
8th. World Congress on Computational Mechanics (WCCM8)
5th European Congress on Computational Methods in Applied Sciences and Engineeering (ECCOMAS 2008)

June 30 –July 5, 2008
Venice, Italy

A new semi-analytical method for the construction of auxiliary fields in the
interaction integrals of 3-D LEFM

* G. Edeline1, M. Bonnet1 and V. Chiaruttini2

1 Laboratoire de Mécanique des Solides
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ABSTRACT

The study of crack propagation is since a long time a crucial issue in research and industry ; there
are everincreasing needs for robust and predictive simulation tools for cracking in three-dimensional,
mixed-mode conditions. Global approaches (G) such as the G-θ method introduced by Destuynder [1],
which consists in evaluating the derivative of the potential energy of the solution under a virtual crack
extension modelled by a transformation velocity field θ, are very efficient because of their robustness.
In particular, unlike local methods (K), they can be performed on meshes without special crack-front
elements. However, the G-θ method evaluate the energy release rate G, which has for certain applica-
tions the disadvantage of mixing the fracture modes, i.e. the stress intensity factors (SIFs). Separation
evaluation of each SIF is often useful or necessary, e.g. for the implementation of additional criteria
predicting future kinking or curving of the crack(s).

The SIFs can be uncoupled within a global, G-θ based computational framework, by means of the
concept of interaction integral [2]. Interaction integrals (or M-θ integrals) are defined as the bilinear
contribution arising in the expression of the G-θ domain integral applied to the superposition of two
states, namely the solution (u, σ[u]) solution for crack and loading configuration being considered, and
a judiciously defined auxiliary state (v, σ[v]). Specially, the latter is chosen so as to correspond to a
given distribution of SIFs along the crack front.

Interaction integrals, like the G-θ integral, thus provide the basis of a post-processing of the FEM
solution, allowing separate computation of the three SIF distributions associated with the solution.
The success of this method depends on the validity of the auxiliary fields chosen, which must satisfy
the compatibility, equilibrium, and (linear-elastic) constitutive relations. For 2-D problems involving
straight cracks, the auxiliary fields can simply be chosen in terms of the Westergaard solutions. How-
ever, analytical solutions for cracks of arbitrary geometry are not known, especially in the 3-D case. To
circumvent this difficulty, several methods for constructing auxiliary fields are proposed. Some [2] use
for each point of the crack front the Westergaard solutions written in curvilinear coordinates ajusted
to the crack geometry, sometimes with complementary terms arising from the curvature of the crack
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front and faces. Others use the analytical solutions for a penny-shaped crack, adapted to the curvature
at each point of the crack front [3]. All these approaches entail a degree of approximation, ultimately
caused by the curvature of the crack or the crack front. For example, the Westergaard solutions written
in curvilinear coordinates do not satisfy the equilibrium and compatibility equations.

In this work, a new method for constructing auxiliary fields for the extraction of the stress intensity
factors is proposed. This method guarantees (winthin discretization errors) the satisfaction of the (equi-
librium, compatibility and constitutive) field equations for arbitrary crack geometries. The basic idea
consists in using a integral representation formula of a displacement field [4] written in terms of a
displacement jump φi throught the crack selected so as to satisfy one of the conditions on auxiliary
SIFs:

v (x) =
∫

bS φi (y)T k
i (x,y) dS (1)

where T k
i denotes the traction vector associated with the free-space elastostatic Green’s tensor, i.e. the

Kelvin solution. Any displacement of the form (1) satisfies by construction the field equations of linear
elasticity. In addition, the support Ŝ ∈ S of this displacement jump is confined to a small area around
the point of crack front at wich the stress intensity factors are sought, in order to minimize the compu-
tational burden entailled by this postprocessing. The displacement jump in the integral representation
being chosen a priori (so as to conform with a desired distribution of SIF on the crack front), the aux-
iliary fields thus defined develops non zero tractions on the crack faces. It is thus necessary to adapt
accordingly the expression of the interaction integral derived from the G-θ approach.

The main computational steps for evaluating the interactions integral using the present approach are as
follows :

• Calculation of the tractions associated to auxiliary displacement (1) on portion Ŝ ∈ S where the
transformation velocity field θ of the G-θ method is non-zero;

• Calculation of a new contribution to the interaction integral having the form of a surface integral
on Ŝ involving the previously conputed tractions;

• Calculation of ∇v (x) in the support Ω̂ ∈ Ω of the vicinity field. The regions Ŝ and Ω̂ being
local (surface and volume neighbouhoods of the crack front point) this procedure is computa-
tionally economical. This algorithm provides a means for computing, via a by postprocessing of
the solution for a given crack configuration, the stress intensity factors for a crack of arbitrary 3-
D geometry. In the proposed communication, we will present the above-outlined computational
algorithm and numerical results designed to assess, by means of comparisons with the known an-
alytical solutions of a penny-shaped crack, the accuracy and stability of the proposed approach.
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