family of distances should
essentially be driven by the type of perturbation the histograms are likely to suffer from.

Outline The paper is organized as follows. In Section2, the optimal transportation flow of the Monge-
Kantorovich problem is investigated in the circular case. The definition of this problem being recalled,
a new formula is introduced and a sketch of the proof is proposed (details of the proof are provided
in appendixA). In section3, several applications are studied to show the interest of such a metric for
image processing and computer vision. First, an application to hue transfer between images is proposed
in § 3.1 as a result of an optimal transportation flow on the circle. Then, in§ 3.2, some applications of
histogram comparison for image retrieval are proposed. Eventually, the discussion about the robustness
and the limitations of Monge-Kantorovich distances in the framework of histogram comparison is given
in Section4.
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2 The Monge-Kantorovich transportation problem on the circle

In this section, we present some results on the Monge-Kantorovich distances between two circular his-
tograms. In particular, we give an analytic formulation of these distances when the ground cost between
points on the circle can be written as an increasing and convex function of the Euclidean distance along
the circle.

2.1 Definitions

Consider two discrete and positive distributions

f =

N
∑

i=1

f [i]δxi
and g =

M
∑

i=1

g[j]δyj
, (2)

where{x1, . . . xN} and{y1, . . . yM} are two sets of points on a subsetΩ of RK. Assume that these
distributions are normalized in the sense that

∑N
i=1 f [i] =

∑M
j= g[j] = 1. Let c : Ω × Ω 7→ R+ be a

nonnegative cost function (calledground cost), the quantity

MK c (f, g) := min
(αi,j)∈M

N
∑

i=1

M
∑

j=1

αi,jc(xi, yj), with (3)

M = {(αi,j) ∈ RN ×RM
; αi,j ≥ 0,

∑

i

αi,j = g[j],
∑

j

αi,j = f [i]}, (4)

is called theoptimal transportation costbetweenf andg for the ground costc. Matrices(αi,j) in M
are calledtransport plansbetweenf andg. If (αi,j) is optimal for (3), we say that(αi,j) is anoptimal
transport plan.

Let d be a distance onΩ and assume that the ground cost can be writtenc(x, y) = d(x, y)λ, with the
conventiond(x, y)0 = 1x 6=y. It can be shown [Vil03] that

• whenλ ∈ [0, 1[, MKc is a distance between probability distributions ;
• whenλ ∈ [1,∞[, MKλ (f, g) := (MK c(f, g))

1
λ is also a distance between probability distributions.

These distances are calledMonge-Kantorovich distances, or Wasserstein distances. Forλ = 1, MK1 is
also known as the Kantorovich-Rubinstein distance, or in computer vision as theEarth Mover’s Distance
(EMD), as introduced by Rubner in [RTG00].

Computing optimal transportation costs is generally not aneasy task. The main exception is the case
of the real line: ifΩ = R, and if the costc is a convex and increasing function of the euclidean distance
|x − y|, then the optimal transport plan betweenf andg is the monotone rearrangement off onto g,
which sends the mass starting from the left. This result is usually false ifc is not a convex function of the
euclidean distance on the line.

In the following, we take interest in the case whereΩ is a circleS1 of perimeter 1, and wherec is an
increasing function of the geodesic distanced along the circle. In particular, we will see that the previous
result on the line can be generalized in this case.

2.2 Optimal transportation for convex functions of the distance

The main result of this section is an analytic formulation ofthe optimal transportation cost between the
discrete distributionsf andg on the circleS1 when the ground costc can be writtenc(x, y) = h(d(x, y)),
with h : R → R+ an increasing and convex function andd the geodesic distance along the circle. In
the following, we use the same notations for points on the circle and their coordinates along the circle,
regarded as variables taking their values on the reduced interval [0, 1[ (modulo 1). It follows thatd can
be written

d(x, y) = min(|x− y|, 1− |x− y|). (5)

The distributionsf andg onS1 can be seen equivalently as periodic distributions of period 1 onR.
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Let us define the cumulative distribution function off on [0, 1[ as

∀y ∈ [0, 1[, F (y) =
N
∑

i=1

f [i] · 1{xi∈[0,y[} . (6)

F is increasing and left continuous, and can be extended on thewhole real line with the convention
F (y + 1) = F (y) + 1. This boils down to considerf as a periodic distribution onR. We define also the
pseudo-inverse ofF asF−1(y) = inf{t; F (t) > y}. The interest of these definitions lies in the next
result.

2.2.1 An analytic formulation of optimal transportation onthe circle

Theorem 1 Assume thatd is given by Equation(5) and that the ground costc can be writtenc(x, y) =
h(d(x, y)), withh : R→ R+ an increasing and convex function. Letf andg be two discrete probability
distributions on the circle, with cumulative distributionfunctionsF andG, and letGα denote the function
G− α. Then

MK c (f, g) = inf
α∈R ∫ 1

0

h(|F−1 − (Gα)−1|) . (7)

Idea of the proof This result is a generalization of the real line case, where it is well known [Vil03] that
the global transportation cost between two probability distributionsf andg can be written

MK c (f, g) =

∫ 1

0

h(|F−1 −G−1|) . (8)

A proof of Equation (7) in a continuous setting has been proposed very recently in [DSS10], where it is
shown that this equation holds for any couple of probabilitydistributions. However, this proof involves
some complex notions of measure theory which are not needed in the discrete setting. For the sake of
completeness and simplicity, we provide in AppendixA a simpler proof of these theorem in the case
of discrete distributions. The proof first focus on the case wheref andg can be written as sumsf =
1
P

∑P
k=1 δxk

, andg = 1
P

∑P
k=1 δyk

, where{x1, . . . xP } and{y1, . . . yP } are discrete sets of points on
the unit circleS1. When the points are all pairwise different, we show that thecircle can always be “cut” at
some point, such that computing the optimal transport betweenf andg boils down to compute an optimal
transport between two distributions on the real line (see Figure1). This result is proven first for strictly
convex functionsh and for any optimal transport plan, then for any convex function h and a well chosen
optimal plan. Once the problem has been reduced to the real line, Formula (7) follows from the fact that
the optimal transport onR is given by the ordering of the points. The generalization ofthis formula to
any kind of discrete distribution results from the continuity of the global transport cost MKc (f, g) in the
values of the masses and their positions on the circle.

Fig. 1 When the distributions are sums of unitary different masses, and when the ground cost is a nonnegative, increasing and
convex function of the distance along the circle, there is a (non-necessarily unique) “cut” on the circle such that the optimal
transportation onS1 boil down to optimal transportation on the real line.
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In practice, Formula (7) can be computed for anyh at a precisionε with a complexity inO((N +

M) log 1
ε
) [DSS10], whereN andM are the number of points in the distributionsf andg (i.e. the number

of masses in the distributions).

2.2.2 The casec(x, y) = d(x, y)

If h is a power functionx 7→ xλ, with λ ≥ 1, Theorem1 gives us a way to compute Monge-Kantorovich
distances betweenf andg:

MKλ (f, g) =

(

inf
α∈R ∫ 1

0

|F−1 − (Gα
)
−1|λ

)
1
λ

. (9)

In the caseλ = 1 (i.e. when the ground costc is the distanced along the circle), this result can be
rewritten

MK 1 (f, g) = inf
α∈R ∫ 1

0

|F −G− α|. (10)

Observe that an alternative proof of Equation (10) was proposed by Werman et al. in [WPMK86] for
distributions written as sums of unitary masses. A similar result is shown in [CM95] for the Kantorovich-
Rubinstein problem, which is known to be equivalent (see [Vil03], chapter 1) to the Monge-Kantorovich
problem when the costc(x, y) is a distance, which is true forλ = 1 (but false forλ > 1).

In practice, sinceF −G is piecewise constant for discrete distributions, the infimum of Equation (10)
can be computed easily by computing the weighted median of the (finite number of) valuesF (t)−G(t)
whent ∈ [0, 1[, the weights being the lengths of the intervals on whichF −G is constant. In practice, this
yields aO(N ) exact algorithm to compare two normalized distributions ofN masses [CM98, Gur90].

2.2.3 Discrete histograms

Most applications deal with discrete histograms,i.e. discrete distributions living on a uniform grid ofN
bins. In the case of histograms on the real line, for the costc(i, j) = |i− j|, Formula (8) becomes

EMD (f, g) = MK 1(f, g) = ‖F −G‖1, (11)

where we denote by‖.‖1 the discreteL1 norm, byF andG the cumulative histograms off andg, and
where EMD is the acronym for Earth Mover’s Distance [RTG00]. An illustration is given in Figure2.

In the case of circular histograms, bins0 andN − 1 are neighbors. If the costc is c(i, j) = min(|i−
j|, N − |i− j|) along the circle, Formula (10) can be rewritten

CEMD (f, g) := MK1 (f, g) = inf
α

N−1
∑

i=0

|F [i]−G[i]− α| = ||F −G− µ||1 , (12)

whereµ is the median of the set of values{F [i]−G[i], 0 ≤ i ≤ N−1}, and whereCEMD is the acronym
for Circular Earth Mover’s Distance, as defined in [RDG09]. Indeed, it is easily checked that the distance
defined by Formula (12) is equivalent to the distance introduced in [RDG09], that is

CEMD (f, g) = min
k∈{0,...,N−1}

‖Fk −Gk‖1, (13)

whereFk[i] is defined asF [i] − F [k] if i ∈ {k, . . . N − 1} andF [i] − F [k] + 1 if i ∈ {0, . . . k − 1}
(the definition being similar forGk by replacingf by g). In other words, the distance MK1(f, g) is the
minimum ink of theL1 distance betweenFk andGk, the cumulative histograms off andg starting at
thekth quantization bin.
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Fig. 2 Usingc(x, y) = |x− y| on the real line, the optimal transportation plan between two discrete histogramsf andg is
theL1 distance of the difference between the cumulative histogramsF andG (Formula (11)).

2.3 Optimal transportation for concave functions of the distance

In practice, it may be useful to choose the ground costc as a nonnegative, concave and increasing function
h of the ground distanced. For instance, for the task of image retrieval, several authors [RTG00, HGS08,
RT01]) claim that optimal results can be achieved with a function

h(t) = 1− e−
t

τ . (14)

Notice that ifh is increasing, concave and such thath(0) = 0, it is easy to show thath(d) is also a distance,
and thus MKc is also a distance between probability distributions. Another property of concave costs is
that they do not move the mass which is shared by the distributions [Vil03]: if f andg are histograms,
the problem is reduced to the comparison of(f − g).1f−g≥0 with (g − f).1f−g<0, which have disjoint
supports.

However, in the case of such concave functionsh, Theorem1 does not apply, and there is no general
and fast algorithm to compute corresponding optimal transportation costs, either on the real line or on
the circle. In most cases, we are reduced to use linear programming, i.e. simplex or interior point algo-
rithms, which are known to have at best aO(N3 logN ) complexity to compare two histograms onN
bins [BDM09]. We describe in the following some special cases of concavefunction h for which this
complexity can be reduced.

2.3.1L1 as a Monge-Kantorovich distance

If the distributionsf andg are discrete histograms onN bins, and ifh(t) = 1t6=0, then the Monge-
Kantorovich distance betweenf andg is [Vil03]

MK1d(x,y)6=0
(f, g) =

1

2

N
∑

i=1

|f [i]− g[i]| = ‖f − g‖1. (15)

In other words, theL1 distance between two normalized histogramsf andg is a Monge-Kantorovich
distance for the concave function1t6=0.

2.3.2 Thresholded distances

In [PW08, PW09], Pele and Werman consider thresholded ground distances, using h(t) = min(t, T ),
with T a given threshold. Up to a multiplicative factor, this function h can almost be seen as a discrete
version of (14), whereτ is chosen proportional toT . They show that in this case, the computation of the
optimal cost can be solved by a “min-cost-flow algorithm”, whose complexity is smaller than classical
linear programming algorithms. In their experiments, theyuseT = 2 for comparing histograms onN
bins, which means that the costc(i, j) can take only three values:0 if i = j, 1 if i andj are neighbors,
and2 in other cases. Since all the shared mass remains in place, weknow that if (αi,j) is the optimal
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transport plan betweenf andg, then for a giveni,
∑

j 6=i αi,j = (f [i]− g[i])1f [i]≥g[i], which implies in
particular that

MKmin(d,2)(f, g) =
N
∑

i=1

((
∑

j 6=i

2αi,j)− αi,i+1 − αi,i−1)

= 2

N
∑

i=1

(f [i]− g[i])1f [i]≥g[i] −
N
∑

i=1

(αi,i+1 + αi,i−1)

= ‖f − g‖1 −
N
∑

i=1

(αi,i+1 + αi,i−1).

Now, notice thatαi,i+1 is different from0 only if f [i] ≥ g[i] (otherwise, all the mass ini stay in place)
andf [i + 1] < g[i + 1] (otherwise the massg[i + 1] is already “filled” by a part off [i + 1]). In other
words, the only points where the quantitiesαi,i−1 orαi,i+1 are different from0 are the points where the
densities off andg are crossing. It follows that in many cases, the thresholdeddistance MKmin(d,2) is
very close toL1, in particular whenN is large and when histograms are crossing at only a few places,
as we will see in the experiments of Section4. In order to allow larger ground displacements, the use of
values ofT larger than 2 is proposed in [PW09]. This is made at the price of a non-linear complexity and
necessitates a compromise in the tuning ofT (smaller values yield faster computations). We will come
back on the use of such concave cost functions in Section4.

In the following section, we illustrate the interest of circular Monge-Kantorovich distances for several
applications.

3 Experimental study

This section is devoted to an experimental analysis of the previous optimal transportation framework for
different computer vision tasks. We first consider the colortransfer from one image to another as an
application of the optimal transportation flow on the circlebetween hue histograms. In the following,
two different applications of transportation distances for the comparison of histograms are studied: local
feature comparison and image retrieval.

3.1 Hue transfer between color images

The aim of this paragraph is to use the optimal transportation framework to transfer a hue distribution
from one image to another.

Contrast transfer First, let us recall that histogram equalization and more generally histogram specifica-
tions are merely particular cases of optimal transportation on the real line. Indeed, ifu : Ω 7→ {0, . . . , L−
1} is a discrete image andhu its gray level distribution, histogram specification consists in finding the
optimal transport plan betweenhu and a target discrete probability distributionht on{0, . . . , L−1} (one
speaks of histogram equalization whenht is a constant distribution on{0, . . . , L− 1}). If one considers
a costc equal to the euclidean distance on the line, then, as explained in Section2.1, the solution of this
problem consists in a monotone rearrangement. This rearrangement is obtained by applying the function
H−1

t ◦Hu to u, whereHu (resp.Ht) is the cumulative distribution function ofhu (resp.ht) andH−1
t

represent the pseudo-inverse ofHt (see definition in section2.2, after Formula (6)). If u is a color image,
such contrast adjustments can be applied to its “intensity”channel (e.g.the channel “Value” in the HSV
representation).

Hue transfer Thanks to Formula (12) or (13) (Section2.2.2), one can extend the previous framework to
hue distributions, seen as circular distributions. Following Equation (12), the optimal mapping between
the hue distributionhu of an imageu and the target hue distributionht is obtained as(Ht − α)−1 ◦Hu,
whereα is the median of the values{Hu[i] − Ht[i]}. Figure3 illustrate this transfer of hue on a pair of
images. For a detailed survey on color transfer between images, we refer the reader to [PKD07].
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Fig. 3 Hue transfer between images.First row: original images.Second row:the hue channel of each image has been
modified by applying the circular optimal transportation flow between the hue channels (see text for details), while other
channels (“saturation” and “value” in HSV representation)are kept unchanged.

3.2 Image and histogram comparison

In this section, we investigate the interest of Monge-Kantorovich distances for histogram comparison.
More precisely, the distance considered in the following experiments is the MK1 distance (given by Equa-
tion (12)) on the circle. Following [RDG09], we refer to it as CEMD (Circular Earth Mover’s Distance).
This distance is compared in particular to theL1 distance, which can be described as being bin-to-bin,
since it compares bins having the same index.

3.2.1 Local feature comparison

Many computer vision tasks rely on local features (object recognition, image retrieval, indexation and
classification, image mosaicing,etc). Some of the most commonly used (and invariant) local features
are the Shape Context [BMP02] and SIFT descriptors [Low04], which both encode periodic data: polar
orientation for the former, and gradient orientation for the latter. For instance, a SIFT descriptor can be
seen as a collection ofM one-dimensional and circular-histograms, each one being constructed from a
subpart of a localization grid in the image domain [Low04].

In [RDG09], it is demonstrated that the Circular Earth Mover’s Distance (or MK1 distance on the cir-
cle) is far more robust than classical bin-to-bin distances(L1 andL2 metric,χ2 distance, etc) to compare
SIFT descriptors. In particular, it is underlined that thiscross-bin distance is more adapted to two kinds
of perturbations

• quantization effects (also know as the “binning problem”), which result from the small number of
samples used to build the discrete histograms of gradient orientations, but also from the localization
grid used to extract histograms over the pixel grid;

• shifts in histograms, resulting from geometrical deformations inthe image (e.g.perspective effects,
which typically arise when an object is seen from different points of view).
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Note that this result is consistent with the one presented in[PW08], where the metric used to compare
SIFT descriptors is a modification of the Monge-Kantorovichdistance with a truncated costc. A more in
depth analysis of the general robustness of Monge-Kantorovich distances for both quantization and shift
effects is proposed in section4.

3.2.2 Three experiments on color image retrieval

For the task of color image retrieval, numerous studies haveshown that the Earth Mover’s Distance
(defined in Section2.1) often achieves better retrieval performances than bin-to-bin distances [RTG00,
GDR00, RT01, Dvi02, LCL04, LZLM05, ZWG06, HGS08, PW09]. In order to illustrate the advantages
of the Circular Earth Mover’s Distance in the same context, we rely on hue distributions to perform image
retrieval on a color image dataset. The dataset1 contains14 category of9 pictures of the same object, with
various camera settings (sensitivity, with or without flash, white balance reference, exposure time,etc).
Nine pictures of the same category are shown as an example in Figure4. Each of theP = 14 × 9 = 126

images of the dataset is described by a hue (channel H of HSV representation) distribution, built on
N = 360 bins. For a given dissimilarity measureD, the retrieval experiment consists in using an image
of the dataset as a query and finding ther most similar images forD. For each value ofr, we compute

• the recall, which is defined as the average, when the query spans the database, of the ratio between
the number of correctly retrieved images amongr and the size of the query class;

• theprecision, which represents the average on the whole database of the rate of true positives among
ther most-similar images.

The curves (r, recall) and (recall, precision) are drawn on Figure5, for three different dissimilarity mea-
sures:CEMD (Equation (12)), non circularEMD (Equation (11)), and theL1 distance.

Fig. 4 Example of a category of 9 pictures extracted from the image database used for image retrieval (results ate shown in
Figure5). These photographs represent the same scene under variousillumination conditions and camera settings.

(a) Average Recall rate according to the rank (b) Average precision-recall curve

Fig. 5 retrieval of a color image database.The performances curves are obtained usingCEMD in red continuous line,L1

distance in blue line and also EMD (non circular mass transportation) in red dashed line.

1 the image dataset is available at the following address:http://perso.telecom-paristech/∼rabin/database/
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In this experiment, the results ofCEMD (in red continuous line) clearly outperforms those ofL1 and
EMD (which does not take into account the circularity of hue histograms). As in the experiments on
local feature comparison, one can guess that the superiority of Monge-Kantorovich distances are due to
their natural robustness to shifts in the distributions. However, observe that this time, in contrast with
the application to local descriptors, a huge number of samples (∼ 5.105) is used to build each circular
histogram, so that we avoid the aforementioned binning problem.

Two more color retrieval experiments In this paragraph, we aim at showing that two different classes of
intraclass variability could arise when representing databy histograms, and that bin-to-bin and cross-bin
distances behaves very differently according to these perturbations. This fact will then be discussed in
more detail in Section4.

In order to illustrate these phenomena, a small dataset2 of 22 photographs has been used, shown
in Figure6. Here, we propose to reproduce –in a synthetic way– the colorimage retrieval experiment
presented in section3.2.2. For each picture of this dataset, synthetic modifications are proceeded in order
to simulate two types of perturbations which naturally arise when considering color image retrieval:

• Gamma correction with a power factor varying from 0.6 to 2.4 (this operation has been realized on
the “Luminance” channel in CIELab color space). An example is shown in Figure7(a);

• White balance correction with a “color temperature” varying from4400 to 6200◦K (Example is
given in Figure8(a)).

Fig. 6 22 pictures used for image retrieval test (results are shownin Figures7 and8).

Now, applying these modifications to the dataset, we obtain two different databases on which a re-
trieval is performed usingL1 andCEMD metric (like in section3.2.2). Results are shown in Figure7 for
gamma correction, and in Figure8 for color temperature correction.

(a) Example of gamma modification
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Fig. 7 Retrieval results with data corrupted by contrast modification (gamma correction).

2 the image dataset is available at the following address:http://perso.telecom-paristech/∼rabin/database/
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Once again, in the case of gamma correction (Figure7) CEMD provides in average better retrieval
results thanL1 distance. The main reason in such case is that we observe someintraclass shiftsbetween
histograms, for which cross-bin distances such asCEMD are more robust than bin-to-bin distances.

(a) Example of color temperature modification
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Fig. 8 Retrieval results with data corrupted by white balance modification (color temperature correction).

Now, in the case of color temperature modification (Figure8), one observes the following result:L1

distance provides better retrieval scores thanCEMD. An examination of the results has led us to observe
that, in such a case, the intraclass variability results this time fromdifferences of weightof dominant
modes in histograms (see Figure9(b) for an illustration).

(a) Illustration of histogram shift (b) Illustration of histogram weight variability

Fig. 9 Illustration of the two main classes of perturbations involved in retrieval performances: intraclass shift variability (to
the left) and intraclass weight variability (to the right).

In order to understand the implications of these results, a discussion is proposed in the following
section.

4 Is it worth using transportation distances to compare histograms ?

Following the last two experiments of the previous section (gamma correction and color balance), this
section provides a discussion on the relative advantages ofMonge-Kantorovich distances using convex
cost functions, those using concave cost functions, and bin-to-bin distances. The discussion is not specific
to the circular case and will be made from non-circular synthetic examples.

Writing as befored(x, y) for the geodesic distance on the circle, we consider the following distances:
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• theL1 bin-to-bin distance,
• Monge-Kantorovich distances with concave cost functions:

◦ MK exp τ defined from Formula (3) when using the exponential cost functionc(x, y) = 1 −

exp(−d(x,y)
τ

)

◦ MKTτ defined from Formula (3) when using a thresholded cost function as introduced in [PW08,
PW09], that is,c(x, y) = min(d(x, y), τ ) (see Section2.3.2).

• Monge-Kantorovich distances with convex cost functions: MKλ = (MK c)
1
λ , with MKc the quantity

defined by Formula (3) when using a cost fonctionc(x, y) = d(x, y)λ, for λ ≥ 1.

Recall that among these distances, onlyL1, MKλ and MKT2can be computed in linear time. Observe
also, following the remarks of Section2.3.2on the proximity between MKT2andL1, that these distances
in a sense produce a complete range of alternatives between bin-to-bin distances (such asL1) and Monge-
Kantorovich associated with highly non-convex cost functions (e.g. MK3). This fact will be quite clear in
the following synthetic experiments.

These experiments consist, in order to study the assets of the various distances, to perform retrieval
from synthetic histograms (mixture of two Gaussians) in thepresence of two types of perturbations:
shifts in the positions of bins on the one hand, and variationin the weight of bins on the other hand (see
Figure9). Observe that these two types of perturbations correspondto the ones encountered at the end of
Section3.2.2.

We assume that elements to be compared belong to two classesA andB, and that each element is
represented by oneN -bins histogram. We model the histograms as the mixture of two Gaussians. Writing
c ∈ {A,B} for the class, these two Gaussians have weightspc and (1 − pc), meansµc

1 andµc
2, and

standard deviationsσc
1 andσc

2 (see Figure10). In the following experiments, parameters are set as follows

• Histogram constructionQuantization of histograms:N = 100 bins; Number of samples for Gaussian
mixture data generation:1, 000 samples in[0, 1]; Number of histograms per class:1, 000 histograms.

• Gaussian mixture parametersWeights:pA = 0.6 and pB = 0.8; Means:µA
2 = µB

2 = 0.2 and
µA
2 = µB

2 = 0.7; Standard-deviations:σA
1 = σB

1 = σA
2 = σB

2 = 0.05.

Fig. 10 The two classesA andB are defined as a Gaussian mixture model. For each class, the two Gaussian distributions are
defined with 4 parameters (means and standard-deviations),plus a weighting parameterp.

This generative model being chosen, two different kinds of variability can now be simulated to eval-
uate the robustness of transportation distances dependingon the cost function3 (see Figure9).

Histogram shift We introduce random shifts in the histogram by modeling the meansµc
1 as random vari-

ables. We chooseµA
1 = 0.2 + ǫµ, whereǫµ is uniformly drawn in[−0.1; 0.1]. Some of such generated

histograms are superposed in Figure11(a). The precision-recall curves resulting from this two-class re-
trieval problem are plotted for different metrics in Figure11(b). One first observes that distances MKλ,
relying on convex cost functions, give the best results, thelargerλ the better. Second, it can be seen that
transportation distances with concave cost function yields less efficiency. First are distances relying on
an exponential cost. Eventually using transportation distances with truncatedL1 distances provides poor
results, similar to those obtained with theL1 distance. This fact is in agreement with the analysis made in
Section2.3.2.

3 The Earth Mover’s Distances with exponential and truncatedcost functions have been computed using the code kindly
provided by Y. Rubner [Rub].
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(a) Histogram shift variability experiment (b) Precision-Recall curve

Fig. 11 Two-class retrieval problem with intraclass shift variability . The effect of the perturbation on histograms is
shown in Figure11(a). The Precision-Recall curves are displayed in Figure11(b)for several transportation distances: MKTτ

refers to as the transportation distance with truncated cost function according to the thresholdτ ∈ {2, 10}, MKexp τ cor-
responds to the transportation distance with exponential cost function using parameterτ ∈ {1, 2, 5}, and MKλ is the
Monge-Kantorovich distance withλ ∈ {1, 2, 3}. In addition is shown the curve obtained withL1 metric, which is equivalent
to MKT1 (see§ 2.3.1).

Histogram weight variability In the second experience, intraclass weight variability are now simulated
by modeling weights as random variables:pA1 = 0.6 + ǫp, whereǫp is uniformly drawn from[−0.1; 0.1].
Some of such generated histograms are superposed in Figure12(a). The precision-recall curves resulting
from this two-class retrieval problem are plotted for different metric in Figure12(b). One observes that
with this kind of perturbation, transportation distances with L1 cost function are less robust than theL1

distance. This time, it can be seen that distances with concave cost function yield better retrieval perfor-
mances. Using thresholded cost functions again provides results that are very similar to those obtained
with theL1 distance. In the meantime, distances relying on exponential cost functions are still half-way
between convex cost functions and thresholded cost functions.

It therefore appears that higher robustness to one type of perturbation yields poorer robustness to the
other type. There is a logical tradeoff between robustness to shifts and weight variability. In this context,
and given that it may be computed in linear time, the MK1 distance appears as a good compromise in
term of computational cost and robustness to the two kinds ofvariability considered here.

5 Conclusion

In this paper, the optimal mass transport problem on the circle has been addressed in the case of convex and
increasing cost function of the geodesic distance on the circle. We have proposed a new formulation (and
a proof) for estimating the corresponding Monge-Kantorovich distances. In the particular case where the
cost function is the geodesic distance on the circle, it has been shown that the transportation distance MK1

between circular histograms (also referred to asCEMD, standing for Circular Earth Mover’s Distance) can
be deduced by a very simple Formula (12) which is computed in linear time.

Then, several applications in this framework has been studied (hue transfer, local features compar-
ison and color image retrieval), exploiting both the optimal transportation cost between histograms but
also the corresponding optimal flow. Other applications could also benefit from theCEMD metric, such
as shape recognition based on circular descriptors (seee.g.character recognition with orientation his-
togram [CS02], and curvature based descriptor along closed contour [Mok97, JWR06]).

In the last section, a comparative analysis of transportation distances with different cost functions has
been proposed, considering two types of perturbations which arise with histogram representation: mean
and weight changes of dominant modes. We have demonstrated that there is a tradeoff between these two
phenomena when using either convex or concave cost functions. Eventually, the proposedCEMD metric
offers an interesting compromise between these two choices, while being easy to use.
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(a) Histogram weight variability experiment (b) Precision-Recall curve

Fig. 12 Two-class retrieval problem with intraclass weightvariability . The effect of the perturbation on histograms is
shown in Figure12(a). The Precision-Recall curves are displayed in Figure11(b), plotted for different transportation dis-
tances.

Acknowledgements Delon acknowledges the support of the French Agence Nationale de la Recherche (ANR), under
grant BLAN07-2183172, Optimal transport: Theory and applications to cosmological reconstruction and image process-
ing (OTARIE), and would like to thank J. Salomon and A. Sobolevski for fruitful discussions.

A Appendix: Proof of Theorem 1

This appendix provides a complete proof of Theorem1 in the case wheref andg are discrete distributions
(as written in Equation (2)). We first prove this theorem for distributions composed ofunitary masses, and
conclude thanks to continuity arguments.

A.1 Introduction

Consider two discrete sets of points{x1, . . . xP } and{y1, . . . yP } on the unit circleS1, and the corre-
sponding discrete distributions

f =
1

P

P
∑

k=1

δxk
, andg =

1

P

P
∑

k=1

δyk
, (16)

where the notationsxk, yk are used equally for points on the unit circle or for their coordinates in[0, 1[.
Let d be the geodesic distance along the circle (given by Equation(5)) and assume thatc can be writ-
ten c(x, y) = h(d(x, y)) with h a nonnegative, increasing and convex function. It is well known (this
is a consequence of Birkhoff’s theorem, see for example the introduction of [Vil03]) that the optimal
transportation cost betweenf andg equals

MK c (f, g) = min
σ∈ΣP

W c
σ (f, g), with W c

σ (f, g) :=
1

P

∑

k

c(xk, yσ(k)) =
1

P

∑

k

h(d(xk, yσ(k))),

(17)
whereΣP is the set of permutations of{1, . . . P}. In other words, finding the optimal transportation
betweenf andg boils down to find the optimal permutationσ between the points{xk} and{yj}.

A.1.1 Paths

If x andy are two different points ofS1, we noteγ(x, y) the geodesic path linkingx and y on S1 (the
path is supposed open: it does not containx andy). This path is always unique except in the case where
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x andy are in opposite positions on the circle. In this case, we chooseγ(x, y) as the path going from
x to y in the trigonometric direction. A pathγ(x, y) is said to bepositive if it goes fromx to y in the
trigonometric direction. If the path goes fromx to y in the opposite direction , it is said to benegative.

A.1.2 Cumulative distribution functions

The cumulative distribution function off has been defined in Equation (6). Now, on[0, 1[ seen as a the
unit circleS1, no strict order can be defined between points, which means that we can define as many
cumulative distribution functions as there are starting points on the circle. Ifx is a point in[0, 1[, the
x-cumulative distribution functionFx of f can be defined by choosingx as the reference point on the
circleS1 and by summing the mass in the trigonometric order from this new reference point:

∀y ∈ R, Fx(y) = F (x+ y)− F (x). (18)

An example of a cumulative distributionF and its correspondingx-cumulative distributionFx on [0, 1[
is shown on Figure13.

Fig. 13 F on the left andFx on the right.

A.2 Preliminary results

In the following, we prove that iff andg can be written as in Equation (16), if the pointsx1, . . . xP and
y1, . . . yP are pairwise different, and ifσ is an optimal permutation for (17), there is always a point on
the circle which is not contained in any optimal path ofσ. This result is proven first for strictly convex
functionsh and for any optimal permutationσ, then for convex functionsh and a well chosen optimal
permutation.

Proposition 1 Assume thath is strictly convex. Letx1, . . . xP and y1, . . . yP beP points in [0, 1[, all
pairwise different. Then for each permutationσ ofΣP which minimizes (17) , there existsk ∈ {1, . . . P}
such that for alll 6= k, xk /∈ γ(xl, yσ(l)).

The proof of this proposition needs the following lemma, which describes some properties of the
geodesic pathsγ(xl, yσ(l)) obtained whenσ is a minimizer of (17) andh is strictly convex.

Lemma 1 Assume thath is strictly convex. Letσ be a minimizer of (17) and letγl = γ(xl, yσ(l)) and
γk = γ(xk, yσ(k)) (with l 6= k) be two geodesic paths for the assignment defined byσ. Assume also that
xl 6= xk andyσ(l) 6= yσ(k). Then, one of the following holds:

• γl ∩ γk = ∅ ;
• γl ∩ γk 6= ∅ and in this caseγl andγk have the same direction (both positive or both negative) and

neither of them is contained in the other.

Proof Assume thatγl ∩ γk 6= ∅. If γl ∩ γk is equal toγ(xl, xk), then, sinceh is an increasing function
of d, c(xl, yσ(l)) > c(xk, yσ(l)) andc(xk, yσ(k)) > c(xl, yσ(k)), which contradicts the optimality ofσ.
The same conclusion holds ifγl ∩ γk is equal toγ(yσ(l), yσ(k)). Moreover, if for example the pathγl is
included inγk, then the strict convexity of the functionh implies

c(xl, yσ(l)) + c(xk, yσ(k)) > c(xl, yσ(k)) + c(xk, yσ(l)),
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which also contradicts the optimality ofσ. Thus,γl ∩ γk is equal toγ(xl, yσ(k)) or toγ(xk, yσ(l)) and it
follows thatγk andγl are either both positive or both negative.

Proof of Proposition 1 Let σ be a minimizer of (17). In the following, we will denote byγl the
geodesic pathγ(xl, yσ(l)). We can assume without loss of generality that the pointsx1, . . . xP are in
trigonometric order on the circle.

Assume that for eachl ∈ {1, . . . P}, there existsq(l) 6= l such thatxl belongs to the open pathγq(l).
Then, for eachl, we haveγq(l) ∩ γl 6= ∅, which means that the geodesic pathsγq(l) andγl are either
both positive or both negative (from lemma1). Assume for instance that they are both positive and let us
show that in this casexl ∈ γl−1 (with l − 1 = P if l = 0). If q(l) = l − 1, there is nothing to prove. If
q(l) 6= l−1, it means in particular thatxq(l), xl−1, xl are in trigonometric order on the circle. Sinceγq(l)
is a positive path starting fromxq(l) and containingxl, it follows thatγq(l) containsxl−1 (recall that the
points are assumed to be pairwise different, in particularxl−1 6= xq(l)). Thusγl−1 ∩ γq(l) 6= ∅, which
implies thatγl−1 is positive. Now,xl must be inγl−1, otherwise we would haveγl−1 ⊂ γq(l), which
contradicts lemma1. Thus, if the pathsγq(l) andγl are both positive,xl ∈ γl−1.

In the same way, ifγq(l) andγl are both negative, thenxl ∈ γl+1. In any case, for eachl ∈ {1, . . . P},
xl ∈ γl−1 ∪ γl+1 (with the obvious conventionγP+1 = γ1, γ0 = γP ).

Now, suppose that for a givenk ∈ {1, . . . P}, xk is in γk−1. Then,γk−1 andγk have the same
direction. From lemma1, it follows thatxk−1 cannot be contained inγk. Since we know thatxk−1 ∈
γk−2 ∪ γk, xk−1 must be inγk−2. Recursively, for eachl ∈ {1, . . . P}, xl ∈ γl−1. It follows that for
eachl ∈ {1, . . . P}, d(xl, yσ(l−1)) < d(xl−1, yσ(l−1)), and sinceh is increasing

P
∑

l=1

c(xl, yσ(l)) >
P
∑

l=1

c(xl+1, yσ(l)), (19)

which contradicts the fact thatσ is a minimizer of (17). We come to the same conclusion if for a given
k ∈ {1, . . . P}, xk is in γk+1 2

The same result can be proven for any convex functionh with the difference that it is only satisfied
for a good choice of the permutationσ which minimizes (17), and not for all of these permutations. This
result can be seen as a limit version of proposition1.

Corollary 1 Assume thath is convex. Letx1, . . . xP andy1, . . . yP beP points in[0, 1[. Assume that all
these points are pairwise different. Then there exists a permutationσ of ΣP which minimizes (17) and a
pointxk ∈ {x1, . . . xP } such that for alll 6= k, xk /∈ γ(xl, yσ(l)).

Proof We know that for any strictly convex functionh, if σh minimizes the costσ 7→ W c
σ (f, g), there

existsk ∈ {1, . . . P} such that for alll 6= k, xk /∈ γl = γ(xl, yσh(l)).
Now, assume thath is convex (not strictly). One can always find a sequence(hn) of increasing

and strictly convex functions such thathn converges pointwise towardsh whenn → ∞. If σ and the
pointsx1, . . . xP , y1, . . . yP are fixed, then the finite sumWn

σ (f, g) := 1
P

∑

k h
n(d(xk, yσ(k))) tends

towardsWσ (f, g) = 1
P

∑

k h(d(xk, yσ(k))) whenn → ∞. Thus, for eachε > 0, there exists an
integerN , such that for alln ≥ N , |Wn

σ (f, g) − Wσ (f, g)| ≤ ε. SinceΣP is a finite set, we can
choseN large enough such that this property holds for everyσ in ΣP . We can also choseN such that
|minσ Wσ (f, g) − minσ Wn

σ (f, g)| ≤ ε. Now, if n ≥ N and if σ∗ is an optimal permutation for
Wn

σ (f, g), it follows that

|min
σ

Wσ (f, g)−Wσ∗ (f, g)| ≤ |min
σ

Wσ (f, g)−min
σ

Wn
σ (f, g)|

+|Wn
σ∗ (f, g)−Wσ∗ (f, g)|

≤ 2ε.

SinceΣP is a finite set, the fact that this distance can be made arbitrarily small implies that whenn is
large enough, a minimizerσ∗ of Wn

σ (f, g) is also a minimizer ofWσ(f, g). This proves that there exists
at least one minimizerσ of σ 7→ Wσ(f, g) such thatxk /∈ γ(xl, yσλ(l)) for somek ∈ {1, . . . , P} and all
l 6= k.
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A.3 Proof of Theorem1

Proof of Theorem1
Let us begin with the case wheref andg can be written as sums of unitary masses (Equation (16)),

and wherex1, . . . xP andy1, . . . yP are pairwise different. Proposition1 and Corollary1 show that if the
ground costc can be writtenc(x, y) = h(d(x, y)) with h a positive, convex and increasing function, we
can choose some optimal permutationσ for which there is some pointxk which is not contained in any
path ofσ (recall that paths are defined as open: they do not contain their boundaries). Since all points are
supposed pairwise different, the only path meeting all the neighborhoods ofxk is γk. It follows that there
exists some open set on one side ofxk and not containingxk which does not cross any path of the optimal
permutationσ. The middlex of this open set is not contained in any path ofσ. We can thus cut the circle
S1 atx and reduce the transportation problem on the circle to the transportation problem on the real line.
The optimal permutationσ is thus given by the sorting of the points (formula (72) in [Vil03]), takingx as
the reference point on the circle. This means that when points are pairwise different, we have

MK c (f, g) = inf
x∈S1

∫ 1

0

h(|F−1
x −G−1

x |), (20)

whereF−1
x andG−1

x are the pseudo-inverses (pseudo-inverses are defined in Section 2.2) of the increasing
functionsFx andGx defined in Equation (6).

Now, observe thatFx andGx are horizontal translations ofF − F (x) andG − G(x) by the same
vectorx. In consequence,

∫ 1

0

h(|F−1
x −G−1

x |) =

∫ 1

0

h(|(F − F (x))−1 − (G−G(x))−1|). (21)

SinceF andG have been defined onRsuch that for ally,F (y+1) = F (y)+1 andG(y+1) = G(y)+1,
the bounds of this integral can be replaced by any bounds(t, t+ 1). It follows that

∫ 1

0

h(|(F − F (x))−1 − (G−G(x))−1|) =

∫ 1−F (x)

−F (x)

h(|(F − F (x))−1 − (G−G(x))−1|)

=

∫ 1

0

h(|(F )
−1 − (G+ F (x)−G(x))−1|).

Finally,

MK c (f, g) = inf
x∈S1

∫

0

1h(|(F )
−1 − (G+ F (x)−G(x))−1|). (22)

In order to conclude, notice that the functionϕ : α 7→
∫

0
1h(|(F )−1 − (G + α)−1|) is continuous

(h : R→ R+ is continuous since it is convex) and coercive (ϕ(α) → +∞ when|α| → +∞). It follows
thatϕ reaches its minimum at a pointα0 ∈ R. In addition, the fact thatF andG are piecewise constant
implies thatϕ is piecewise affine, with discontinuities ofϕ′ at pointsF (x)−G(x). Thus,

MK c (f, g) = inf
α∈R ∫0 1h(|(F )

−1 − (G + α)−1|). (23)

The previous result can be generalized to the case where the pointsxi, yj may coincide just by remark-
ing that both quantities in Equation (23) are continuous in the positions of these points. In consequence,
the result holds for distributions with rational masses.

In order to generalize the result to any couple of discrete probability distributions, observe that the
right term in Equation (23) is continuous in the values of the massesf [i] andg[j]. As for the continuity
of MK c(f, g), assume that a massε of the distributionf is transferred from the pointxi0 to the pointxi1

in f , and let us call the new distributionfε. If (α) is an optimal transport plan betweenf andg, let j0 be
an index such thatαi0,j0 ≥ ε. A transport plan(α′) betweenfε andg can be defined as

• α′
i0,j0 = αi0,j0 − ε,

• α′
i1,j0 = αi1,j0 + ε,

• α′
i,j = αi,j for (i, j) 6= (i0, j0), (i1, j0).

The corresponding transportation cost betweenfε andg is then lower than MKc(f, g)+εh( 12 ), which im-
plies that MKc(fε, g) ≤ MK c(f, g)+εh( 12 ). Conversely, we can show that MKc(f, g) ≤ MK c(f

ε, g)+
εh( 12 ). 2
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