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Abstract

Martin and Osswald [15] have recently proposed many geizatidns of combination rules on quantitative beliefs inler
to manage the conflict and to consider the specificity of teparses of the experts. Since the experts express themssivally
in natural language with linguistic labels, Smarandacha& @azert [13] have introduced a mathematical framework fealidg

directly also with qualitative beliefs. In this paper weatsome element of our previous works and propose the nevbication

rules, developed for the fusion of both qualitative or gitative beliefs.
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General combination rules for

qualitative and quantitative beligfs

|I. INTRODUCTION

Many fusion theories have been studied for the combinatibthe experts opinions expressed either quantitatively or
qualitatively such as voting rules [11], [31], possibilitheory [6], [35], and belief functions theory [2], [17]. Athese
fusion approaches can be divided basically into four steysdelization parameters estimatiofdepending on the model, not
always necessary)ombinationand decision The most difficult step is presumably the first one which deigehighly on
the problem and application we have to cope with. Howevas, d@nly at the combination step that we can take into account
useful information such as the conflict (partial or totaljvibeen the experts and/or the specificity of the expert'sarse.

The voting rules are not adapted to the modelization of aunfietween experts [31]. Although both possibility and
probability-based theories can model imprecise and uaicedata at the same time, in many applications, the expegts a
only able to express their “certainty” (or belief) only frattmeir partial knowledge, experience and from their own pption
of the reality. In such context, the belief function-baskdadries provide an appealing general mathematical framiefoo
dealing with quantitative and qualitative beliefs.

In this paper we present the most recent advances in befiefiuns theory for managing the conflict between the sour€es
evidence/experts and their specificity. For the first tim¢hia literature both the quantitative and qualitative atpe€ beliefs
are presented in a unified mathematical framework. This papeially extends two papers [13], [15] presented durirg th
10th International Conference on Information Fusion (Bn2007) in Québec City, Canada on July 9-12, 2007 in theémess

“Combination in Evidence Theory”.

Sectionm briefly recalls the basis of belief functions thes, i.e. the Mathematical Theory of Evidence or Dempster-Shafer
theory (DST) developed by Shafer in 1976 [2], [17], and iteura extension called Dezert-Smarandache Theory (DSiA]) [
[19]. We introduce in this section the notion of quantitat@nd qualitative beliefs and the operators on linguistiels for
dealing directly with qualitative beliefs. Secti@ Il ments the main classical quantitative combination rulesl & far,.e.
Dempster’s rule, Yager’s rule, Dubois-Prade’s rule andrdeent Proportional Conflict Redistribution rules (PCRypmsed
by Smarandache and Dezert [22] and extended by Martin and/absn [19]. Some examples are given to illustrate how
these rules work. SectidEllV explains through differentragbes how all the classical quantitative combination rues be
directly and simply translated/extended into the qualigatiomain in order to combine easily any qualitative beliexpressed
in natural language by linguistic labels. Sect|§n V proposew general quantitative rules of combination which altowake
into account both the discounting of the sources (if any) @medproportional conflict redistribution. The direct exdam of
these general rules into the qualitative domain is theneptesl in details on several examples in sec@n VI.

IManuscript received September 24, 2007; released for gatloin August 5, 2008.

Refereeing of this contribution was handled by Fabio Roli.



Il. BASIS OFDSTAND DSMT
A. Power set and hyper-power set

In DST framework, one considers a frame of discernm@nt {6,,...,0,} as a finite set of: exclusive and exhaustive
elements i(e. Shafer's model denoted1°(0)). The power setof O is the set of all subsets a¢b. The order of a power
set of a set of order/cardinality9| = n is 2. The power set o® is denoted2®. For example, if© = {6;,602}, then
20 = {0,601, 6,0, U6}

In DSMT framework, one considef = {64,...,0,} be a finite set of. exhaustive elements only.€. free DSm-model
denotedM’(©)). Eventually some integrity constraints can be introducethis free model depending on the nature of the
problem of interest. Théyper-power sebf © (i.e. the free Dedekind’s lattice) denotdd® [18] is defined as:

1) 0,0y,...,0, € D°.

2) If A,Be D®, thenANB, AUB € D°.

3) No other elements belong ©°, except those obtained by using rules 1 or 2.

If |©] = n, then|D®| < 22". Since for any finite se®, |[D®| > |2°|, we call D® the hyper-power sebf ©. For example,
if © = {61,065}, thenD® = {0,6, N H,01,05,0, Uby}. Thefree DSm modeM/(©) corresponding taD® allows to work
with vague concepts which exhibit a continuous and relatitensic nature. Such concepts cannot be precisely refimeoh
absolute interpretation because of the unreachable waivtth.

It is clear that Shafer's model1°(©) which assumes that all elements@fare truly exclusive is a more constrained model
than the free-DSm modeV1/(©) and the power s&2® can be obtained from hyper-power 98 by introducing inM7(©)
all exclusivity constraints between elements@f Between the free-DSm modél/(0) and Shafer's modeM®(0), there
exists a wide class of fusion problems represented in terthe@DSm hybrid models denoteth (©) where©® involves both
fuzzy continuous and discrete hypotheses. The main diféere between DST and DSmT frameworks are (i) the model on
which one works with, and (ii) the choice of the combinatiaterand conditioning rules [18], [19]. In the sequel, we use t
generic notatiornG® for denoting eitherD® (when working in DSmT with free DSm model) @° (when working in DST

with Shafer’'s model).

B. Quantitative basic belief assignment (bba)

The (quantitative) basic belief assignment (bba).) has been introduced for the first time in 1976 by Shafer [17im
Mathematical Theory of Evidencé.d. DST). m(.) is defined as a mapping function fro2? — [0, 1] provided by a given

source of evidenc# satisfying the conditions:

> m(A)=1. (2)
Ae2®

The elements o2® having a strictly positive mass are calléatal elementsf B. The set of focal elements ofi(.) is

called the core ofn(.) and is usually denote@(m). The equation[{l) corresponds to the closed-world assompti7]. As



introduced by Smets [25], we can also define the belief fonctinly with:

> m(A) =1. (3)

Ae2°©

and thus we can have:(()) > 0, working with the open-world assumption. In order to chaageopen world to a closed
world, we can always add one extra closure element in the dgEniminant spac®. In the following, we assume that we
always work within a closed-worlé.

The (quantitative) basic belief assignment (bb&)) can also be defined similarly in the DSmT framework by workamg
hyper-power seD® instead on classical power-s&® as within DST. More generally for taking into account somegnity

constraints on (closed-world (if any), m(.) can be defined 0G© as:

m(0) =0, 4)
> om(4)=1. (5)
AeG®

The conditions|]1)|]5) give a large panel of definitions &f trelief functions, which is one of the difficulties of the thies.
From any basic belief assignmenis.), other belief functions can be defined such as the credil@it(.) and the plausibility

PI(.) [17], [18] which are in one-to-one correspondence with).

After combining several bba’s provided by several sourcesvidence into a single one with some chosen fusion rule
(see next section), one usually has also to make a final daciei select the “best” hypothesis representing the unknown
truth for the problem under consideration. Several apgresi@re generally adopted for decision-making from beliatfions
m(.), Bel(.) or PI(.). The maximum of the credibility function Bg) is known to provide a pessimistic decision, while the
maximum of the plausibility function Pl) is often considered as too optimistic. A common solutiondecision-making in
these frameworks is to use tpegnistic probabilitydenotedBetP (X) [25] which offers a good compromise between the max

of Bel(.) and the max of Rl). The pignistic probability in DST framework is given for ali € 29, with X £ () by:

BetP(X) = Y |X|;|Y|1ilg()®), (6)
Y€20,Y£p

for m(()) # 1. The pignistic probability can also be defined in DSmT framewas well (see Chapter 7 of [18] for details).

When we can quantify/estimate the reliability of each sewtevidence, we can weaken the basic belief assignmentebefo
the combination by the classical discounting proceduré: [17

()

m'(X) = am(X), VX € 29\ {0}
m'(0) =am(0) +1— a.

a € [0,1] is the discounting factor of the source of evidert¢hat is in this case the reliability of the source of evideie

eventually as a function ok € 2°. Same procedure can be applied for bba’s defined8nin DSmT framework.



C. Qualitative basic belief assignment

1) Qualitative operators on linguistic labelfRecently Smarandache and Dezert [13], [19], [20] have meg@n extension
of classical quantitative belief assignments and numkdparators to qualitative beliefs expressed by linguitdioels and
qualitative operators in order to be closer to what humaredspcan easily provide. In order to compute directly with
words/linguistic labels and qualitative belief assigntseimstead of quantitative belief assignments o@ét, Smarandache
and Dezert have defined in [19] qualitative basic belief assignmenin(.) as a mapping function fron&® into a set of
linguistic labelsL = {Lo,i,LnH} where [ = {L1,---, Ly} is a finite set of linguistic labels and where > 2 is an
integer. For examplelL; can take the linguistic value “poorl,, the linguistic value “good”, etcL is endowed with a total
order relationship<, so thatl; < Ls < --- < L,. To work on a true closed linguistic sét under linguistic addition and
multiplication operators, Smarandache and Dezert exdandturally]i with two extreme value&y = Lyin @ndL, 11 = Lmax,
where Ly corresponds to the minimal qualitative value aigl, ; corresponds to the maximal qualitative value, in such a way
thatLy < L; < Ly < --- < L, < L,+1, where< means inferior to, less (in quality) than, or smaller than, eabelsLg, L,
Ly, ..., Ly, L,y are calledinguistically equidistanif: L;,; — L, = L; — L,_y forall i =1,2,...,n where the definition
of subtraction of labels is given in the sequel by (14). InskquelL; € L are assumed linguistically equidistﬁrhibels such
that we can make an isomorphism betwdes- { Lo, L1, L2, ..., Ly, Lpy1} and{0,1/(n+1),2/(n+1),...,n/(n+1),1},
defined asl; = i/(n+ 1) forall i =0,1,2,...,n,n+ 1. Using this isomorphism, and making an analogy to the aaksi
operations of real numbers, we are able to justify and defieeigely the following qualitative operators (groperators for

short):

« g-addition of linguistic labels:
) J 147
L+ L;= = =Ly, 8
th n+1+n—|—1 n+1 +I ®)

we set the restriction that+ j < n + 1; in the case when + j > n + 1 we restrictL;; = L,+1 = Lmax. This is the
justification of the qualitative addition we have defined.

« g-multiplication of linguistic Iabeﬁ;

a) SinceL;-L; = #1 . n+r1 = % the best approximation would 08;. ;) /(n+1), Where[z] means the closest

integer tox (with [n +0.5] =n+ 1, Vn € N), i.e.

Li- Lj = LiG.j)/(n+1)]- )

For example, if we havé,, L1, La, L3, L4, Ls, corresponding to respectively 0.2, 0.4, 0.6, 0.8, 1, thenLy - Ls =
Li2.3y/5) = Lis/5) = Lj1.2) = L1; using numbers0.4 - 0.6 = 0.24 ~ 0.2 = Ly; also L3 - Lz = L3.3)/5) = Ljg/5) =
L8 = Lo; using number$.6 - 0.6 = 0.36 ~ 0.4 = Lo.

b) A simpler approximation of the multiplication, but lesscarate (as proposed in [19]) is thus:

Li-L;=1L (10)

min{i,j}-
« Scalar multiplication of a linguistic label:

2|f the labels are not equidistant, the g-operators stillkydut they are less accurate.
3The g-multiplication of two linguistic labels defined here canédended directly to the multiplication ef > 2 linguistic labels. For example the product

of three linguistic label will be defined &; - L; - L = Li(;.j.k)/(n+1)(n+1)]» ©tC.



Let o be a real number. We define the multiplication of a linguittisel by a scalar as follows:

.7 La-i |f [CL’L]EO,
0 L= -2t o (11)

1 .
nt L_,; otherwise

« Division of linguistic labels:

a) Division as an internal operatof: L - L — L. Let j # 0, then

Lii/i).(n if[(i/j)- (n+1)] <n—+1,
LI, = (@/5)- ) F@/7) - (n+1)] 12)

Ly otherwise

The first equality in [(1]2) is well justified because whigiyj) - (n + 1)] < n + 1, one has:

i/(n i/7)- (n+1

For example, if we havd.y, L1, La, L3, L4, Ls, corresponding to respectively; 0.2, 0.4, 0.6, 0.8, 1, then:
Li/L3 = Ly1/3y.5 = Lis/s) = Lpes) = L. La/La = Lya/2).5) = Lj2.5] = Lmax = L5 Since10 > 5.

b) Division as an external operatar:: L - L — R*. Let j # 0. SinceL; ©® L; = (i/(n+1))/(j/(n+ 1)) =i/j, we
simply define:

LioL; =i/j. (13)

Justification of b): When we divide sdy, /L in the above example, we g&é8/0.2 = 4, but no label is corresponding

to number 4 which is not included in the interjal 1], hence the division as an internal operator we need to get
as a response label, so in our example we approximate it,f9. = L5, which is a very rough approximation!
Therefore, depending on the fusion combination rules, iy fa better to consider the qualitative division as an

external operator, which gives us the exact result.

« g-subtraction of linguistic labels+-: L - L — {L,—L},

Li—L;= - (14)
—Lj_i if i< J-

where —L = {—Ly,—Ls,...,—L,,—Lyn4+1}. The ¢g-subtraction above is well justified since when> j, one has

i—J
n+1"

Li-Lj=35 -7 =
The previous qualitative operators are logical due to then@phism between the set of linguistic equidistant lalaeld a
set of equidistant numbers in the inter{@l1]. These qualitative operators are built exactly on the tfdkeir corresponding
numerical operators, so they are more mathematically dfimen the ad-hoc definitions of qualitative operators psegan
the literature so far. The extension of these operators dodling quantitative or qualitative enriched linguistabéls can be

found in [13].

Remark about doing multi-operations on labels



When working with labels, no matter how many operations weehthe best (most accurate) result is obtained if we do
only one approximation. That one should be at the end. Fomple if we have to compute terms like,L; Ly /(L + L)
as for Qualitative Proportional Conflict RedistributionRQR) rule (see example in sectiEI IV), we compute all opanatas
defined above. Without any approximationg.(not even calculating the integer part of indexes, neithplagng byn + 1 if

the intermediate results is bigger thant 1), so:

LiL;jLy  Lgjk)/(n+1)2

= =L ujny/m =Lum/meny =L__i , 15

Ly,+ L, Lpiq %'("H) ik fets) T (15)
and now, when all work is done, we compute the integer pahefridex;.e. [%] or replace it byn+1 if the final result
is bigger tham + 1. Therefore, the ternf; L; L/ (L, + L,) will take the linguistic valueL,, 1 Whenever[%] >n+1.

This method also insures us of a unique result, and it is madkieally closer to the result that would be obtained if wogk
with corresponding numerical masses. Otherwise, if onecqimates either at the beginning or end of each operation or
the middle of calculations, the inaccuracy propagatesofimes bigger) and we obtain different results, dependindnerplaces
where the approximations were done. If we need to round theldaindexes to integer indexes, for a better accuracy ef th
result, this rounding must be done at the very end. If we woitk ¥actional/decimal indexes (therefore no approximiasi,
then we can normally apply the qualitative operators onertgyin the order they are needed; in this way the quasi-nozatain

is always kept.

2) Quasi-normalization ofm(.): There is no known way to define a normalized,.), but a qualitative quasi-normalization
[19], [24] is nevertheless possible when considering dgtadt linguistic labels because in such cagey(X;) = L;, is
equivalent to a quantitative mass(X;) = i/(n + 1) which is normalized if:

dSomX)=) ir/(n+1)=1,

XeGe k

but this one is equivalent to:

> gm(X)=> Li =Ln1.
k

XeGe

In this case, we have gualitative normalizationsimilar to the (classical) numerical normalization. Heee if the previous
labelsLg, L1, Lo, ..., L,, Ln4+1 from the setl are not equidistant, the intervi@, 1] cannot be split into equal parts according
to the distribution of the labels. Then it makes sense to idens qualitative quasi-normalizatigri.e. an approximation of
the (classical) numerical normalization for the qualtatmasses in the same way:

Z gm(X) = Lp41.

XeGe
In general, if we don’t know if the labels are equidistant ot,nve say that a qualitative mass is quasi-normalized wiealbove

summation holds. In the sequel, for simplicity, one assutnegork with quasi-normalized qualitative basic beliefigaments.

From these very simple qualitative operators, it is possiblextend directly all the quantitative combination ruilegheir

gualitative counterparts as we will show in the sequel.



3) Working with refined labels:

« We can further extend the standard labels (those with pesititeger indexes) to refined labels. labels with frac-

tional/decimal indexes. In such a way, we get a more exaditrend the quasi-normalization is kept.

Consider a simple example: s = goodand L3 = best then L, 5 = better, which is a qualitative (a refined label) in
betweenL, and Ls.
« Further, we consider the confidence degree in a label, argl miore interpretations/approximations to the qualitative

information.

For exampleLy/s = (1/5) - L2, which means that we are 20% confident in labgj or Ly/5 = (2/5) - L1, which means

that we are 40% confident in labéh, so L is closer to reality tharl,; we get100% confidence inLy /s = 1- Ly)s.

4) Working with non-equidistant labeldMe are not able to find (for non-equidistant labels) exactesponding numerical
values in the interval0, 1] in order to reduce the qualitative fusion to a quantitatiusidn, but only approximations. We,

herfore, prefer the use of labels.

1. CLASSICAL QUANTITATIVE COMBINATION RULES

The normalized conjunctive combination rule also callednpster-Shafer (DS) rule is the first rule proposed in theebeli
theory by Shafer following Dempster's works in sixties [B. the belief functions theory one of the major problems is th
conflict repartition enlightened by the famous Zadeh's gxenfi36]. Since Zadeh'’s paper, many combination rules haenb
proposed, building a solution to this problem [4], [5], [@% [14], [21], [26], [27], [34]. In recent years, some um#ition rules
have been proposed [1], [12], [29]. We briefly browse the majtes developed and used in the fusion community working
with belief functions through last past thirty years (se@][&nd [19] for a more comprehensive survey).

To simplify the notations, we consider only two independsmirces of evidenc8; and B, over the same fram® with
their corresponding bba'si; (.) andms(.). Most of the fusion operators proposed in the literature eifeer the conjunctive
operator, the disjunctive operator or a particular comiimmaof them. These operators are respectively definéd= G®, by:

my(A) = (m1Vmg)(A) = Y mi(X)ma(Y), (16)

X,YeG®
XUY=A

ma(A) = (m1 Ama)(A) = Y mi(X)ma(Y). (17)

X,YeG®
XNY=A

The global/totaldegree of conflicbetween the sourcds, and B is defined by :

kEEma@) = > mi(X)ma(Y). (18)

X,YeGg®
XNY=0

If k is close to0, the bba'sm;(.) and my(.) are almost not in conflict, while it is close tol, the bba’s are almost in

total conflict. Next, we briefly review the main common qutative fusion rules encountered in the literature and used i



engineering applications.

Example 1 Let's consider the 2D fram® = { A, B} and two experts providing the following quantitative bekssignments

(masses)ni(.) andma(.):

A | B | AuB
mi(.) | 1/6 | 3/6 | 2/6
ma() | 4/6 | 1/6 | 1/6
TABLE |

QUANTITATIVE INPUTS FOR EXAMPLE 1

The disjunctive operator yields the following result:

m(A) = mi(A)ma(4) = (1/6) - (4/6) = 4/36

my(B) = ma(B)ma(B) = (3/6) - (1/6) = 3/36

my (AU B) = m1(A)ma(B) + mi(B)mz(A)
+ mi(A)yma(AU B) + ma(A)my (AU B)
+ mi(B)ma(AU B) + ma(B)mi (AU B)
+mi(AUB)ma(AU B)

)+ (1/6) + (3/6) - (4/6)

+(1/6) - (1/6) + (4/6) - (2/6)

+(3/6) - (1/6) + (1/6) - (2/6)

+(2/6) - (1/6)

while the conjunctive operator yields:
ma(A) = mi(A)ma(A) + mi(A)ma(A U B) + ma(A)m1 (AU B)

= (1/6) - (4/6) + (1/6) - (1/6) + (4/6) - (2/6) = 13/36

ma(B) = mq(B)ma(B) +ma1(B)m2(AU B) + ma(B)mi1(AU B)

= (3/6) - (1/6) + (3/6) - (1/6) + (1/6) - (2/6) = 8/36

ma(AUB) = mi (AU B)ma(AUB) = (2/6) - (1/6) = 2/36



ma(AN B) 2 mp(ANB) =mi(A)ma(B) + ma(B)my(B)
= (1/6) - (1/6) + (4/6) - (3/6) = 13/36

e Dempster’s rule [3]:

This combination rule has been initially proposed by Dempsind then used by Shafer in DST framework. We assume
(without loss of generality) that the sources of evidenae eqgually reliable. Otherwise a discounting preprocesgniiyst
applied. It is defined o'® = 2° by forcingmps () £ 0 andvVA € G® \ {0} by:

mps(A) = Trma(4) = %.

When k& = 1, this rule cannot be used. Dempster’s rule of combinatiam lsa directly extended for the combination of

(19)

N independent and equally reliable sources of evidence anahdfor interest comes essentially from its commutativitgd a
associativity properties. Dempster’s rule correspondieeéaormalized conjunctive rule by reassigning the masstaf tonflict
onto all focal elements through the conjunctive operattee problem enlightened by the famous Zadeh’s example [36] is
the repartition of the global conflict. Indeed, considér= {A, B,C} and two experts opinions given by, (A4) = 0.9,
m1(C) = 0.1, andms(B) = 0.9, mo(C) = 0.1, the mass given by Dempster’s combinatiomis,s(C') = 1 which looks
very counter-intuitive since it reflects the minority omini The generalized Zadeh's example proposed by Smaramdach
Dezert in [18], shows that the results obtained by Demgstaite can moreover become totally independent of the naaieri
values taken byn;(.) andms(.) which is much more surprising and difficult to accept withoeserve for practical fusion
applications. To resolve this problem, Smets [26] suggkistdis Transferable Belief Model (TBM) framework [28] toregider

© as an open-world and therefore to use the conjunctive rgtedd Dempster’s rule at the credal level. At credal lengl(()

is interpreted as a non-expected solution. The problemtisallg just postponed by Smets at the decision/pignistiellsince
the normalization (division byt — m(0)) is also required in order to compute the pignistic probeéd of elements 0D.

In other words, the non normalized version of Dempster's rdrresponds to the Smets’ fusion rule in the TBM framework

working under an open-world assumptiom. ms () = k = mx(0) andvA € GO\ {0}, ms(A) = ma(A).

Example 2 Let's consider the 2D frame and quantitative masses asgiveexample 1 and assume Shafer's mods. (
AN B = (), then the conflicting quantitative mags= ma(A N B) = 13/36 is redistributed to the setd, B, AU B
proportionally with theirma(.) massesi.e. ma(A) = 13/36, ma(B) = 8/36 andm (A U B) = 2/36 respectively through
Demspter's rulemg). One thus gets:

mps(0) =0

mps(A) = (13/36)/(1 — (13/36)) = 13/23

mps(B) = (8/36)/(1 — (13/36)) = 8/23

mps(AUB) = (2/36)/(1 — (13/36)) = 2/23

If one prefers to adopt Smets’ TBM approach, at the credal lthe empty set is now allowed to have positive mass. In this



10

case, one gets:

mrpm(0) =ma(ANB) =13/36
mrpm(A) =13/36
mTBM(B) = 8/36

mTBM(A @] B) e 2/36

e Yager's rule [32]-[34]:

Yager admits that in case of high conflict Dempster’s rulevighes counter-intuitive results. Thus, plays the role of an
absolute discounting term added to the weight of ignorafbe. commutative and quasi—associaﬂimger’s rule is given by
my (0) =0 andvA € G\ {0} by

my (A) = ma(A) (20)

my (©) = ma(©) +ma(0)
Example 3 Let's consider the 2D frame and quantitative masses asgiveexample 1 and assume Shafer's mods. (
AN B = (), then the conflicting quantitative mags= m, (AN B) = 13/36 is transferred to total ignorancéu B. One thus

gets:
my (A) = 13/36
my (B) = 8/36
my (AU B) = (2/36) + (13/36) = 15/36

e Dubois & Prade’s rule [5]:

This rule supposes that the two sources are reliable whanateenot in conflict and at least one of them is right when a
conflict occurs. Then if one believes that a value is in a’sathile the other believes that this value is in a ¥etthe truth
liesin X NY aslongX NY # (. If XNY = 0, then the truth lies infX UY". According to this principle, the commutative and
guasi-associative Dubois & Prade hybrid rule of combimatiehich is a reasonable trade-off between precision anabibty,

is defined bympp(0) = 0 andvA € G° \ {0} by

mpp(A) =ma(A) + D mi(X)ma(Y) (21)
X,y eGg®
XUY=A
XNy=0
In Dubois & Prade’s rule, the conflicting information is calered more precisely than in Dempster’s or Yager's rulesesi

all partial conflicts involved the total conflict are takendraccount separately throu(21).

The repatrtition of the conflict is very important becausehef hon-idempotency of the rules (except the Denceux’ ruléhit]
can be applied when the dependency between experts is highjue to the responses of the experts that can be conflicting.
Hence, we have defined the auto-conflict [16] in order to gfathie intrinsic conflict of a mass and the distribution ofth

conflict according to the number of experts.

4quasi-associativity was defined by Yager in [34], and Sndaahe and Dezert in [22].
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Example 4 Taking back example 1 and assuming Shafer's modebfothe quantitative Dubois & Prade’s rule gives the same
result as guantitative Yager’s rule since the conflictingssnars (A N B) = 13/36, is transferred tad U B, while the other

guantitative masses remain unchanged.

e Proportional Conflict Redistribution rules (PCR):

PCRS5 for combining two sources

Smarandache and Dezert proposed five proportional corgliistribution PCR) methods [21], [22] to redistribute the partial
conflict on the elements implied in the partial conflict. Thestnefficient for combining two basic belief assignments(.)

andms(.) is the PCRS5 rule given bympcrs() = 0 and for all X € G©, X # () by:

=m mi(X)?ma(Y) | ma(X)*mu(Y)
mpcrs (X) = ma(X) + Yge (m1(X)+m2(Y) * mz(X)+m1(Y)) 7 2
XNY=0

wherem (.) is the conjunctive rule given by the equati(l?).

Example 5 Let's consider the 2D frame and quantitative masses amgiveexample 1 and assume Shafer's mods. (
AN B = ), then the conflicting quantitative mags= m,(A N B) = 13/36 is redistributed only to elements involved in

conflict, A and B (not to A U B). We repeat that:

ma(AN B) =mq(A)ma(B) + me(B)m1(B) = (1/6) - (1/6) + (4/6) - (3/6) = 13/36.
So(1/6) - (1/6) = 1/36 is redistributed toA and B proportionally to their quantitative masses assigned leysthurces (or
experts)m,(A) = 1/6 andmy(B) = 1/6:

ILA . yl,B . 1/36
/6 1/6  (1/6)+ (1/6)

=1/12,

hence

w14 = (1/6) - (1/12) = 1/72,

and

y1.8=(1/6)-(1/12) =1/72.

Similarly (4/6) - (3/6) = 12/36 is redistributed to4 and B proportionally to their quantitative masses assigned kystiurces
(or experts)ma(A) = 4/6 andmy(B) = 3/6:

T2,A _ Y2,B 12/36 B
4/6 — 3/6  (4/6) + (3/6) =2,

hence

w24 = (4/6) - (2/7) = 4/21,

and

Y2.B = (3/6) : (2/7) =1/7.
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It is easy to check that

T1A+Y1.B+T24+y28=13/36=msr(ANB)
Summing, we get:

mpcrs(A) = (13/36) + (1/72) + (4/21) = 285/504 ~ 0.57
mpors(B) = (8/36) + (1/72) + (1/7) = 191/504 ~ 0.38
mpCR5(A U B) = 2/36 ~ 0.05

mpcrs(ANB=0)=0

PCR6 for combining more than two sources

A generalization of°CR5 fusion rule for combining altogether more than two expegs heen proposed by Smarandache
and Dezert in [22]. Recently Martin and Osswald [14], [16]dsed and formulated a new version of tRERS5 rule, denoted
PCR6, for combining more than two sources, sAy sources withM > 2. Martin and Osswald have shown thBCR6
exhibits a better behavior thanCRS5 in specific interesting caseBCR6 rule is defined as followsinpcre(#) = 0 and for

all X € G®, X £,

M1
o [T moi) Yo )
=1
mpcre(X) = ma(X) + Z mi(X)* Z - M-1 ’ (23)
=1 M—-1
"N, wnx=o mi(X)+ Y Mo,y (Yo, ()
= j=1

(Yo, (1) Yo, (1)) E(GO) M
whereY; € G is the response of the expegiitm;(Y;) the associated belief function angd counts from 1 toM avoiding:
oi(j)=7+1 if j>1i.

(24)

The idea is here to redistribute the masses of the focal elengiving a partial conflict proportionally to the initialasses

on these elements.

In general, forM > 3 sources, one calculates the total conflict, which is a sunrodyxts; if each product is formed by
factors of masses of distinct hypothesis, tHe@R6 coincides withPCRS5; if at least a product is formed by at least two
factors of masses of same hypotheses, tR€R6 is different fromPCRS5:

« for example: a product liken; (A)ms(A)ms(B), herein we have two masses of hypothesis

e Ormyi(AU B)ma(BUC)ms(BUC)my(BUC), herein we have three masses of hypothésis C' from four sources.

Example 6 For instance, consider three experts expressing themapon© = {A, B, C, D} in the Shafer's model:
The global conflict is given here by 0.21+0.14+0.09=0.44xicyy from:
- A, Band AU C for the partial conflict 0.21,
- A, BandAUBUCUD for 0.14,
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A | B |AuC | AUBUCUD

mi(.) | 07| 0 0 0.3

ma() | 0 | 05| 0 0.5

ms() | 0 | 0O 0.6 0.4
TABLE II

QUANTITATIVE INPUTS FOR EXAMPLE 6

- andB, AUC andAU BUC U D for 0.09.

With the generalized®CR6 rule (23), we obtain:

7 7
mpcrs(A) = 014+ 0214021 —= +0.14 - 7= =~ 0.493

5 5 5
mpcre(B) = 0.06 +0.21 - = +0.14 - 6 +0.09 - = 0.194
6 6
mpcre(AUC) = 0.09 4 0.21 - ' +0.09 - T ~ 0.199
4 3
mpcre(AUBUCUD) =0.06+0.14 - 6 +0.09 - T ~0.114

Example 7 Let’s consider three sources providing quantitativedfatiasses only on unions.

AUB | BUC | AuC | AUBUC

mi() | 07 0 0 0.3

ma(.) 0 0 0.6 0.4

ms(.) 0 0.5 0 0.5
TABLE III

QUANTITATIVE INPUTS FOR EXAMPLE 7

The conflict is given here by:
ma(0) = mi1(AUB)ma(AUC)ms(BUC) =0.7-0.6-0.5 = 0.21
With the generalized PCR rulege. PCR6, we obtain:
mpcre(A) = 0.21,
mpcre(B) = 0.14,
mpcrs(C) = 0.09,
mpcre(AU B) = 0.14 + 0.21.1—78 ~(.2217,
mpcre(BUC) = 0.06 + 0.21.% ~0.1183,
mpcre(AUC) = 0.09 4 0'21'% = 0.16,

MPCR6 (A UBU C) = 0.06.

In the sequel, we use the notati®CR for two and more sources.
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IV. CLASSICAL QUALITATIVE COMBINATION RULES

The classical qualitative combination rules are direcersions of classical quantitative rules presented in pusvsection.
Since the formulas of qualitative fusion rules are the saméornquantitative rules, they will be not reported in thistamn.
The main difference between quantitative and qualitatiyer@aches lies in the addition, multiplication and divisimperators
one has to use. For quantitative fusion rules, one usesi@udihultiplication and division operators on numbers \&hibr
qualitative fusion rules one uses the addition, multigiara and division operators on linguistic labels defined rasection

I-C.1.

Example 8 Below is a very simple example used to show how classicalitqtime fusion rules work. Let’'s consider the
following set of linguistic labelsL. = {Luin = Lo, L1, L2, L3, Ly, L5, Lmax = Lg} and let's assume Shafer's model for
the frame® = {A, B} we want to work on. In this example, we consider only two etperoviding the qualitative belief

assignments (masseg):; (.) andgms(.) such that:

A B AUB
gmi(.) | L1 | L3 Lo
gma(.) | La | L1 Ly
TABLE IV

QUALITATIVE INPUTS FOR EXAMPLE 8

The qualitative belief assignmengs;(.) andgms(.) have been chosen quasi-normalized sifget Ls + Ly = Lg = Liax

and respectivelyy + L1 + L1 = L = Liax-

¢ Qualitative Conjunctive Rule (QCR): This rule providegm(.) according following derivations:

gma(A) = gmi(A)gmz(A) + gmi(A)gma2(A U B) + gma(A)gmi (AU B)
=1Ly + L0y + LylLo :L% —|—L% —|—L% :Lw :L%
qma(B) = qmi(B)qmz(B) + qmi(B)qma (AU B) + qma(B)gmi (AU B)
= LsLy+ LsLy + LiLy = Laa + Laa + Lia = Lasacs = Lg
gma(AU B) = qmi(AU B)qma(AU B) = LoLy = L2a = L2

qma(A N B) = qmy(A)gma(B) + gma(B)gmi(B) = L1 Ly + LyLz = L

-1
6

—I—L% = Liy12 = Li1s

We see that not approximating the indexé®.(working with refined labels), the quasi-normalization o thjualitative
conjunctive rule is kept:

Lis+Ls+ L2+ La
6 6 6

o

= L% = Lg = Limax-

o

But if we approximate each refined label, we get:

Lysay+ Lysy + L2y + Ljaay = Lo+ Ly + Lo + Ly = L5 # Ls = Lunax.

2 13
6 6 6 6
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Let's examine the transfer of the conflicting qualitativessi@n,(ANB) = gma(0) = L% to the non-empty sets according

to the main following combination rules:

¢ Qualitative Dempster’s rule (extension of classical numerical DS rule to qualitativese®s): Assuming Shafer's model for
the frame® (i.e. AN B = ) and according to DS rule, the conflicting qualitative mass,(A N B) = L% is redistributed

to the setsd, B, AU B proportionally with theirgmx(.) massesL%, L%, andL% respectively:

L13 L13
TA o YB o ZAUB o 5 o G o
Lis Ls L: Lis+Ls+L: Lo _L(%_%)'G_L(%)G_L%
6 6 6 6 6 6 6

Therefore, one gets:

ZAUB:L% -L% :L(%, )+6:L%

mlxl
oo

We can check that the qualitative conflicting mabs; , has been proportionally split into three qualitative neass

L% +L% +L% = L169+1{%084+26 = L% = L%
So:
amps(A) =Lug + Lygg = Lyprigg = Lygg
gmps(B) = L% —i—L% :L%—k% = L%
qgmps(AUB) =Lz +Las =Lz 20 =Ln
gmps(ANB =0)= Lo
gmps(.) is quasi-normalized since:
Luss + Lass + Lz2 = Lsos = Lg = Lnax.

If we approximate the linguistic labelsass, Lzss and L 7z in order to work with original labels irL, still gmps(.) remains
guasi-normalized since:
qus(A) ~ L[468] = L3

qus(B) ~ L[%

= 1L2
qus(AUB)%L[%] =1,

andL3 + Lo+ L1 = Lg = Liax-
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e Qualitative Yager's rule:

With Yager's rule, the qualitative conflicting maﬂsTa is entirely transferred to the total ignorandeJ B, so:

gmy(AUB)=L:+ L =1L

ol
ol

and

qmy (AN B) = gmy (0) = Lo

while the others remain the same:

gmy (.) is quasi-normalized since:

L% + L
If we approximate the linguistic Iabels%, L% andL%, still gmy (.) happens to remain quasi-normalized since:

qmy(A) ~ L[l%] = LQ

o

gmy (B) ~ Lig) = L

andL2 + L1+ L3 = Lg = Liax-

¢ Qualitative Dubois & Prade’s rule: In this example the Qualitative Dubois & Prade’s rule gitles same result as qualitative
Yager’s rule since the conflicting masggn,(ANB) = Lis, is transferred tod U B, while the other qualitative masses remain

unchanged.

e Qualitative Smets’ TBM rule: Smets’ TBM approach allows keeping mass on the empty set. dets:

quB]W(A) = L13
gmrpm(B) =L
quBI\{(A U B) = L%

gmrprm(0) = Lis

Of coursegmrpa(.) is also quasi-normalized.
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However if we approximateymrga(.) does not remain quasi-normalized in this case since:
gmrpm(A) & Liay = Ly
quBM(B) ~ L[%] = L1
quBM(A @] B) ~ L[%] = L()
gmrem (D) = Ly = Lo

ansz +L1 +L0 +L2 = L5 7é LG = Lmax-

¢ Qualitative PCR (QPCR): The conflicting qualitative masgma (AN B) = L%, is redistributed only to elements involved

in conflict, A and B (not to A U B). We repeat that

gmpcr (AN B) = gmyi(A)gma(B) 4 gma(B)gm. (B)

ol

=Ly + LaLz = L1a —I—L%:L%:L

So Ly is redistributed tod and B proportionally to their qualitative masses assigned bysthaces (or expertgyn, (A) = L,

and qmg(B) = Lq:
L% L%

X
ilA B yle T tL L, e Ly
hence
a=Li-Ly=Laye=Ly
and
yip=L1-Li=1La

Similarly L% is redistributed toA and B proportionally to their qualitative masses assigned by gberces (or experts)

qm2(A) = Ly andgmi(B) = Ls:

hence

and

Summing, we get:

gmpcr(A) = Lis+ Ly +Ls=Las
gmpcr(B) = Ls+Ly+Ls=Li
gmpcr(AUB) = L% e Lg_g

gmpcr(ANB = 0) = Lo

gmpcr(.) is quasi-normalized since:
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™~

5 + L1o1

9
4 84

—|—L§ = Lsos = Lg = Lpax.

o)

However, if we approximate, it is not quasi-normalized aoigder since:

Li2ss; + Lo
[%7] [

9
51

+L[8

2
51

=L3+ Lo+ Lo = Ls # Le = Ljax-

In general, if we do not approximate, and we work with quagirmalized qualitative masses, no matter what fusion rule

we apply, the result will be quasi-normalized. If we appmate, many times the quasi-normalization is lost.

V. GENERALIZATION OF QUANTITATIVE FUSION RULES

In [1], [29] we can find two propositions of a general formidatof the combination rules. In the first one, Smets consider
the combination rules from a matrix notation and find the shafithis matrix according to some assumptions on the ruleh su
as linearity, commutativity, associativity, etc. In thecsed one, a generic operator is defined from the plausililibctions.

A general formulation of the global conflict repartition kealseen proposed in [8], [12] for alk € 2° by:

me(X) = ma(X) + w(X)mna(0), (25)

where Z w(X) = 1. The problem is the choice of the weightg X ).

A. How to choose conjunctive and disjunctive rules?

We have seen that conjunctive rule reduces the imprecisidnuacertainty but can be used only if one of the experts is
reliable, whereas the disjunctive rule can be used whenxperts are not reliable, but allows a loss of specificity.

Hence, Florea [7] proposes a weighted sum of these two retesrding to the global confligt = m . (0) given for X ¢ 2°
by:

MFlo (X) = 61 (/{)m\/ (X) + ﬁQ (/{)m/\ (X), (26)

. 1 . .
wheres, and 3, can admitk = 3 as symmetric weight:

k
Bi(k) = W7 27)
hlb) = T

Consequently, if the global conflict is higl: fiear 1) the behavior of this rule will give more importancethie disjunctive
rule. Thus, this rule considers the global conflict comingfrthe non-reliability of the experts.
In order to take into account the weights more precisely ichgaartial combination, we propose the following new rule.

For two basic belief assignments; andm, and for all X € G®, X # () we have:

mix(X) = Z 01(Y1, Yo)mq (Y1)ma(Y2) + Z 92(Y1, Yo)m (Y1)ma(Y2). (28)
YiUYa=X YinYa=X

Of course, ifd(Y1,Y2) = B1(k) and §2(Y7,Y2) = B2(k) we obtain Florea’s rule. In the same mannergiifY;, Y2) =
1 —02(Y1,Ys) = 0 we obtain the conjunctive rule anddf (Y7, Y2) =1 — §2(Y1, Y2) = 1 the disjunctive rule. 16, (Y7, Ys) =
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1—-65(Y1,Y2) = 1y, ny,—p We retrieve Dubois and Prade’s rule and the partial confiintloe considered, whereas the r@ (26).

The choice of§; (Y1,Y2) =1 — 62(Y7,Y2) can be done by a dissimilarity such as:

C(Y1 NYa)

01(11,Y2) = 611, Y2) £ 1= o T

(29)
or

B C(Y1NYas)
max{C(Y1),C(Y2)}’

whereC (Y1) is the cardinality oft;. In the case of the DST framewor&(Y7) is the number of distinct elements Bf. In the

01(Y1,Yz) = (Y1, Y2) £ 1 (30)

case of the DSMT;(Y7) is the DSm cardinality given by the number of partstafin the Venn diagram of the problem [18].
5(.,.) in @9) is actually not a proper dissimilarity measueeg(5(Y1, Y2) = 0 does not implyY; = Y2), but(.,.) defined
in () is a proper dissimilarity measure. We can also take¥f¢Y7, Y>), the Jaccard’s distancege. §2(Y7,Y2) = d(Y7,Y2)
given by:

C(Yi N Y)
C(Yl U ng)v

used by [10] on the belief functions. Note thatis not a distance in the case of DSmT. Thus, if we have a parntaflict

d(Y1,Ys) = (31)

betweenY; andY:, C(Y1 NY2) = 0 and the rule transfers the mass BnuU Y5. In the caseY; C Y, (or the contrary),
Y1iNnY, =Y, andY; UY; = Y5, so withdy(.,.) = 4(.,.) the rule transfers the mass 6 and withd;(.,.) =1 —d(.,.) it
transfers the mass drj andY> according to the ratio(Y7)/C(Y2)) of the cardinalities. In the casé NY; # Y1, Y, and ),

the rule transfers the mass &h N Y, andY; U Y, according tod(.,.) andd(.,.).

Example 9 (on the derivation of the weights)

Let's consider a frame of discernme@t= {A, B, C} in Shafer's modeli(e. all intersections empty).

a) We compute the first similarity weights(.,.) =1 — d(.,.): since

52(,)=1-38,) | Al B|c|auB
A 1 0 0 1
B 0 1 0 1
C 0 0 1 0
AUB 1 1 0 1
TABLE V
VALUES FOR1 — 4(., .)
. CcAn4A) c)
2 A) = e, ey~ e
B C(ANnB) B
2B = ety
becauseA N B = () andC(0) = 0.
. c(An(AuB)  cA)
02(A, AU B) = e .CAUB)} ~ C(A)
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Whence, the first dissimilarity weights (.,.) defined by [29)i.e. 6,(X,Y) =1 — §,(X,Y) take the values:

s(,)=6,)] A|B|C|AUB
A 0|11 0
B 101 0
c 110 1
AUB 0|01 0
TABLE Vi

VALUES FOR(., .)

The first similarity and dissimilarity weights (., .) andd (., .) are not quite accurate, since for examplgA, AUB) = 1,

i.e. A and AU B are 100% similar (which is not the case sinde£ AU B) andd1(A,AUB) =1—62(4,AUB) =

1-1=0,i.e.Aand AU B are 100% dissimilar (which is not the case either sidce (A U B) # 0).

b) The second similarity weigh#(.,.) =1 —1(.,.) given by the equatior@O) overcomes this problem. We oliaithe

previous example: since

S(,)=1-n(,)| A | B | C| AUB
A 11010 1/2
B ol 11]o0 1/2
c oo |1 0
AUB 172 12| o0 1
TABLE VI
VALUES FOR1 — n(.,.)
_ __ cian4) c) _
A A =1l A = de@e@y T e
B B C(ANnB) B
becauseA N B = () andC(0) = 0.
C(ANn(AUB)) C(A)

02(A,AVB) =1 =n(A AU B) = e o ClAUB)] ~ C(AUB)

which is better thad,(A, AUB) =1—-§(4,AUB) = 1.

etc.

Whence, the second dissimilarity weights, .) take the values:

n(A,AUuB)=1-1 =1, which is better thas, (4, AU B) = §(4, AU B) = 0.

1

2
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s1(,)=n(,)| A | B|C| AuUB
A o 1 |1] 12
B 10 1| 12
c 1110 1
AUB w2 12| 1 0

TABLE VI

VALUES FOR7(., .)

The second similarity weight coincides with Jaccard’'satise in Shafer's model, but in hybrid and free models, they

are generally different. Hence if we consider a Shafer's ehoahe gets for ally, Ys in G©:

Smarandache defined in [23] the degree of intersection ofset® as Jaccard’s distance, and also the degree of union of
two sets, and the degree of inclusion of a set into anothearskimproved many fusion rules by inserting these degrees

in the fusion rules’ formulas.

Example 10 (with Shafer’s model)

Consider the following example given in the tafflg IX for twguéntitative) experts providingu;(.) and m»(.) on © =
{A, B,C} and let's assume that Shafer's model holds. (4, B andC' are truly exclusive):

ma(.) | m2(.) | ma | MMix,s | MMix,n
MMix,d
0 0 0 0.2 0 0
A 0.3 0 0.3 0.24 0.115
B 0 0.2 0.14 0.14 0.06
AUB 0.4 0 0.12 0.18 0.18
C 0 0.2 0.06 0.06 0.02
AUC 0 0.3 0.09 0.15 0.165
AUBUC 0.3 0.3 0.09 0.23 0.46

TABLE IX

QUANTITATIVE INPUTS AND FUSION RESULT

When takingd, (.,.) = 4(.,.) according to [(29), one obtains:

where the columns are the focal elements of the basic bed@fjament given by the expert 1 and the rows are the focal
elements of the basic belief assignment given by expert 8.rass 0.2 ol come from the responses andC' with a value

of 0.06, from the response$ and B with a value of 0.06 and from the responsés) B and C' with a value of 0.08. These
three values are transferred respectivelyon C, AU B and AU BU C. The mass 0.12 od given by the response$U B

and A U C is transferred oA with a value of 0.06 and ol U B U C with the same value.
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51(,)=06(.) | A| AUB | AUBUC
B 1 0 0
c 1 1 0
AuC 0| 12 0
AUBUC | 0 0 0

TABLE X

VALUES FOR(., .)

51(,) =n(..)
51(,)=1-d(,.) | A | AUB | AUBUC
B 1| 1 213
c 1 1 213
AucC 12| 23 1/3
AUBUC 213 | 13 0
TABLE XI

VALUES FOR7(.,.) OR1 —d(.,.)

When takingd: (.,.) = n(.,.) or é1(.,.) = 1 — d(.,.) according to [30) and (B1), one obtains:

With é,(.,.) =n or §1(.,.) =1—4d(.,.), the rule is more disjunctive: more masses are transfemetth®@ ignorance.

Note thatd,(.,.) = 4(.,.) can be used when the experts are considered reliable. Icdbé we consider the most precise
response. With1(.,.) = n(.,.) or 4:(.,.) = 1 —d(.,.), we get the conjunctive rule only when the experts provideshme
response, otherwise we consider the doubtful responsesvantiansfer the masses in proportion of the imprecision ef th

responses (given by the cardinality of the responses) opdhiein agreement and on the partial ignorance.

Example 11 (with a hybrid model)

Consider the same example with two (quantitative) expemtsiging mi(.) and mo(.) on the frame of discernmer®d =
{A, B,C} with the following integrity constraintsAN B # (), ANC = () and BN C = 0 (which defines a so-called
DSm-hybrid model [18]):
When takingd, (.,.) = 4(.,.) according to [(29), one obtains:
When takingd; (.,.) = n(.,.) according to[(30), one obtains:
When takingd: (.,.) = 1 — d(.,.) according to[(31), one obtains:

For more than two experts, say > 2, if the intersection of the responses of thé experts is not empty, we can still
transfer on the intersection and the union, and the equa@u) and @0) become:
C(Yin..NYy)

min C(Y;) ’
1<i<M

o1(Yr, s Yr) = 0(Y1, ., Yir) = 1 — (32)
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mi(.) | m2(.) | ma | mMixs | MMix,y | MMix,d
0 0 0 0.14 0 0 0

ANB 0 0 0.06 0.03 0.03 0.02
A 0.3 0 0.3 0.26 0.205 0.185

B 0 0.2 0.14 0.14 0.084 0.084
AUB 0.4 0 0.12 0.15 0.146 0.156
C 0 0.2 0.06 0.06 0.015 0.015
AUuC 0 0.3 0.09 0.15 0.1575 0.1575
AUuBUC 0.3 0.3 0.09 0.21 0.3625 0.3825

TABLE Xl

QUANTITATIVE INPUTS AND FUSION RESULT

51(,)=6(,) | A | AuUB | AUBUC
B 12| o 0
c 1 1 0
AUC 0| 13 0
AUBUC 0 0 0
TABLE XIll

VALUES FOR(., .)

and

C(}/l n...N Y[\,{)

51(Y1,...,Y]u) :77(}/1,...,}/]\4) = 1 — max C(K) (33)
1<i<M
From equation@l), we can define by:
C(Yl n...N YM)
LY. Yy)=1— ————=. 34
1( 1y ey M) C(YlUUYM) ( )
Finally, the mixed rule forM > 2 experts is given by:
M M
myi(X) = Y aML ) [T+ YD G =a®, e Yan) [T mi(v)). (35)
YiU..UY =X j=1 Yin..nYy=X j=1

This formulation can be interesting according to the cohegeof the responses of the experts. However, it does nat allo

the repartition of the partial conflict in an other way thae fbubois and Prade’s rule.

B. A discounting proportional conflict repartition rule

The PCR6 redistributes the masses of the conflicting focal elemerdpgationally to the initial masses on these elements.
First, the repartition concerns only on the elements ire@lin the partial conflict. We can apply a discounting procedn
the combination rule in order to transfer a part of the phaadanflict on the partial ignorance. This new discountiRgGR

(notedDPCR) can be expressed for two basic belief assignments) andms(.) and for all X € G®, X # ) by:
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5s1(,)=n()| A | AuB | AuBUC
B 12| 13 172
c 1 1 3/4
AuC 13| 13 14
AUBUC | 12| 1a 0
TABLE XIV

VALUES FOR7(., .)

S1(,)=1-d(,.) | A | AUB | AUBUC
B 23 | 13 1/2
c 1 1 3/4
AuC 13| 112 1/4
AUBUC 12 | 14 0
TABLE XV

VALUES FOR1 — d(.,.)

moper(X) =ma(X)+ Y
YeG®
XNY=0

+ ) (—a) mi(Y)ma(Ya), (36)
YiUYo=X
Y1NY2=0

) ( ml(X)QmQ(Y) mQ(X)2m1 (Y) >
ml(X) +m2(Y) mg(X)-l-ml(Y)

wherea € [0,1] is the discounting factor. Note that we can also apply a disting procedure on the masses before the
combination as shown ir[|(7). Here the discounting factomtsoduced in order to transfer a part of the partial conflict o

partial ignorance. We propose iEkSQ) ar@ (40) different svBor choosing this factot.

Hence,DPCR fusion rule is a combination oPCR and Dubois-Prade (or DSn@-Irules. In an analogue way we can

combine other fusion rules, two or more in the same formuddtigg new mixed formulas. So that in a general case, for

M > 2 experts, we can extend the previous rule as:

M-—1
M I o) Youii)
=1
7’TL]31:>CR(AXV):’I”I’L/\(AXV)-‘1-277]4()()2 Z a- ! T
=1 _
" nx =0 (M) + Y me Vo)
. o =
(You(1)s oo You(m—1y) € (GO)M!
M
+ Y (—a) [[m), 37)
YiU..UYy =X =1

YiNn..NYy =0

5The DSmH rule is an extension of Dubois-Prade’s rule which ten proposed in the DSmT framework in order to work withrislymodels including
non-existential constraints. See [18] for details and edam
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whereY; € G® is a response of the expeitm;(Y;) its assigned mass ang is given by ).

Hence, if we choose as discounting factoe= 0.9 in the previous example, we obtain:

7

7
) ) )
mppcr(B) = 0.06 + 0.21 - T 0.9+0.14- 6 0.9+ 0.09 - v 0.9 ~0.181
6 6
mppcr(AUC) =0.09+0.21 - ITh 0.940.09 - v 0.9 ~0.187

mDpCR(A UBU C) =0.21-0.1 =0.021
4 3
mppcr(AUBUCUD) =0.06+0.14 - 6 0.9+ 0.09 - 7 0.9+0.14-0.1+0.09-0.1 ~0.132
However, in this example, the partial conflict due to the etgg, 2 and 3 sayingl, B, and AU C respectively, the conflict

is 0.21. Nonetheless, only the experts 1 and 2 and the expeantsl 3 are in conflict. The experts 1 and 3 are not in conflict.

Now, consider another case where the experts 1, 2 and 3\s&y andC respectively with the same conflict 0.21. In both

cases, thdPCR rule transfers the masses with the same weighflthough, we could prefer transfer more mass@rin

the second than in the first case.

Consequently, the transfer of mass can depend on the esést#nconflict between each pair of experts. We define the
conflict function giving the number of experts in conflict tlg two for each responsg € G® of the experti as the number

of responses of the other experts in conflict withA function f; is defined by the mapping ¢tz®)* onto [0, } with:

M
Z v, ny, =0
i—1

fi(Yl,...,YM) = m (38)
Hence, we can choose depending on the response of the experts such as:
(39)

M
CY(Yl, ceey YM) = 1 — Z fl(Yl, ceey Y]u).
i=1

In this casex € [0, 1], we do not transfer the mass on elements that can be writtdreamion of the responses of the experts

Therefore, if we consider again our previous example weiobta

2 1
A BAUC)=1—-=-=<
a4, 5, ) 373
1 2
a(A,B,AUBUCUD):l—gzg,
1 2

a(AUBUCUD,B,AUC)=1—§—3.

Thus the provided mass by th#PCR is:
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701 7 2
A)=01440214+02]-— .= 4014 — .2 ~041
mDpCR( ) 0 —|—O +O 18 3—|—O 16 3 0 8
5 1 5 2 5 2
B)=0.064+02] - —.=+014- > .21009.- 2.2 ~0.130
mpper(5) HR TR R TR B AR VI
6 1 6 2
mppeR(AUC) = 0094021+ o - = +0.09- 2 - = = 0.139
2
mDpCR(A JUBU O) =0.21- g = 0.140
(AUBUCUD) = 0.06 + 0.14 2 00022 L01a- 000t aoars
MMbPCR - B T S V- S UL T

We want to take account of the degree of conflict (or non-cafivithin each pair of expert differently for each element.
We can consider the non-conflict function given for each expby the number of experts not in conflict with Hence, we
can choosey; (Y1, ..., Yar) defined by the mapping aiG®)™ onto {O, %} with:

M

> Lyevize

1 T
@i(Y1,o Yar) = — — fi(Y1, . Yar) = 2 1’5;(M_ 5 (40)

The discounting PCR rule (equatioEk37)) can be writtenXbrexperts, for allX € G®, X # () as:

M—-1
Mo, () (Yo ()

Jj=1

M
mppcr(X) = ma(X) + Y mi(X)? > i\ v
=1 _
N Y, nX =0 mi(X)+D_ e, (j) (Vou()
i o =
(Yo, 1) s You(mi—1y) € (GO)M1

M M
+ Y@= [[mi(v), (41)
i=1 j=1

YiU..UYy =X
YiNn..NYy =0

where o; (X, Y, (1), -+, Yo, (m—1)) IS noteda; for notations convenience ankdl depending on(X, Y, (1, ..., Yo, (ar—1)), IS

chosen to obtain the normalization given by the equalﬂ)n)(2$ given whena; # 0, Vi € {1, ..., M} by:

M
Do
i=1

= — 42
< Ly > ( )

where< o,y > is the scalar product of = (;)icq1,.... a3 @Ndy = (7i)ieq1,....ary With:
Vi = Mfl( ) ) (43)

mi(X)+ Y Mo,y (Vo)
j=1

wherev; (X, Y;, 1), .-, Yo,(m—1)) is Notedr; for notations convenience.

With this last version of the rule, fat; given by the equatiorﬁ]m), we obtain on our illustrativerapée \ = % when the

experts 1, 2 and 3 sayt, B, and A U C respectively (the conflict is 0.21), = % when the conflict is 0.14 andl = ‘1)—5 when
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the conflict is 0.09. Thus, the masses are given by:

71 36 7

1
A) =014+ 0214021 - 4. 2. 2.2 <042
mppcr(4) = 0144 0.21+0.21 - 70 - - 9+ 014 - o o2 = 0420
5 1 16 5 1 56
B)=0.06+4014- > . =. 2 1009-—.-.2 ~0101
moror (B) + 66 5" 146 17
6 1 36 6 1 56
9
mDpCR(A UBU C) =0.21- 3 =0.14
4 1 16 3 1 56 1
AUB D) =0. .= 2.2 22204 o1
mppeR(AUBUCUD) =0.06+0.14- 7+ 5+ — +0.09 7 5+ 7= +0.14- 2 +0.09- £~ 0196

This last rule of combination allows one to consider a “kirffddegree” of conflict (a degree of pair of non-conflict), but

this degree is not so easy to introduce in the combinatioz rul

C. A mixed discounting conflict repartition rule

In this section, we propose a combination of the mixed @ (@th the discountind®CR (@). This newmixed discounting
conflict repartition rule (MDPCR for short) for two quantitative basic belief assigmis m,(.) and ms(.) is defined by
muppcr() = 0 and for all X € G®, X # () by:

mMDPCR(X) = Z 1 (Yh YQ) ) ml(Yl)mQ(YQ)
YiUYe=X,
YlﬂY27§@
+ ) (1=6(0N,Y2)) - ma(Y1)ma(Y)

YiNYo=X,
Y1NY2#0

)2m2(y) ma(X)2my(Y)
P ( T ma(Y) | ma(X) + mm)

YeGg®,
XNy =0

+ > (I=a)-mi(Y))ma(Y2). (44)

YiUYe=X,
YiNY>=0

«a can be given by the equatiop [39) afid.,.) by the equation[(32) of (B4). The weights must be taken inraaiget a
kind of continuity between the mixed and DPCR rules. In ddtavhen the intersection of the responses is almost empty
(but not empty) we use the mixed rule, and when this inteimeds empty we chose thBPCR rule. In the first case, all the
mass is transferred on the union, and in the second casel ibavthe same according to the partial conflict. Indeed; 0

if the intersection is not empty and = 1 if the intersection is empty. We can also introdugegiven by the equatiorﬂlﬁlO),

and this continuity is conserved.

This rule is given in a general case fof experts, bymymppcr () = 0 and for all X € G©, X # () by:
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M

mypper(X) = Y 0(Vi,. L Yar) - [ ma(Y9)
iU .UYn=X, ]
Ylﬂ...ﬁY]\/ji_t@

+ > U =aM,. . Ya) - [[mi(v)
Yin..NYyu=X, j=1
YiN...NYy#0

<
Il
-

M-1

M H Mo, () Yo, (5))
3 miX)? )3 o | ——55
=1 M—1
kml Ygi(k) NX==0 ml(X)+Z Mg, (5) (Yai(j))
= . =
(Yoi(1)s - You(ar—1y) € (GO)M !
M
+ Y (=) [[miy), (45)
YiU..UYnu=X, j=1

YiNn...NYy=0

whereY; € G® is the response of the expeitm;(Y;) the associated belief function andg is given by ). This formula

could seem difficult to understand, but it can be implememriasily as shown in [15].

If we take again the previous example, witf(., .) given by equation2), there is no difference with hBCR. If 41 (.,.)
is calculated by equatiorm34), the only difference peddmthe mass 0.09 coming from the responses of the threetsxper

AUBUCUD, AUBUCUD andAUC. This mass is transferred aftu C (0.06) and onAU BU C U D (0.03).

The rules presented in the previous section, propose atitepanf the masses giving a partial conflict only (when atsino
two experts are in discord) and do not take heed of the levishpfecision of the responses of the experts (the non-spiegifi
of the responses). The imprecision of the responses of equdrtds only considered by the mixed aMIDPCR rules when
there is no conflict between the experts. To try to overconesdlproblems Martin and Osswald have proposed a begin of

solutions toward a more general rule [15].

VI. GENERALIZATION OF QUALITATIVE FUSION RULES

This section provides two simple examples to show in detail to extend the generalized quantitative fusion rules psed
in the previous sectiori.é. the Mixed, the Discounted, and the Mixed Discounted fusidag) to their qualitative counterparts

using our operators on linguistic labels defined in secfle@..

Example 12 Fusion of two sources

Consider a set of labels = { Ly, = Lo, L1, L2, L3, L4, Ls, Lmax = L}, and a frame of discernmeft = {A, B,C} in

Shafer’s modeli(e. all intersections empty). Consider the two following qtetlive sources of evidence:



29

A B C AUB
gmi(.) | L2 | Lo | Lo Ly
gma(.) | Ls | L2 | Ln Lo

TABLE XVI

QUALITATIVE INPUTS FOR EXAMPLE 12

Now let's apply the qualitative versions of Mixed, Discoedf and Mixed Discounted Quantitative Fusion ru@ (@) 3
and [4}) respectively.

e Qualitative Mixed Dubois-Prade’s rule: From the formula[(38) and Tabje]VI, one gets:

M (A) = 6(A, A)gma (A)gma(A)
+ (1= 6(A, A))gmi(A)gm2(A)
+(1-6(A, AU B))gm1(A)gma(AU B)
+(1-0(AUB,A))gmi(AU B)gmsa(A)
=0-Lolg+1-Lols+1-LoLo+1-L4L3

=L

0o

=Lo+ L2s +L20+ Las =Le + L1z
6 6 6 6 6

o

Similarly, gmgy;(B) = Ls and

qmiix(C) = 8(C, C)gma (C)qma(C) + (1 — 5(C, C))gm1(C)gma(C)

=0-Lol1+1-LoLy =1Lg

qmi; (AU B) = 6(AU B, AU B)gmi (AU B)gma(A U B)

+0(A, AU B)gm1(A)gma(AU B)

+6(AU B, A)gm1 (AU B)gma(A)

+0(B, AU B)gmi(B)gm2(A U B)

+0(AU B, B)gmi(A U B)gma(B)

+0(A, B)gmi(A)gma(B) + 6(B, A)gm1(B)gma2(A)
+(1-6(AUB,AUB))gmi1(AU B)gma(AU B)

=Lo+Lo+Lo+Lo+Lo+1-LaLo+1-LoLs

=Lz22 4+ Los = L4
6 6 6
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Note: The first five terms of previous sum take valugsinced,(.,.) = 0 for each of them.

g (A U C) = 6(A, C)gmy(A)gmz(C) + (1 = §(C, A))qm (C)gma(A)

=1-LoLy+1-LoLy=Lax + Los =L

[\

gl (AUBUC) = 6(C, AU B)qgmy(C)gma(AU B) + §(AU B, C)gmi1(A U B)gmy(C)
=1 -LoLo+1-L4l, ZL%

This coincides with normal qualitative Dubois-Prade’s &®mH fusion rulesgmg,; (.) is quasi-normalized both ways:

« without approximation, since:

Lis+Ls+ Lo+ La+ L2+ La = Lisisyorators = Lse = Lg = Liyax
6 6 6 6 6 6 6 6

« and with approximations:

L[%] + L[%] + L[%] + L[%] + L[%] + L[%] = L3 + Ll + LO + Ll + LO + Ll = L6 = Lmax

Computegmix(.) using the second similarity/dissimilarity weights giventbe equation@O) (which are equal in this case

with Jaccard’s distance similarity/dissimilarity weightIn this case, we get better results. Since from aid formula

[@8), one gets:
amyg, (A) = (A, A)gmi (A)gma(A) + (1 — n(A, A))gmi(A)gm2(A)

+ (1 =n(A, AU B))gmi(A)gma(AU B) + (1 —n(AU B, A))gm1(A U B)gma(A)

1 1
:0'L2L3+1'L2L3+§-L2L0+§'L4L3:L0+L% +L%+L%=Lo+%+o+%:L

12
6

qmi (B) = (1 —n(B,AU B))gmi(B)qm2(AUB) = = - LoLy = Laz = L

|“F‘
V]
YIS

N =

G-

)

gmi (AU B) =n(AU B, AU B)gm (AU B)gmz(AU B)
+n(A, AU B)gmi(A)gm2(AU B) + n(AU B, A)gmi (AU B)gqmz(A)
+n(B, AU B)gmi(B)gm2(AU B) + n(AU B, B)gmi(A U B)gma(B)
+1(A, B)gmi(A)gmz(B) +n(B, A)gmi (B)qmz(A)
+(1-n(AUB,AUB))gmi(AU B)gma(A U B)
:O~L4L0+%~L2L0+l~L4L31-L0L0+%-L4L2+1~L2L2+1~L0L3+1-L4L0

2 2
:Lo—l-LO—I—L% —I—LO—l-L% —I—L% +L0:Ls+?+4 =L

14
6

qmi (AU C) = n(A, C)gmi(A)gma(C) + (1 — n(C, A))gm1(C)gma(A)

:1'L2L1+1-LOL3:L%+L% =L

ol
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gmi (AUBUC) = n(C, AU B)gmi(C)gma(AU B) + n(AU B, C)gm1(A U B)gmz(C)

=1-LoLo+1-LsLy = Ls

Similarly, gmy;. (.) is quasi-normalized both ways.

e Discounted Qualitative PCR: (formula (3§))
We show how to apply the Discounted QualitatR€R rule ) in this example with the fixed discounting factor= 0.6,

hencel — a = 0.4. First, apply the qualitative conjunctive rule.

A B C AUB
gmi(.) Lo Lo | Lo Ly
gma(.) L3 Lo | Ly Lo

Lo| Lo |

Ls

‘ gmn (. ‘ L1s

TABLE XVII

QUALITATIVE INPUTS AND CONJUNCTIVE RULE

Indeed, one has:

0o

qu(A =ILoLs+ LoLg+ L3Ly = L2 2310434 = L

o

oloo

6

)
qma(B) = LoLy + LoLo+ LaoLy = Ly o 24 = L
gma(C) = LoL1 = Lo
gma(AUB) = LyLo = Lo

Applying the proportional conflict redistribution accandito PCR, one has:

r1,4 Y18 Lolo Ls I
¢

= = = 7 - L
Lo Lo Lo+ Lo 4 54 1
SO,
r1,4= Laoly =L
yl,B = L2L1 = L%
L:>
T2,4 _ 21,0 _ Loy = =Liz.35.6=1Ls
Ly Ly Ly+Ly L3 o i
SO,
6 6
Z21.c = LlLé - Lﬂ
6 6
Zo.c  W1,AUB LiLy L

_— = = :—:L S :L
Li ~ Li  LitLg Ly G077



SO,

22,C = LiLs =Lias = L%
5 -5 5

W1, AUB = L4Lg = L4.4/5 = L%
5 %

Summing, we get:

gmppcr(A) = Lis +0.6+ (Lz + Lags) = Lis +0.6- Lios = Lis + Lz = Lao
gmppcr(B) = Ls+06- (L%) =Ls+Liz =Lo>
gmppcr(C) = Lo +0.6- (Las + Los) = Lo+ Loczsros = Loss
gmopcr(AUB) = Lo+ 0.6 - (Lsz + 0.4+ (LoLy + L3L) = Lig2 +0.4- L2z = Ligz 100 = Las
gmpper(AUC) = 0.4 (LyLy + LyLo) = 0.4+ (L2a + L) = Los
gmppcr(AUBUC) =04 - (LoLo + LiLs) =04+ (Lo+ L1a) = L1s

We can check thaimppcr(.) is quasi-normalized both ways.
e Mixed Discounted Qualitative PCR (formula )):

In this example, we still set the discounting factordte= 0.6.

1) Using the first kind of similarity/dissimilarity weight{see Table[\}’l), one obtains:

gmippor (A) = 61(A, A)gmy (A)gma(A) + 55(A, A)gmy (A)gma(A)

+02(A, AU B)gm1(A)gma(AU B) + 62(AU B, A)gmi (AU B)gmz(A)
+ o (L% + Lays)

6

:O-L2L3+1-L2L3+1-L2L0+1'L4L3+0.6'(L%+L4_/3)
6

=Lis +0.6-Liys =Lis + L2 = L2
6 == 6 6 6

The termL.,s in the sum above comes from the previous Discounted QuastRICR example.
6

One gets the same result as in the previous example (Dissb@ualitativeP CR).

2) Using the second kind of similarity/dissimilarity weigh(see TabII), one obtains:
amypper (A) = n(4, A)gma (A)gma(A) + (1 — n(4, A))gm1(A)gma(A)

+(1-=n(A, AUB))gmi(A)gm2(AUB) + (1 —n(AU B, A))gm1(AU B)gma(A)
+a- (L% + L4T/3)

1 1
=0-LyLy+1-LoLs + 5 - LaLo+ 5 - LaLs +0.6- (Lz + Lugs )

6

=[S}

=L+ L2 =L
6 6

6

32
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Similarly:

1 1

5 LoLo+ g Lala +06- L

=Las +Lis =1L
6-2 6

qmypper(B) =0 LoLy + 1 LoLy +

1
=5 Lala+ L

.2
6

Ol

+Li2 = Ls2

5.
6

qu/IDPCR(C) =0- LOL1 +1- L0L1 + 0.6 - (Lz(‘)ﬁ + Lo_sg) = Lo + Lo + L% = L%
The termLoTs in the sum above comes from the previous Discounted QuaditRtCR example.

amyipper (AU B) =n(AU B, AU B)gmi(AU B)gma(AU B)
+n(A, AU B)gmi(A)gm2(AU B) + n(AU B, A)gmi (AU B)gqmz(A)
+n(B, AU B)gmi(B)gm2(AU B) + n(AU B, B)gmi(A U B)gma(B)
+(1-n(AUB,AUB))gmi1(AU B)gma(AU B)
- Lsz2 + (1 - a)gmi(A)gmz(B) + (1 — a)gmi (B)gma(A)
:O-L4Lo+%-L0L1+%-L4L3%~L0L0+%~L4L2+1-L4L0
+0.6-Laz +04-LoLy +0.4- LoLs

=Las 4+ Laz + Lie2 + Lieo =Lg¢ + La+ Lio2 4+ Lieco = Lisso
6-2 6-2 6 6 6 6 6 6 6

gmyppcer(AUC) = (1 — a)gmi(A)gmz(C) + (1 — a)gmi(C)gma(A)

=04-LyLy+04-L3Lo = LoT.ss

qmgADPCR(A UBUC) = (1-a)gmi(C)gma(AU B) + (1 — a)gmi(A U B)gma(C)
=04 -LoLo+04-LsLy = L2

.6
6

gmyippcr (-) is quasi-normalized without approximations, but it is nattmapproximations.
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Example 13 Fusion of three sources

Consider a set of labels = { Ly, = Lo, L1, L2, L3, L4, Ls, Lmax = L¢}, and a frame of discernmef = {A, B,C} in

Shafer’'s modeli(e. all intersections empty). Let’s take the three followincatjiative sources of evidence:

A B BUC | AuUBUC
gmi(.) | L2 | Lo Lo Ly
gma(.) | Lo | L3 Lo Ls
gms(.) | Lo | Lo Ls Ly

TABLE XVl

QUALITATIVE INPUTS FOR EXAMPLE 13

¢ Qualitative Conjunctive Rule:

If one applies the Qualitative Conjunctive Rule (QCR), omésg

gma(A) = gm1(A)gmz(AUBUC U D)qms(AUBUCUD) = LoL3ly = Lzaly = Lzsa =L

6-6

o=

Similarly,

qm/\(B) = LqLsly+ L4yLsLs = L% —l—L% = L% —l—L%

=L

m|l\)

gma(BUC) = LyLsLs = L% e L%
qu(AUBUCUD) = LsLsly = L% = L%
The total conflict is:
gma (D) = gmi(A)gma(B)gms(B U C) + gm1(A)gma(B)gmsz(AU BUC U D) + gm(A)gma(AU BUC U D)gms(BUC)
= LolLsLs+ LoLsly + LoLslLs = L2ss + La2si + L2ss =Ls +L1+Ls =Lu
6-6 6-6 6-6 6 6 6 6

e Qualitative PCR:

Applying the proportional conflict redistribution for thedit partial conflictgm; (A)gma(B)gms(B U C), one gets:

T1,A  Y1,B  Z1,BUC LoL3Ls Ls
= = = :—:L(§_10)6:L§
Lo L3 Ls Lo+ L3+ Ls Ly 6" 6
SO,
21,4 =1LoLs =L2s =1L
! 6 6- 6

Y1,B = LgL% =Lzs =Lis

6- 6

z1,Buc = LsL

Applying the proportional conflict redistribution for thesond partial conflictm (A)gma(B)gms(AUBUCUD), one gets:

L2,A _ Y2,B _ W1,AUBUCUD _ LoL3Ly _ % I _ I,
Ly L3 L Lo+ Ls+Ly Lg (5+6):6 s
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Applying the proportional conflict redistribution for thhitd partial conflictgm;(A)gme(A U B U C U D)gms(B U C), one

gets:

SO,

Summing, we get:

3,4 _ W2 AUBUCUD _ #2,BUC _ LoLsLs I
Lo Ls Ls Lo+ L3+ Lsy 6
T3,A = LQL =1L

3 1
6 6

w2, auBucup = L3lLs = Lis

Zz,BUCZLsL% ZL%
gmpcr(A) = L1+ Ly + Lis + Ly = Lioss
6 6 & 5 :
gmpcr(B) = Liz + Lis + Los = L
gmpcr(BUC) =L + Las + Las = L1
quCR(AUBUOUD) :L% + Liyss —|—L% = Laass
6 6

We can check thatmpcg(.) is quasi-normalized without approximationg(when working within the refined set of linguistic

labels by keeping fractional indexes), but it is not quasirmalized when using approximations of fractional indeiese

want to work back within the original set of linguistic labdl = {Lin = Lo, L1, La, L3, L4, L5, Lmax = L }-

e Discounted Qualitative PCR (formula (37)):

Let’s consider the discounting factar= 0.6. Consider the previous example and discount it accordir@QJ applied in the
gualitative domain. One obtains:

quPCR(A UBU C) = (1 - a)qml (A)qmg(B)qmg(B U C) =04-LyL3Ls=04-L

gmppcr(A) = L1 +0.6-(Ly + Lys +L1) = L1 +0.6- L
gmppcr(B) = L% +0.6- (L% + L%) =L

quPCR(BUC) = L% + 0.6 - (L% + L

773 = L2.4

%):LQ +0.6-L

=L

olon
ol

6
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quPCR(A uBuUCuU D) = L% +0.6 - (L]/G + L%) +04- (L2L3L1 + L2L3L5)

6

=L2+406-Ls;s +04-(L1+Ls)
5 5 G 6

=Ls+L1+04-Le =L3s+ L24a =0Ls
6 6 6 6

2.4 5.4
6 6

gmppcr(.) is quasi-normalized without approximations, but it is natrmapproximations.

VII. CONCLUSIONS

With the recent development of qualitative methods for seawy under uncertainty developed in Atrtificial Intelligen
more and more experts and scholars have expressed greasirta qualitative information fusion, especially thoserking
in the development of modern multi-source systems for deferobot navigation, mapping, localization and path plagand
so on. In this paper, we propose some solutions to handleahfiat and to weight the imprecision of the responses of the
experts, from the classical combination rules for qualiaand quantitative beliefs. Hence, we have presented adivle
given by a weighted sum of the conjunctive and disjunctidesuThe weights are defined from a measure of non-specifity
calculated by the cardinality of the responses of the egpgtis rule transfers the partial conflict on partial ignara. Again,
the proportional conflict distribution rule redistributdee partial conflict on the element implied in this conflicte\fropose
an extension of this rule by a discounting procedure, thgralpart of the partial conflict is also redistributed on tfzstial
ignorance. We have introduced a measure of conflict betwa@nop experts and another measure of non-conflict between
pair of experts, as to quantify this part. In order to takedhetthe non-specifity and to redistributed the partial cetflive
propose a fused rule of these two new rules. This rule is edeist such way that we retain a kind of continuity of the mass
on the partial ignorance, between both cases with and withartial conflict. Illustrating examples have been presérih
detail to explain how the new rules work for quantitative andlitative beliefs. The study of these new rules shows tthat
classical combination rules in the belief functions theoaynot take precisely into account the non-specifity of thgeds

and the partial conflict of the experts. This is specially amignt for qualitative belief.
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