
HAL Id: hal-00399647
https://hal.science/hal-00399647

Submitted on 27 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cycle Accurate Simulation Model Generation for SoC
Prototyping

Antoine Fraboulet, Tanguy Risset, Antoine Scherrer

To cite this version:
Antoine Fraboulet, Tanguy Risset, Antoine Scherrer. Cycle Accurate Simulation Model Generation
for SoC Prototyping. 2004. �hal-00399647�

https://hal.science/hal-00399647
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Cycle Accurate Simulation Model

Generation for SoC Prototyping

Antoine Fraboulet
Tanguy Risset
Antoine Scherrer

Mai 2004

Research Report No 2004-18

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

Cycle Accurate Simulation Model Generation for SoC

Prototyping

Antoine Fraboulet
Tanguy Risset

Antoine Scherrer

Mai 2004

Abstract
We present new results concerning the integration of high level designed
ips into a complete System on Chip. We first introduce a new compu-
tation model that can be used for cycle accurate simulation of register
transfer level synthesized hardware. Then we provide simulation of a
SoC integrating a data-flow ip synthesized with MMAlpha and the So-
cLib cycle accurate simulation environment. This integration also vali-
dates an efficient generic interface mechanism for data-flow ips.

Keywords: system on chip, high level synthesis, VLSI, circuit simulation, computer aided design
tools

Résumé
Nous présentons des résultats utiles à l’intégration de composants ma-
tériels générés par synthèse de haut niveau dans un système sur puce.
Nous introduisons d’abord une nouvelle manière de modéliser les des-
criptions de circuit de niveau transfert de registre qui peut être utilisée
pour créer des modèle de simulation précis au cycle et au bit près. Nous
expérimentons ensuite la simulation d’un système sur puce complet inté-
grants des composant de la bibliothèque SocLib et de l’outils de synthèse
MMAlpha. L’intégration valide aussi le mécanisme d’interface générique
que nous avons proposé pour les architectures générées avec MMAlpha

Mots-clés: système sur puce, synthèse de haut niveau, simulation de circuits, VLSI, conception
de circuits

Contents

1 Introduction 2

2 FSM representation for RTL simulation models 3
2.1 A new FSM model for hardware modelling . 4
2.2 SystemC implementation . 8

3 SoC platform simulation 10
3.1 Generic interface for stream processing accelerators 10
3.2 Experimental platform setting . 13

3.2.1 SocLib and MMAlpha . 13
3.2.2 The SOC platform . 14

3.3 System and simulation performances . 15

4 Conclusion 16

A New FSM model for one cell of the DLMS 18

B Standard Moore-Mealy machine for the same cell. 20

Cycle Accurate Simulation Model Generation for SoC

Prototyping

Antoine Fraboulet
Citi, Insa-Lyon,

21 av. Jean Capelle
69621 Villeurbanne Cedex

antoine.fraboulet@insa-lyon.fr

Tanguy Risset, Antoine Scherrer
LIP, ENS Lyon,
46 allée d’Italie

69364 Lyon Cedex 07
tanguy.risset

antoine.scherrer
@ens-lyon.fr

24th May 2004

Abstract

We present new results concerning the integration of high level designed ips into a
complete System on Chip. We first introduce a new computation model that can be
used for cycle accurate simulation of register transfer level synthesised hardware. Then
we provide simulation of a SoC integrating a data-flow ip synthesised with MMAlpha
and the SocLib cycle accurate simulation environment. This integration also validates an
efficient generic interface mechanism for data-flow ips.

Keywords system on chip, high level synthesis, VLSI, circuit simulation, computer aided
design tools

1 Introduction

With the advent of multi-processors system on chip (mpsoc), fast cycle accurate hardware
simulation is a major issue in the design process. Because most hardware design projects now
include a significant software part, the simulation time increases a lot when it becomes precise
enough to model highly unpredictable mechanisms such as cache misses or bus/Network
contentions. In addition the ideal design scheme where one could easily re-use ips designed
elsewhere, as it is naturally done in software development, is far from today’s habits mainly
because of the lack of standardisation of communication protocols between ips.

The SocLib initiative http://soclib.lip6.fr/ proposes some advances in the resolution
of these problems: ip standardisation and cycle accurate simulation time. First it proposes
to write simulation models of ips using SystemC at various level of refinement: Transaction
Level Modelling (tlm) for software-like prototyping and cycle accurate, bit accurate Modelling
(caba) for a cycle accurate simulation of the ip. Then, it proposes to use vci (Virtual Com-
ponent Interface [1]) communication low level protocol to interface easily various ip. Finally
it suggests a certain programming style that enables the possibility of writing very efficient
simulation engines (closer to step by step simulation than to event driven simulation [2]).

During the design of a mpsoc, some ips are re-used (processors, memories, dma, etc.) but
some (usually few of them) must be designed specifically for the application targeted. The

2

design of these new ips and the integration in the global system must be fast to prototype
rapidly the whole application. For many years now, people have been working on high level
synthesis to reduce the time, effort and potential errors due to manual design of hardware.
These research have lead to prototypes and industrial tools that perform this semi-automatic
design of hardware from high level (functional or behavioural) specifications. One can check
the following academic tools: MMAlpha [3], Gaut [4], Paro [5], Compaan [6], Hugh [7] and
the industrial initiative: Pico [8] (Synfora, spin off from HP), criticalBlue [9] and probably
many more to come. Most of these tools address specific target circuits to reduce the search
space during refinement, many of them target data-flow computations (sometimes referred
to as stream processing) widely used in signal processing applications. This is the case for
MMAlpha that is used in this work to generate highly parallel hardware accelerators for
signal processing filters. It is important to notice that the de facto failure of general high
level synthesis tools such as behavioural compiler from Synopsys highlighted the fact that
high level synthesis was intrinsically difficult to achieve and that the long research effort
provided to produce the tools mentioned above was justified.

Most of these tools are now faced to the problem of integrating their resulting designs in
mpsoc simulation and synthesis environments. The two most important problems encoun-
tered as soon as integration is envisaged are:

1. The choice of a communication protocol that provides data to the ip. This choice is
driven by many factor: the simplicity of the protocol, the size and power of the hardware
necessary for it and its impact on the performance of the global system.

2. The generation of a simulation model for the hardware synthesised which are compatible
with the simulation platform used.

This paper explains which solutions were chosen for the MMAlpha tool and it also extracts
some underlying generic solutions that can be re-used for other tools. More precisely, we
propose a new target computation model for the translation from classical structural rtl
representation of hardware to finite state machine representation. We also present an efficient
algorithm for performing the translation. This algorithm has been used for caba simulation
model generation from MMAlpha. The generated simulation model have been integrated into
a simple soc composed of a MIPS R3000 processor, a standard ram, a generic interconnect
and a hardware accelerator generated with MMAlpha. This platform runs a simple signal
processing program performing filter on audio files. Apart from the validation of the above
mentioned algorithms, this experiment was used to validate the SocLib approach and the
facility of connecting external ips generated by high level design tools in this framework.

Section 2 we introduce the new computation model that we would like to promote for high
level design tools, some simulation performances are presented there. In Section 3 we present
the soc simulation performed using SocLib and MMAlpha. we have improve the interface
mechanism between that hardware and software that was presented in [10] so that it can be
reused for any data-flow ip in the SoC platform, simulation results concerning the whole SoC
platform are presented in section 3.3.

2 FSM representation for RTL simulation models

Now that high level synthesis tools are gaining importance, the question is raised of how to
generate efficient simulations models from internal representation of the tools which usually

corresponds to classical rtl representation. In this generation process, a crucial issue is the
efficiency of the caba simulation. The community now widely agree that finite state machine
(fsm) is a good computation model for simulation because it can be easily understood by
designers and it can be efficiently simulated. Following initial ideas of Jennings [11], many
works [2, 12] are focussing on the problem of improving mpsoc simulation performances by
reducing the inefficiency introduced by event driven simulation. In particular, the results
of [2] state that if the fsm is represented in the form of Moore-Mealy machine, the simulation
kernel can produce much more efficient simulations.

A moore-mealy machine is an automaton with an internal state and three functions: the
transition function, the moore function and the mealy function. The standard definition
of these functions is the following: the transition function uses the inputs and the current
internal state to update the internal state. The moore function uses the internal state to
provide outputs and the mealy function uses the inputs and the internal state to produce
output (see the left of figure 3). In hardware component modelling, the internal state is
composed of the internal register of the component and the state is computed at each clock
cycle.

The idea experimented in [2, 12] is the following: if all the mealy functions of all the ips are
empty then there is no need for event driven simulation, a static scheduling can be performed
and the simulation will run much faster. Of course, this is in general not the case but in
most ips the complexity of the mealy function will be negligible compared to the operations
performed in the moore and transition function. Hence, if the simulation kernel is aware
of this decomposition in the simulation models it can optimise the scheduling of the different
functions to execute the mealy function as rarely as possible. In SystemCass [2] the way to
write the more, mealy and transition functions is precisely specified and a static scheduling
is built in the simulation kernel. In [12] the static scheduling is guided by the user via directives
to the simulation kernel. Our approach does not need a particular scheduling strategy, we can
use the standard SystemC simulation kernel. We improve SystemC simulation performances
by suppressing redundant computations introduced by the standard Moore-Mealy automaton
computation model. However we can further improve the performances by using the static
scheduling strategies mentioned above.

2.1 A new FSM model for hardware modelling

Here, what we call a classical rtl representation is any language that specifies interconnection
between boxes, these boxes being either registers or combinatorial operators (we assume the
same common clock for each register). A nice graph modelling for this rtl representation
is the one introduced by Jennings in [11] as directed cyclic bipartite graph (we call it the
rtl graph in the following). In this representation, the components become one type of
vertex and the nets become another type of vertex. We use the original Jennings’ example
in figure 1 to illustrate it, we denote by the module the whole hardware component to be
abstracted. As mentioned by Jennings himself, we admit several hypothesis when building
this representation: we know that the circuit will reach a stable state a each clock cycle (there
is no combinatorial cycle), we know the direction of the flow of data (arcs are oriented), and
we want to simulate logical behaviour rather than physical behaviour.

A straightforward algorithm for generating a Moore-Mealy machine from the rtl graph
is the following: first identify the registers of the hardware (which will constitute the state
of the machine). The input of these registers are computed by the transition function, for

muxout

+
feedback

del_offset

muxback

choose

offset
sum delay_sum

muxout
D

D

D

choose

+

Muxmuxback

del_offset

feedback

offset

Dsum

delay_sum

Figure 1: Original Jennings’ rtl example and its representation as a rtl graph

Moore

D

D

D

D delay_sum

muxout muxout

choose

offset

+

Muxmuxback

del_offset

feedback

sum

+

Muxmuxback

del_offset

feedback

sum

Transition Mealy

Figure 2: fsm representation of the hardware of figure 1 using a straightforward algorithm to
build the moore, transition and mealy functions

each of these input, walk up the rtl graph and recursively add the computations encountered
to the transition function until all paths have reached either a module input or the output
of a register. To build the moore and mealy functions, start from the outputs of the module
and recursively walk up the graph until all paths have reached either a module input or the
output of a register. For a given output, if one of the path have reached a module input,
the whole computation tree is placed in the mealy function otherwise it can be placed in the
moore function. The application of this algorithm on the example of figure 1 gives the fsm
of figure 2.

We believe that this straightforward algorithm has an important drawback that can be
seen on figure 2: it duplicates code. Code duplication can be error prone (if the code is
modified during the debugging process for instance) and it also implies an increased complexity
during simulation because computation will be done twice. We propose to distribute the
computations performed by the hardware in the three fsm functions without duplicating any
one. For this we use a slightly modified definition of the three functions: the moore function
inputs are unchanged, the mealy function will take as input some inputs of the module and
some outputs of the moore function. Both functions moore and mealy will produce outputs
that will be used by the transition function (while in the original definition, the transition
function used only module inputs and register outputs). This is illustrated on the right of
figure 3.

As long as fsm behaviour is respected, this new class of machine describes exactly the
same set of machine as the standard Moore-Mealy. Indeed, from a machine of this new class,
one can get a standard Moore-Mealy machine by duplicating some code of the functions. If
this computation model is used for hardware simulation, we would like this new machine
to behave exactly as the corresponding standard Moore-Mealy machine. This simply imply

outputs

Statemealy

transition

moore

inputs

moore

Statemealy

transition

inputs

outputs

Figure 3: The standard Moore-Mealy machine used for writing caba simulation models of
ips (on the left) and the extended definition that we used (on the right).

Mealy

D

D

D

D delay_sum

muxout

offset

choose

+

Muxmuxback

del_offset

feedback

sum

Moore

Transition

Figure 4: FSM representation of the hardware of figure 1 without duplicating code. The
transition function is simply connecting nets.

that the simulation kernel kernel must ensure the following property: the mealy function is
evaluated at least one time before the the transition function and at least one time after
the moore function. We explain in the section 2.2 how to ensure that in SystemC.

With this target model in mind, a possible fsm for the module of figure 1 would be the
one of figure 4 where no code duplication occurs. The construction of this fsm can simply
consist of a rewriting of the rtl graph. Indeed, each hardware operator will be present in one
and only one of the three functions: transition, moore or mealy. A clever traversal of the
rtl graph will label each hardware operator of the graph with the type of function it belongs
to (transition, moore or mealy). The nets will be classified too, but they may be duplicated
if they are connected to operators of different type (we want the operands and results of an
operator to be of the same type, this will ease the translation to a programming language).

The labelRTLGraph procedure described in figure 5 is a more precise description of the
algorithm, in this description we have used the procedure
duplicate(type1,type2) for the following action: split one net which is connected to two
nodes of different types (namely type1 and type2) into two nets linked with one directed arc,
the first net will have type type1, the second net will have type type2. The inputs of the
original net are input to the first net and the outputs of the original net are either transformed

labelRTLGraph()
start with a rtl graph whith all nodes labelled unknown
label all the register outputs as moore nets
walk down the rtl graph from register outputs until arriving to outputs

or to register inputs, and for each operator having all its operands
labelled as moore:

label the operator and its result as moore
label all the unlabelled outputs as mealy nets
walk up the rtl graph from these mealy outputs until arriving to inputs,

or nets labelled moore and for each operator having its result
labelled as mealy:

label the operator and its operands as mealy
if some of the operands are already labelled as moore:

duplicate(moore, mealy)
label all the remaining unknown nodes as transition
if some register inputs are labelled with X, X6=transition:

duplicate(X, transition)

Figure 5: Algorithm for labelling the rtl graph and generate a target fsm as the one presented
in the right of figure 3

to output of the second net (if it reaches a node of type type2) or transformed to output
of the first net (if it reaches a node of type type1). Note that we do not use the bipartite
property of the graph and actually, the graph is not bipartite anymore after application of
the duplicate procedure. For clarity we assumed that operators have a single result (but
this can be easily extended to multiples results per operator). The algorithm assumes that it
has a way of accessing inputs and outputs of the hardware (simply called inputs or outputs
below), and to register inputs and outputs (called register input or register output below)

This algorithm first labels moore nodes with a forward traversal of the graph. These nodes
are uniquely defined as they can only compute results from register outputs. Then it labels
the mealy nodes starting from the outputs that are not moore with a backward traversal of
the graph (each signal used in the mealy function must be mealy or moore). Finally the
unlabelled signals and operators are necessary in the transition function. As we want the
register inputs to come from the transition function, we duplicate the register inputs that
are labelled moore or mealy. The rtl graph of figure 1 is represented on figure 6 after the
execution of the algorithm, it corresponds exactly to the structuring exposed in figure 4 (the
order in which nodes have been labelled is indicated in parenthesis).

This algorithm is efficient in the sense that its complexity is linear, assuming that one can
have access in a constant time to registers. Indeed, each nodes of the graph is traversed only
once (except for the duplications at the end of the algorithm but we can safely assume that
the number of registers is small compared to the total number of nodes of the graph). It is
clever in the sense that it does not duplicate any computation, hence the resulting simulation
model of the hardware will be faster. The complexity of the graph of figure 2 and figure 4
illustrates it.

transition (14) D

D

D

choose

+

Mux

sum sum2 D

delay_sum

moore (1)muxback

del_offset

feedback

offset

moore (2)

moore (3)

moore (4)

muxback2

muxout

muxout2

moore (5)
moore(6)

mealy (7)

mealy (8)mealy (9)

sum2del_offset 2

mealy (11)

mealy(10)

mealy (12)

transition (15)

transition (13)

Figure 6: rtl graph of the hardware of figure 1 after the labelling algorithm presented here
(the order in which nodes have been labelled is indicated). The resulting structuring of the
fsm corresponds to the one of figure 4.

We have implemented this translation scheme in MMAlpha to provide SystemC simula-
tion model from MMAlpha internal representation of rtl circuits. Simulation experiments
are presented in the following section confirm a simulation time decrease of approximately
40%. The resulting simulation models have also been integrated in the platform presented in
section 3.

2.2 SystemC implementation

In a SystemC implementation of this new fsm machine, we must ensure that the three methods
corresponding to mealy, moore and transition functions are evaluated in a valid order. The
usual way to ensure partial evaluation order in SystemC is to use the sensivity list of the
method in conjunction with the SystemC sc_signal type. For instance, if we use the classical
fsm machine (left of figure 3), we can implement the registers of the module as sc_signal,
set the transition method sensitive to the raise of the clock, set the moore method sensitive
to the fall of the clock and set the mealy method sensitive to module inputs and register
outputs. The semantic of the SystemC sc_signal type will ensure the correctness of the
execution. More precisely, when the clock is low, the signal values will be the ones that occur
on the real hardware.

In practice, If we consider a single module as the one of the left of figure 3 encapsulated
into a test bench, the SystemC simulation kernel will use for its simulation the following
order of evaluation of the methods: mealy, transition, mealy, moore. Of course, a real
example connecting different modules together can result in much more complicated dynamic
scheduling. As pointed in [2], the following order: transition, moore, mealy for a single
module is also always valid with the classical fsm model. If now we use our new fsm (right
of figure 3), this order is no more valid. We have to ensure the following conditions:

1. mealy must be executed at least once before transition,

2. mealy must be executed at least once after moore

Condition 2. above can be easily ensured by setting the mealy method sensitive to signals of
the moore method it depends on. A more efficient scheme can use variables to communicate

p=1 (middle cell)

w w1 2

y(n)

w

w
N−1

p=N−1

0w

y(n)

d(n)

p=0

x(n+D−1)

D−1 x(n)

+
−

e(n)

µ

µ

N−1

Figure 7: Non-pipelined dlms architecture used for simulation performances. It contains a
complete mealy part (computation of y), but also some moore computation (updates of the
weight W).

between the methods instead of signals and set a dummy signal assigned at the end of the
moore method that will trigger the execution of the mealy method. This is what we did
in our implementation. Condition 1. cannot be ensured with the same trick because the
transition method must be executed only once at each clock cycle, but this condition will
naturally be enforced in any SystemC simulation kernel because the inputs of the module
must be stable before the execution of the raise of the clock that will launch the execution
of the transition method. Setting the mealy method sensitive to inputs it depends on will
ensure condition 1. Finally the fact that the transition method uses results of the moore
method rather than directly register outputs does not change anything. Hence a valid order
for the new fsm for a single module will be: mealy, transition, moore, mealy. In practice,
the SystemC simulation kernel will find this order.

For our experiments we have derived a specific hardware module: a non-pipelined version
of the dlms filter presented in [3]. The sketch of the dlms architecture is presented on fig-
ure 7. The rtl version of the architecture has been derived with MMAlpha from the same
specification as the one used in [3]. The designer chose not to pipeline the architecture and
hence obtained moore and mealy computations in each cell. Moreover, each mealy computa-
tions are connected from cell to cell, hence a dynamic scheduling more complex than the one
mentioned above will take place. This architecture is composed of N cell with N-2 identical
cells (we refer to this cell as middle cell, see figure 7). As explained in [3], we obtained a rtl
representation of the circuit expressed in Alpha which can be translated syntactically into
synthesizable vhdl. We have developed another translator that targets SystemC instead of
vhdl. The translator first implement the algorithm presented in figure 5 to classify the nets
of each cell and then use a syntax directed translation scheme to generate the SystemC code.

We generated SystemC code compliant with the model introduced above for this architec-
ture with N=30 and N=60 cells. This gave rise to three types of cell: the first cell of the array,
the last cell of the array and the middle cell repeated N-2 times. Each of these SystemC cell
where implemented with this new fsm machine convention. Then we took the middle cell and
modify it by hand so that it can stick to the classical Moore-Mealy machine. This consisted

SystemC SystemCass
new model Moore-Mealy new model Moore-Mealy

Cell 0.58 0.76 0.13 0.2
module N=30 8.82 15.07 3.09 5.1
module N=60 17.56 30.63 6.14 10.34

Table 1: Simulation performances, in seconds, for a simulation of 100 000 clock cycles

in duplicating some of the code to use only cell inputs or register outputs in each method. It
is worth noting that this represented an increase of 60% of the computations lines and 120%
in the number of variables declared in the methods. The SystemC code of the new model
cell automatically derived is presented in annex A and its corresponding Moore-Mealy cell is
presented in annex B. Then we compared the SystemC simulation time for each cell (Moore-
Mealy cell and new model cell) and for the whole array using either N-2 Moore-Mealy cell
or N-2 new model cell. Finally we did the same comparison with the SystemCass simulation
kernel to evaluate the improvement that would provide a static scheduling strategy.

These simulation where done with systemC-2.0.1 on linux operating system (processor
pentium 4M, 1.4 GHz with 512 Mo ram). C++ Compilation was done with gcc 3.3 with-
out any optimisation options. We also did the simulation with the SystemCass simulation
kernel [2]. The results are presented in table 1.

These results show an improvement, between 30% and 50%, in the simulation perfor-
mances obtained by SystemC simulation with the new model compared to equivalent hard-
ware described as a classical Moore-Mealy machine. Simulation with SystemCass show that
our improvement can be added to the simulation acceleration provided by static scheduling
techniques. Note that simulation performance of SystemC and SystemCass should not be
compared here because SystemCass currently does not implement real bit-true mechanism
for handling the sc_int type (int type is used). The simulation time decrease is not huge,
but we point out that this is not only the main advantage of our new coding style, it has
other advantages: (i) it suppresses code duplication which is error prone, and (ii) it generates
simulation models that are closer to final rtl implementation. This property could be used,
for instance to derive automatically vhdl rtl models from the corresponding SystemC cycle
accurate simulation models.

3 SoC platform simulation

This section present an experimental SoC simulation using SocLib and MMAlpha using the
results of the previous section. It first focus on an important problem: how to control easily
hardware ips that are designed by high level synthesis tool, then it presents the SoC platform
simulated and some system and simulation performances.

3.1 Generic interface for stream processing accelerators

We focus now on the problem of integrating data-flow hardware accelerators into a SoC
platform. There are two important challenges in this topic. First, the communication protocol
must be efficient because bandwidth is usually an important bottleneck for performances.

Second, the design time of this interface must be short, in particular for IPs synthesised by high
level design tools. We present in this section a generic and parameterised hardware interface
that can be used for simple or burst communications. This interface is an improvement over
the one presented in [10] to integrate burst communication mode.

Our data flow hardware accelerator is abstracted as a black box with a pipelined behaviour,
i.e. consuming and producing values at each clock cycle (see the ”Data-flow hardware accel-
erator” in figure 8). As data may not be available due to timing issues, because the system
cannot write values to the input port fast enough to feed the architecture for instance, we
assume a clock enable mechanism that can freeze the execution of the architecture.

The left of figure 8 shows the hardware interface scheme for a pipeline with two inputs and
two outputs streams. The right of figure 8 shows the software interface, or driver, running
on a processor which controls the hardware accelerator. The generic hardware interface is
composed of two main blocks, one for controlling the inputs and one for outputs, that are
symmetrical. The controllers are used to dispatch incoming data to the correct input FIFO.
The FIFOs between the VCI ports and controllers are used to hide latency that can occur
on the interconnect (interruption occurring for instance). The I FIFOs and O FIFOs that
are connected to the hardware accelerator are used to enable burst communications on the
interconnect. To allow one clock cycle of the hardware accelerator, all the data read by the
accelerator must be present in input FIFOs and all the FIFOs corresponding to output data
must have empty slots. The hardware accelerator clock cycles are called virtual clock cycle as
they do not necessarily correspond to the clock cycles of the system.

G
en

er
ic

I_FIFO 1

I_FIFO 2

O_FIFO
1

O_FIFO
2

FIFO

FIFO

CTRL

CTRL

IN

OUT

input
patterns

patterns
output

V
C

I
V

C
I

D
at

af
lo

w
 H

ar
dw

ar
e

A
cc

el
er

at
or

N
et

w
or

k

// input phase 0
for(i=0; i<16; i++)
{
SEND(psl_mirr1,30);
SEND(psr_mirr1,30);

}
// input phase 1
SEND(psl_mirr1,20);
SEND(psr_mirr1,20);
// output phase 0
RECV(pres_left,8);
RECV(pres_right,8);
// output phase 1
for(i=0; i < 16; i++)
{
RECV(pres_left,30);
RECV(pres_right,30);

}
// output phase 2
RECV(pres_left,18);
RECV(pres_right,18);

Figure 8: Hardware and Software interfaces for a Data-flow hardware accelerator. Controllers
must be configured according the software communication pattern used in the software driver
on the right hand side. Both the hardware and software can be parameterised to allow a
maximum throughput using burst communications

As data-flow architectures can consumes data of different bit-width synchronously, the
data have to be grouped, according to the bit-width size of the interconnect to minimise the
bandwidth needed for transfers. The order in which the data are transfered is very important
to drive the architecture in an efficient way. The information of this order is stored into
the interface input and output controllers in a set of configuration registers using a closed
form encoding. We have introduced in [10] the concept of Phase and Patterns that allow this
concise description, we briefly illustrate them with an example.

Figure 9 represents a data-flow hardware that uses three input data streams with different
bit-width and the corresponding activation of each input stream at each clock cycle. A
phase is a sequence of successive virtual clock ticks during which all inputs and outputs of
the architecture are the same. A phase represent a regular behaviour of the interface. The
example of figure 9 shows the definition of two phases: Φ1 with only A input to the ip and Φ2

where all variables are input. Inside each phases, possibly many different variables have to be
sequentially sent into the FIFO. The pattern specify the order in which these data have to be
send, figure 10 shows a valid pattern for phase Φ2 of the ip of figure 9. This pattern is valid
as soon as the size if the I FIFOs of figure 8 are at least one bus-width word in total size.

C

Hardware

Data−flow

16

2

8

A

B

φ2
t

Stream

A

B

C

φ1

Figure 9: Hardware IP with three input streams and the corresponding input activation
defining two input phases: Φ1 and Φ2

Pattern

16xA 16xA4xB4xB4xB4xB 2xC2xC2xC2xC2xC2xC2xC2xC4xB

to the

interface

ETC...

b
it

−
w

id
th

sy
st

em
 i

n
te

rc
o

n
n

ec
t

Figure 10: A valid pattern for the ip of figure 9

Using this concise information (phases and patterns) we can build communication schemes
that are non-blocking and hence design the hardware and software interface. On the right of
figure 8, one can see how the software driver uses the phases and the pattern inside each phase.
Phases are used as superset of patterns to represent different configurations for sending data to
the accelerator. They are generally used for computation initialisation and termination. For a
more in-depth presentation of phases and patterns see [10] which introduced these concepts in
hardware interface communications. These concepts are the key needed to provide interface
and driver that can be re-used for other architecture possibly generated by other parties.

Burst communications allow to reduce the latency overhead between data arrivals. Using
a different controller configuration for the architecture of figure 9 associated with the corre-
sponding software driver, we can change the input patterns to the bursted pattern presented

in figure 11. The main change is that several words of each data are grouped together for
communication, this new pattern needs input I FIFOs of size greater than one bus-width
word: 8 for B for instance.

b
it

−
w

id
th

to the

interface

ETC...

32=8x4xB32=16x2xC 32=16x2xA

sy
st

em
 i

n
te

rc
o

n
n

ec
t

Figure 11: Bursted patterns for an architecture with three inputs of different bit-width (4, 8
and 16 bits)

For an ip generated with a high level synthesis tool, the phase and pattern can be either
generated with the ip or written manually in a particular simple language. These information
can then be used to generate the driver and to initialise the configuration registers of the
interface. This is what we did with the ip generated by MMAlpha as explained in the next
section

3.2 Experimental platform setting

Choosing the good simulation platform is a crucial issue in mpsoc design because it implies
a non-negligible investment for using the environment and developing the simulation models.
Commercial tools may offer powerful environment but the lifetime of a tool will frequently be
much shorter than the lifetime of an ip. People that developed some platform simulations with
the vcc tool from Cadence have experimented that. We believe that the open source nature
of SystemC (http://www.systemc.org/) is adapted to this kind of constraint. Nevertheless,
we think that SystemC does not solve all the problems, in particular it does not sufficiently
reduce simulation time for cycle accurate simulations. This is partly linked to the fact that
SystemC simulation kernel heavily rely on event driven simulation.

3.2.1 SocLib and MMAlpha

The main component of SocLib (http://soclib.lip6.fr/) is currently a set of SystemC
simulation models for common ips (mips processor, ram, NoC, busses, dma). These simula-
tion models are publicly available and have been validated by extensive simulation at LIP6
laboratory. For each ip there exists a synthesizable rtl version of the ip that can be used for
the final design (usually commercially available).

Anyone can simulate these ips with the SystemC simulation kernel and build a complete
mpsoc platform using SystemC simulation models coming from elsewhere as we did for the
simulation models generated by MMAlpha. The SocLib simulation models use the vci (Vir-
tual Component Interface [1]) communication low level protocol to interface with other ips.
It is also planned to normalise a higher level of modelling (transaction level modelling) for
early prototyping stages.

In this framework, a mpsoc platform consists of a set of hardware ips together with some
software code running on the programmable ips (here the mips processor), which imply the
use of a compiler. We used gcc targeted to mips core. As we used a generic network on
chip interconnect (and not a standard bus), it is mandatory to provide a simple operating

driver.c

VCI VCI VCI

filter.c

Gramofile.c

Generic Network

VCI
VCI

Filter TTY

cache

MIPS
RAM

MMAlpha

Mutex

GCC

filter.α

Gramofile

filter.cpp

Gramofile

boot

Gramofile.c

Figure 12: The SoC simulated and the global design methodology. Blank square box represent
C++ simulation models of ips.

system that ensure correct behaviour of the whole system (memory coherency, exception
handling, etc.). Hence to be usable, SocLib must be associated to such an operating system
compatible with the compiler used. We are currently using Mutek [13] which provides a very
light implementation of Posix threads api.

MMAlpha [3] is a toolbox for designing regular parallel architectures (systolic like) from
recurrence equation specifications expressed in the Alpha language. It is one of the only
existing tools that really automate the refinement of a software specification downto rtl
description within the same language: Alpha. MMAlpha’s methodology for refinement suc-
cessively introduces time (global synchronous clock), space (Mapping to 1 or 2-D array of
processors), control generation and finally rtl level generation.

We have developed a translator from AlpHard (hardware description language, subset of
Alpha) to SystemC, the underlying principles of this translator are explained in section 2.
The translator also provides testbench that allow hierarchical debugging and which uses a
stimuli file format which is common to the C code generator and the vhdl code generator of
MMAlpha.

3.2.2 The SOC platform

We have chosen a classical linux audio signal processing application called Gramofile. Gramofile
processes audio files (.wav format) and proposes various simple filters like lp’s tick removal.
We have extracted a simple filter (referred as filter.c), and translated it in Alpha by hand.
The translation was validated by replacing the original filter.c file by the C code generated
from the filter.alpha by MMAlpha. Through all the refinement stages of MMAlpha, this
C translation can be used to test the validity of the current description.

The target platform chosen is represented on figure 12, The hardware components of the
platform are: a mips R3000 processor (with its associated data and instruction cache), a
standard memory, a component used for displaying output (referred as tty) and a specific
hardware accelerator generated with MMAlpha. All these components are connected via vci
ports to a simple network (internal architecture of this network is not precisely simulated,
only the latency and bandwidth can be parameterised). The software running on the MIPS, in
addition to bootstrapping information, is composed of the Gramofile program cross-compiled
with gcc to a mips target.

In this paper we do not describe precisely the design of the accelerator with MMAlpha

F
ce

lls

+ +

+ +

+ +

++

0 0

Ctrl

/F /F

0 0

load["fsa.alpha"]; analyze[]; schedule[]
cGen["../gramo_rms_orig/fsa.c", {"F" -> 4},

interactive-> False]
(* uniformization *)

pipeall["acc_left", "sl.(n,i->n-i+F+1)",
"Psl.(n,i->n+1,i+1)", "{n,i| i >= 0}"];

pipeall["acc_right", "sr.(n,i->n-i+F+1)",
"Psr.(n,i->n+1,i+1)","{n,i| i >=0}"];

simplifySystem[];ashow[]
(* scheduling *)

schedule[scheduleType -> sameLinearPart,
addConstraints -> {"TPslD1==1"}]

appSched[];
(* RTL level derivation *)

toAlpha0v2[];
simplifySystem[alphaFormat->Alpha0];
convexizeAll[];
reuseCommonExpr[];
alpha0ToAlphard[];

(* RTL VHDL and systemC generation *)
fixParameter["F", 4];
fixParameter["N", 1000];
a2v[];
a2sc[];

Figure 13: Hardware accelerator obtained with MMAlpha for the example of a simple mean
filter of F values and the commented MMAlpha refinement script used to obtain it from high
level specification.

(see [3] for details), the rtl representation obtained in Alphard for a simple mean filter
is schematically represented on the left of figure 13 and the script that have been used in
MMAlpha to produce it from initial functional specification is presented on the right of
figure 13 (MMAlpha is programmed using the Mathematica software). One can see that the
script is simple, the whole execution takes a few minutes. The architecture represented on the
left of figure 13 is connected to the controller described in section 3.1 which connects on the
bus and carefully dispatches the data coming from/to the memory on the right input/output
ports. This driver is also generated by MMAlpha together with a set of parameters that tunes
the controller accordingly.

3.3 System and simulation performances

The SoC simulation results are presented in the table 2. In this implementation we used a
simple memory transfer mechanism driven by the processor. This dual read/write generates
a significant overhead due to memory access and system interconnect latency taken into
account for each word transfered by the processor to the accelerator or back to memories.
This overhead can be overcome by using a DMA engine to speedup memory copies using burst
transfers between the memories and the hardware accelerator.

complete simulation time 29.21 s
complete simulation cycles 600000 cycles
simulation speed 20540.9 cycles/seconds
hardware pipeline throughput 20450 cycles

Table 2: Performances obtained from the complete SoC simulation

It is interesting to compare these results with approach of Quinton et al. [14] where a very
similar application is prototyped by using emulation on a real platform (Lyrtech SignalMaster,
with a dsp and a fpga) rather than simulation. Their implementation uses an API provided
by Lyrtech for hardware-software interface (roughly the equivalent of our interface controller
and driver), unfortunately we have no precise estimation of the performance of the interface.
In [14] the simulation time of the complete application per filter sample is approximately 6µs
while our simulation reaches 29.21/20450 ' 1.4ms per filter sample (250 times slower for a
simpler application). Hence, the prototyping approach is much better as soon as simulation
time is targeted. However, if cycle accurate simulation is sought, our interface mechanism is
much closer to what will be on the final chip than the one used in [14] and the behaviour of
our simulation is exactly what will occur on the real system.

4 Conclusion

In this report we have presented an efficient computation model for performing cycle accurate
hardware simulation of rtl description of hardware. This representation is particularly useful
for high level synthesis tools that provides generated simulation models rather than manually
written simulation models. We have validated the simulation time improvements provided by
this new computation model but we believe that the quality of the code generated is a more
important advantage of our model.

We have also presented a complete SoC simulation integrating ips coming from different
places: manually written ips developed for standard SoC platform and a hardware accelerator
ip generated with MMAlpha and associated with a generic hardware interface and software
driver, both generated by MMAlpha. This integration is a case for the use of the SocLib
environment and it also highlighted the good efficiency of our generic hardware/software
mechanism.

References

[1] Alliance, V.: Virtual component interface standard (ocb specification 2, version 1.0)
(2000)

[2] Pétrot, F., Hommais, D., Greiner, A.: A simulation environment for core based embedded
systems. In: Annual Simulation Symposium, Atlanta, GA, U.S.A (1997) 86–91

[3] Guillou, A.C., Quinton, P., Risset, T., Wagner, C., Massicotte, D.: High level design of
digital filters in mobile communications. Technical Report 1405, Irisa (2001)

[4] Sentieys, O., Diguet, J., Philippe, J.: Gaut: a high level synthesis tool dedicated to real
time signal processing application. In: EURO-DAC. (2000) University booth stand.

[5] Bednara, M., Teich, J.: Interface synthesis for fpga based vlsi processor arrays. In:
Proc. of the International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA 02), Las Vegas, Nevada, U.S.A. (2002)

[6] Kienhuis, B., Rijpkema, E., Deprettere, E.: Compaan: Deriving process networks from
matlab for embedded signal processing architectures. In: 8th International Workshop on
Hardware/Software Codesign (CODES’2000). (2000)

[7] Augé, I., Donnet, F., Gomez, P., Hommais, D., Pétrot, F.: Disydent: a pragmatic
approach to the design of embedded systems. In: Design, Automation and Test in
Europe Conference and Exhibition (DATE’03 Designers’ Forum), Paris, France (2002)

[8] et al., R.S.: High-Level Synthesis of Non Programmable Hardware Accelerators. In:
IEEE International Conference on Application-specific Systems, Architectures and Pro-
cessors (ASAP 2000), Boston (2000)

[9] Hounsell, B., Taylor, R.: Co-processor synthesis a new methodology for embedded soft-
ware acceleration. In: Design, Automation and Test in Europe Conference and Exhibition
(DATE’03 Designers’ Forum), Paris, France (2004)

[10] Derrien, S., Guillou, A.C., Quinton, P., Risset, T., Wagner, C.: Automatic synthesis of
efficient interfaces for compiled regular. In: Internationnal Samos Workshop on Systems,
Architectures, Modeling and Simulation (Samos), Samos, Grece (2002)

[11] Jennings, G.: A case against event-driven simulation for digital system design. In:
Proceedings of the 24th annual symposium on Simulation, IEEE Computer Society Press
(1991) 170–176

[12] Pérez, D.G., Mouchard, G., Temam, O.: A new optimized implementation of the systemc
engine using acyclic scheduling. In: Design, Automation and Test in Europe Conference
and Exhibition (DATE’03 Designers’ Forum), Paris, France (2004)

[13] Pétrot, F., Gomez, P.: Lightweight implementation of the posix threads api for an
on-chip mips multiprocessor with vci interconnect. In: Design, Automation and Test
in Europe Conference and Exhibition (DATE’03 Designers’ Forum), Munich, Germany
(2003)

[14] Charot, F., Nyamsi, M., Quinton, P., Wagner, C.: Architecture Exploration for 3G
Telephony Applications Using a Hardware–Software Prototyping Platform. In: Proc. of
Samos IV, Samos, Greece (2004)

A New FSM model for one cell of the DLMS
// SystemC Model Created for "system cellfirrModule3"

//-- 2/4/2004 10:51:22

// Alpha2SystemC

/*cellfirrModule3.h*/

#include <systemc.h>

struct cellfirrModule3 : sc_module{

/*ports*/

sc_in_clk clock;

sc_in<bool> reset;

sc_in<sc_int<16> > X_reg3_loc;

sc_in<sc_int<16> > XD_reg2_loc;

sc_in<sc_int<16> > Y_reg7;

sc_in<sc_int<16> > ED_reg1;

sc_in<bool > W_ctl1_In;

sc_out<sc_int<16> > X;

sc_out<sc_int<16> > XD;

sc_out<sc_int<16> > Y;

sc_out<sc_int<16> > ED;

int procNum;// processor number

/* registers: internal state of the cell: updated with

the transition method, */

sc_signal<sc_int<16> > EDloc4TR;

sc_signal<sc_int<16> > WTR;

sc_signal<sc_int<16> > XD_reg2_loc_IO;

sc_signal<sc_int<16> > XDloc2TR;

sc_signal<sc_int<16> > X_reg3_loc_IO;

sc_signal<sc_int<16> > Xloc1TR;

sc_signal<bool > trigger_mealy;

/*variables of the Moore method used in other method */

sc_int<16> TSep3;

sc_int<16> XDloc2;

sc_int<16> Xloc1;

sc_int<16> X_reg8;

/*variables of the Mealy method used in other method */

sc_int<16> EDloc4;

sc_int<16> W;

sc_int<16> TSep3M;

sc_int<16> X_reg8M;

void transition();

void moore();

void mealy();

/////////////////////////////////

// constructor

/////////////////////////////////

SC_HAS_PROCESS(cellfirrModule3);

cellfirrModule3(sc_module_name insname,int p){

SC_METHOD(transition);

sensitive_pos << clock;

SC_METHOD(moore);

sensitive_neg << clock;

SC_METHOD(mealy);

sensitive << reset;

sensitive << X_reg3_loc;

sensitive << XD_reg2_loc;

sensitive << Y_reg7;

sensitive << ED_reg1;

sensitive << W_ctl1_In;

sensitive << trigger_mealy;

procNum = p;

trigger_mealy=1;

}

};

// SystemC Model Created for "system cellfirrModule3"

//-- 2/4/2004 10:51:22

// Alpha2SystemC

/*cellfirrModule3.cpp*/

void cellfirrModule3::transition(){

/*local variables of the Transition method */

/*equations the transition Method */

XD_reg2_loc_IO = XD_reg2_loc;

X_reg3_loc_IO = X_reg3_loc;

EDloc4TR = EDloc4;

XDloc2TR = XDloc2;

Xloc1TR = Xloc1;

WTR = W;

#ifdef DEBUG

printf("tr %d",procNum);

#endif

} // end process

void cellfirrModule3::moore(){

/*local variables of the Moore Method */

sc_int<16> ED_reg5;

sc_int<16> TSep1;

sc_int<16> W_reg4;

sc_int<16> XD_reg2;

sc_int<16> XD_reg6;

sc_int<16> X_reg3;

/*equations the Moore Method */

ED_reg5 = EDloc4TR;

W_reg4 = WTR;

XD_reg2 = XD_reg2_loc_IO;

XD_reg6 = XDloc2TR;

X_reg3 = X_reg3_loc_IO;

X_reg8 = Xloc1TR;

XDloc2 = XD_reg2;

TSep1 = (ED_reg5 * XD_reg6);

Xloc1 = X_reg3;

XD.write((sc_int<16>)XDloc2);

TSep3 = (W_reg4 + (TSep1 / 32768));

X.write((sc_int<16>)Xloc1);

//trigger the execution of mealy

trigger_mealy = !((bool)trigger_mealy);

#ifdef DEBUG

printf("mo %d",procNum);

#endif

} // end process

void cellfirrModule3::mealy(){

/*local variables of the Mealy Method */

/*equations the Mealy Method */

EDloc4 = ED_reg1;

X_reg8M = X_reg8;

ED.write((sc_int<16>)EDloc4);

TSep3M = TSep3;

W = (W_ctl1_In ? ((sc_int<16>)0) : (TSep3M));

Y.write((sc_int<16>)(Y_reg7.read() + ((W * X_reg8M) / 32768)));

#ifdef DEBUG

printf("mi %d",procNum);

#endif

} // end process

B Standard Moore-Mealy machine for the same cell.
// SystemC Model Created for "system cellfirrModule3"

//-- 2/4/2004 10:51:22

// Alpha2SystemC

/*cellfirrModule3.h*/

#include <systemc.h>

struct cellfirrModule3 : sc_module{

/*ports*/

sc_in_clk clock;

sc_in<bool> reset;

sc_in<sc_int<16> > X_reg3_loc;

sc_in<sc_int<16> > XD_reg2_loc;

sc_in<sc_int<16> > Y_reg7;

sc_in<sc_int<16> > ED_reg1;

sc_in<bool > W_ctl1_In;

sc_out<sc_int<16> > X;

sc_out<sc_int<16> > XD;

sc_out<sc_int<16> > Y;

sc_out<sc_int<16> > ED;

int procNum;// processor number

/* registers: internal state of the cell: updated with

the transition method, */

sc_signal<sc_int<16> > EDloc4TR;

sc_signal<sc_int<16> > WTR;

sc_signal<sc_int<16> > XD_reg2_loc_IO;

sc_signal<sc_int<16> > XDloc2TR;

sc_signal<sc_int<16> > X_reg3_loc_IO;

sc_signal<sc_int<16> > Xloc1TR;

/*variables of the Moore method used in other method */

/*variables of the Mealy method used in other method */

void transition();

void moore();

void mealy();

/////////////////////////////////

// constructor

/////////////////////////////////

SC_HAS_PROCESS(cellfirrModule3);

cellfirrModule3(sc_module_name insname,int p){

SC_METHOD(transition);

sensitive_pos << clock;

SC_METHOD(moore);

sensitive_neg << clock;

SC_METHOD(mealy);

sensitive << reset;

sensitive << X_reg3_loc;

sensitive << XD_reg2_loc;

sensitive << Y_reg7;

sensitive << ED_reg1;

sensitive << W_ctl1_In;

sensitive << EDloc4TR;

sensitive << WTR;

sensitive << XD_reg2_loc_IO;

sensitive << XDloc2TR;

sensitive << X_reg3_loc_IO;

sensitive << Xloc1TR;

procNum = p;

}

};

// SystemC Model Created for "system cellfirrModule3"

//-- 2/4/2004 10:51:22

// Alpha2SystemC

/*cellfirrModule3.cpp*/

void cellfirrModule3::transition(){

/*local variables of the Transition method */

sc_int<16> EDloc4;

sc_int<16> W;

sc_int<16> TSep3M;

sc_int<16> TSep3;

sc_int<16> TSep1;

sc_int<16> Xloc1;

sc_int<16> X_reg3;

sc_int<16> XDloc2;

sc_int<16> XD_reg2;

sc_int<16> X_reg8M;

sc_int<16> X_reg8;

sc_int<16> XD_reg6;

sc_int<16> ED_reg5;

sc_int<16> W_reg4 ;

/*equations the transition Method */

XD_reg2_loc_IO = XD_reg2_loc; //OK, input

X_reg3_loc_IO = X_reg3_loc; //OK, input

EDloc4 = ED_reg1; //input, OK

EDloc4TR = EDloc4; //OK

XD_reg2 = XD_reg2_loc_IO; //added, input

XDloc2 = XD_reg2; // added

XDloc2TR = XDloc2; //OK

X_reg3 = X_reg3_loc_IO; //added, reg

Xloc1 = X_reg3; //added

Xloc1TR = Xloc1; //OK

XD_reg6 = XDloc2TR; //added, reg

ED_reg5 = EDloc4TR; //added, reg

TSep1 = (ED_reg5 * XD_reg6); //added

W_reg4 = WTR; //added, reg

TSep3 = (W_reg4 + (TSep1 / 32768)); //added

TSep3M = TSep3; //added

W = (W_ctl1_In ? ((sc_int<16>)0) : (TSep3M)); //added

WTR = W;

#ifdef DEBUG

printf("tr %d",procNum);

#endif

} // end process

void cellfirrModule3::moore(){

/*local variables of the Moore Method */

sc_int<16> ED_reg5;

sc_int<16> TSep1;

sc_int<16> W_reg4;

sc_int<16> XD_reg2;

sc_int<16> XD_reg6;

sc_int<16> X_reg3;

sc_int<16> TSep3;

sc_int<16> XDloc2;

sc_int<16> Xloc1;

sc_int<16> X_reg8;

/*equations the Moore Method */

ED_reg5 = EDloc4TR; //OK

W_reg4 = WTR; //OK

XD_reg2 = XD_reg2_loc_IO; //OK

XD_reg6 = XDloc2TR; //OK

X_reg3 = X_reg3_loc_IO; //OK

X_reg8 = Xloc1TR; //OK

XDloc2 = XD_reg2; //OK

TSep1 = (ED_reg5 * XD_reg6); //OK

Xloc1 = X_reg3; //OK

XD.write((sc_int<16>)XDloc2); //OK

TSep3 = (W_reg4 + (TSep1 / 32768)); //OK

X.write((sc_int<16>)Xloc1); //OK

#ifdef DEBUG

printf("mo %d",procNum);

#endif

} // end process

void cellfirrModule3::mealy(){

/*local variables of the Mealy Method */

sc_int<16> EDloc4;

sc_int<16> W;

sc_int<16> TSep3M;

sc_int<16> X_reg8M;

sc_int<16> X_reg8;

sc_int<16> XD_reg6;

sc_int<16> ED_reg5;

sc_int<16> TSep1 ;

sc_int<16> TSep3 ;

sc_int<16> W_reg4 ;

/*equations the Mealy Method */

EDloc4 = ED_reg1; //input, OK

X_reg8 = Xloc1TR; //added, reg

X_reg8M = X_reg8; // OK

ED.write((sc_int<16>)EDloc4); //OK

XD_reg6 = XDloc2TR; //added, reg

ED_reg5 = EDloc4TR; //added, reg

TSep1 = (ED_reg5 * XD_reg6); //added

W_reg4 = WTR; //added, reg

TSep3 = (W_reg4 + (TSep1 / 32768)); //added

TSep3M = TSep3; //OK

W = (W_ctl1_In ? ((sc_int<16>)0) : (TSep3M)); //OK

Y.write((sc_int<16>)(Y_reg7.read() + ((W * X_reg8M) / 32768))); //OK

#ifdef DEBUG

printf("mi %d",procNum);

#endif

} // end process

