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Abstract

In this report we propose a stochastic traffic analysis and synthesis method-

ology

adapted to on-chip network traffic. This work confirms and extends re-

cent works (Marculescu et al. [13]) by providing more precise (cycle-accurate)
simulations. Our framework based on System-C simulations is able to model
precisely the latency of each request-acknowledge transaction or aggregated
throughput taking into account its bursty behavior. Our experiments show that
on-chip traffic is non-stationary, with long-range-dependence property and that
simulation platforms of systems-on-chip will now need to use advanced statis-
tical models for traffic simulation.
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Résumé

Ce rapport de recherche présente une méthodologie d’analyse et de synthese de
trafic adapté au trafic d’information transitant sur une puce. Ce travail confirme
et étends les travaux de Marculescu et al. [13] en utilisant des simulations
plus précises (cycle-pres). Notre environnement de simulation est basée sur
SystemC et nous permet de modéliser avec des processus stochastique le trafic,
en tenant compte des caractéristiques du premier (distribution de probabilité)

et du

second (fonction de covariance) ordres statistique. Les expérimentations

montre la présence de longue mémoire dans le trafic au niveau cycle, et ainsi
que l'utilisation de modele stochastique avancés est nécessaire pour faire une
modélisation pertinente.

Mots-clés:
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1 Introduction

Systems on chip (SoC) are now commonly used in embedded systems for multimedia and telecom-
munication applications. The computing power required by emerging applications running on
mobile terminals, such as video on mobile phone for instance, has pushed the development of
more complex SoC infrastructure so called multi-processor SoC (MPSoC) typically composed of
a number of master components (processors or DMA for hardware accelerators) connected to a
network on chip (NoC) or a hierarchy of busses.

The advent of on-chip network communications has significantly increased the design complex-
ity of such systems with some hard problems related to parallelism: non-determinism, memory and
cache coherency, efficient workload distribution and network contention. Solving these problems
during the short time available for design requires fundamental improvements in design method-
ologies. The most important shift is the setting of a refinement design methodology allowing
designers to explore design space at various levels of precision. These levels, called transaction,
bus-accurate, synthesizable, etc. allow the designer to check quickly that performances related to
various metrics are achieved before writing the complete description of the system.

During design space exploration, simulation time is a major problem. There are two run-time
behaviors very difficult to model at a high level: cache behavior and network contention. Precise
simulation of these two behaviors can only be done with a low-level description of the components.
This means hours (sometimes days) of simulation for a single execution or, as it is usually preferred,
the use of extremely expensive hardware emulators.

Reducing simulation time can be achieved by a clever analysis of the behavior of the system
during execution. We are interested in the simulation of on-chip network behavior and performance
evaluation. This is usually done by replacing each component by traffic generators.

Using traffic generator in a simulation platform involves the following steps: i) collecting
simulation traces by observing the behavior at the interface of each master component, i:) building
traffic models as close as possible to these traces, iii) writing traffic generator for each master
component based on these models, and iv) inserting them in the simulation platform in place of
original components. Most recent traffic generation methods use stochastic models. Statistical
analysis and synthesis of on-chip traffic are difficult because this traffic usually presents complex
statistical behavior. The precision of the simulation and the possibility of integrating the whole
process in an automatic (or at least semi-automatic) framework are important parameters for
evaluating the usefulness of a traffic generation environment.

In this paper we use stochastic traffic generators which are generated from trace analysis and
used in cycle-accurate simulations and performance evaluation of network-on-chip. Our main goal
here is to validate the statistical properties of the traffic generators with regards to the statistical
properties of original traces they were generated from. Especially, we want the bursty behavior of
traffic to be taken into account. There are two contributions in this paper:

e We present a complete methodology for stochastic on-chip traffic analysis and synthesis at the
cycle-accurate level.

e We perform cycle-accurate simulations in SystemC of a complete SoC including a NoC running
JPEG2000 and MP3 applications. We extend the result of [13] to cycle-accurate behavior: i) on-
chip traffic is non-stationary and must be split into phases and ii) on-chip traffic flows contain
long range dependent behavior that must be taken into account when synthesizing traffic.

The paper is organized as follows. In Section 2 we present the different techniques of traffic
generation. Section 3 presents the flow that we propose for analyzing and synthesizing on-chip
traffic. Section 4 presents our experimental results that highlight the points mentioned above.

2 On-chip Traffic Generators: Related Work

Traffic generators can be separated into two main categories: the deterministic approach, in which
traffic is produced using a finite state machine (FSM) configured by the 1P designer or using
a previous simulation trace, and the stochastic approach, in which the traffic is produced by



parameterized non-deterministic process. In this section we shortly review these two methods
with their pros and cons for on-chip traffic modelling.

2.1 Deterministic traffic generation

A deterministic traffic generator (TG) [5, 8, 7] is derived from real simulation traces or written
from scratch by 1P designers. Such a TG can generate accurate transactions in time, burst size and
idle time that match the behavior of an 1p. The advantages of such traffic generators are their
precision and the speedup factor that they can achieve compared to the complete 1P simulation.
One limitation of this approach is that the length of the simulation is limited by the length of
input traces used, furthermore, the main drawback of the deterministic TG is that it cannot handle
behaviors that are dependent on input data sets.

2.2 Stochastic traffic generation

The major part of NoC performance evaluation is currently done using random sources [14, 12, 6,
10]. These works mainly focus on the evaluation of the NoC in its early stage of development, and
on its performance under random traffic. However none of these works propose a fitting procedure
to determine the adequate statistical parameters that should be used to simulate traffic. This is
what we present in Section 3).

A stochastic modelling considers the traffic as realizations of stochastic processes, of which we
will consider the following two main characteristics :

e First order statistics represent how the values of a process are distributed. They are fully
described by the probability distribution function (PDF), which corresponds basically to the fre-
quency of apparition of each possible value taken by the process.

e Second order statistics represent how values of the process are correlated at all possible lag.
The covariance function y(I) = E(X ()X (t+1)) —E(X (¢))E(X (t+1)) of a process { X (t)} +en holds
such an information, this is how random variables distant of [ samples influence each other (E is
the expectation).

We present now the most important stochastic processes used to model these series. We classify
them into the classical models (no long-range-dependence) and the long-range-dependent models.
All of them are stationary processes models, that is to say their statistical properties (mean and
covariance function) do not change in time.

2.2.1 Classical Models

e 11D (Independent Identically Distributed) processes are the most common way of obtaining
random number series. Each random variable of the process is independent of the others. As a
consequence, bursty behavior cannot be taken into account and hence, IID processes cannot be
used as an accurate representation of traffic.

e ARMA (Auto Regressive Moving Average) processes correspond to the filtering of 1ID processes,
introducing some correlations between random variables. The covariance function decays expo-
nentially and is therefore only able to reproduce small-scales correlations. Bursty behavior can
hence be taken into account at small scales but not at large scales. For large scale bursty behavior,
long-range-dependent processes have been introduced [13].

2.2.2 Long-range-dependant models

Long-range-dependence (LRD) [3] is a very significant characteristic because it has been shown to
have very important impact on network performance [13, 9]. Not taking LRD into account leads to
a dramatic under-estimation of needed buffer sizes in the network. LRD behavior has been widely
found on Internet traffic [4] and demonstrated for on-chip multimedia traffic at the coarse-grain
level [13]. The important difference with the work presented in [13] is that our simulation occurs
at a cycle-accurate level leading to important results concerning some problems mentioned above
(cache behavior, network contention).



LRD processes are characterized by a slowly decaying covariance function that is no more
summable. Data are correlated over a non-limited range of time lags and this property results in
a scale invariance phenomenon. No characteristic time scale can be identified in the process, they
are all equivalent for describing its statistics: the part resembles the whole and vice e versa. This is
why LRD is also called Self-Similarity!. LRD implies in the scope of traffic analysis a bursty behavior
over a range of time scales. Long-range-dependence is fully described by the Hurst parameter H
that controls the decaying velocity of the covariance function, and therefore how much the process
is self-similar. H varies from 0.5, which corresponds to the I1ID case (no LRD), to 1. If H is near or
above 1, LRD is not sufficient to model the behavior, it can be the signature of the non-stationarity
of the trace.

The LRD processes that we consider are the following:

e The FGN (Fractional Gaussian Noise) is a common stationary LRD process. Its covariance
function exhibits a power-law decay, whose exponent is directly related to the Hurst parameter.
Originally it is a Gaussian process, the generation of non-Gaussian version of this process is
discussed in Section 3.2.

o FARIMA (Fractionally Integrated ARMA) processes combine both the short-range correlations of
an ARMA process and the long-range-dependence introduced by the fractional integration. Both
behaviors have distinct parameters, basically an LRD parameter H is added to the ARMA param-
eters. This is a versatile model adaptable to many situations.

2.3 On-chip traffic formalism

The traffic produced by a component is a sequence of transaction. The k" transaction is a 4-uple
(A(k), C(k), S(k), D(k)) meaning in this order, target address, command (read or write), size
of transaction and delay (number of cycles between two successive requests). This is illustrated
in Figure 1. From this transaction sequence, we define the aggregated throughput Wa (k), which
corresponds to the amount of bytes transfered in the time interval [kA (k4 1)A]. A is called
the window size.

We will model the series S(k), A(k), C(k), D(k) and Wa (k) by means of stochastic processes.
Hence in the following, {S(k)}ren will represent the stochastic process of the successive transaction
sizes.

A
| S(k) |
< Py I
i D(K)
Requests Req(A(k),C(k) ) R
: »
Responses Resp(k)

Time (cycles)

Figure 1: Traffic modelling formalism

3 Traffic Analysis and Synthesis

Generated traffic has to match the real execution to a certain extent. In the macro-network
community (Internet traffic analysis for instance), it is now widely admitted the first order statistics

1 Actually, LRD strictly corresponds to asymptotic second order self-similarity.



are not precise enough to model the behavior of the traffic. Long-range-dependence behavior must
be taken into account when analyzing or synthesizing traffic. Our proposal is that traffic generators
should be automatically synthesized and built from the analysis of execution traces to find out
which statistical laws can be used.

We present in this section our analysis and synthesis flow for building multi-model traffic
generators that can be used to replace an IP in cycle-accurate NoC performance evaluation.

3.1 Analysis Flow

Figure 2 shows the steps of our framework. We start from an initial cycle-accurate simulation of
a system including one or several masters. During the simulation we record the signal variations
at each interface of the master components in a veD (Value Change Dump) trace file.

Cycle-accurate

Phase extraction
Simulation

Y
VCD trace Phase description J
Y
Statistical analysis
Parser
|
. . Model instance J
Series

Figure 2: Traffic analysis and synthesis flow

A dedicated parser extracts from this trace all series introduced in 2.3.

e Phase extraction: As mentioned above, these series are usually non stationary, that is why
we need to cut them into reasonably stationary part and apply statistical analysis to each of them.
This splitting is currently done manually but we are studying solutions to automate this part using
the hypothesis that our traces are piecewise stationary.

e Statistical analysis is then performed on each extracted phase by a semi-automatic fitting
procedure that adjusts the first and second statistical orders [11].

The probability distribution function (PDF) (first statistical order) can be either fitted to some
classical distributions (Gaussian, Exponential, Gamma, Log-Normal, ...) or kept as they are (the
model is then the probability of apparition of each value of the process). The fit is done using
Maximum Likelihood Expectation and a x? goodness-of-fit test is used to compare and evaluate
all different solutions.

The covariance function (second statistical order) can be fitted to an ARMA (short range cor-
relations only), Fractional Gaussian noise (long-range-dependence only) or a FARIMA (both short
and long-range correlations). 1ID processes do not need a covariance fit. We use a wavelet-based



estimation of the Hurst parameter [2] widely adopted in the network traffic analysis domain. This
type of fit is new, it was never proposed for cycle-accurate NoC simulation. For FARIMA fitting,
we first have to remove long-range-dependence in the Fourier domain, and then run a standard
ARMA estimation procedure [11].

This fitting procedure (including the phase extraction) can be applied to the series presented
in Section 2.3, with possibly different models. The choice of what model to fit is currently done
manually, but we are studying some ways of automating it. The output for this procedure is a
phase description file which contains each chosen stochastic processes and fitted parameters for
each phase, and for each transaction process.

Currently, we use this complete fitting procedure either for the delay and size processes or for
the aggregated throughput one which combines both. In this paper we will only show results and
comments about the aggregated throughput.

3.2 Traffic synthesis

We have implemented a generic cycle-accurate traffic generator working as a multi-phase ran-
dom transaction generator. Transactions (the 4-uple (A(k), C(k), S(k), D(k)) introduced in
Section 2.3) are randomly generated according to the phase description file and a sequencer is in
charge of switching between phases.

Note that the TG issues a request on the network only if possible (if the network is ready). At
the k*" response reception, the TG waits D(k) cycles before attempting to issue the next request,
hence taking into account the network latency. A realistic traffic is therefore produced on the
network. We point out that our TG is flexible enough to be extended to other communication
schemes.

The random number generators we use are independent of the traffic generator itself. For
11D and short range dependent processes, implementation is straightforward, as well as for the
Gaussian LRD case [3]. The synthesis of non-Gaussian long-range-dependent processes is however
not a simple mathematical issue. Basically we have first to generate a Gaussian LRD process and
then to take a function of this process in order to get the right probability distribution function.
There exits two approaches. The one presented in [11] guarantees precise behavior but suffers
some restrictions in the shape of the probability distribution function and the one used in [13]
only guarantees asymptotic validity of the covariance function, but has less restrictions and is
faster. We use the first approach when the probability distribution function meets the restrictions,
otherwise we switch to the second one.

4 Experimentation

We now present some experiments showing that both the multi-phase behavior of application’s
traffic and the long-range-dependence property during some of the phases.

4.1 Experimental Platform

We use an open source, SystemC-based, cycle-accurate and bit-accurate simulation environment:
SocLiB [1]. It also contains cycle-accurate models for real network on chip that can be used for
network parameters estimations once the traffic generator have been synthesized.

The components of the platform are: a mMips R3000 processor (with its associated data and
instruction cache), two on-chip memories, and a component used for displaying output (referred
to as TTY). All these components are connected via VCI ports to a simple network. The internal
architecture of this network is not precisely simulated, only the latency and bandwidth can be
parameterized.

The application running on the MIPs, in addition to bootstrapping information, is composed
of the C program cross-compiled with GCC to a MIPS target.



We used two embedded programs: an implementation of the JPEG2000 image decompression
standard processing a 256x256 image, and a streaming MP3 audio decoder, processing a 4KB
stream. Table 1 shows the simulation parameters.

jpeg2000 | mp3
Simulated cycles (Millions) 91 24,3
Icache geometry (Lines * Words) 32x8 32x8
Dcache geometry (Lines x Words) 32x8 32x8
# Transactions (Millions) 4,3 1,2

# Data transferred (Mbytes) 84,4 24

Table 1: Simulation parameters

4.2 Results about phase decomposition

We have extracted the aggregated throughput {Wa }ren, with the window size A fixed to 128
cycles. In this data, we manually identified different behaviors corresponding to different phases
of the algorithm. For the JPEG2000 code, we have clearly identified the so-called “Tierl” arithmetic
decoder (T1) and the Inverse discrete wavelet transform (IDWT). The figure 3 shows respectively
a zoom of the aggregated throughput for IDWT (a) and T1 (b) parts of the algorithm. One can
see that the T1 part is clearly a reasonable candidate for stochastic modelling.

(a) (b)

Figure 3: (a) shows the IDWT part, and (b) the T1 part of the aggregated throughput in 128
cycles windows

5 10 15
i

Figure 4: Log-diagram (LD) of the complete T1 phase of jpeg2000



We estimated the covariance function over the complete T1 phase and Figure 4 shows repre-
sentation of it as a so-called log-diagram. This can be viewed as a spectral log-log representation
of the covariance, as a function of time scales. In such a diagram, long-range-dependence results
in a straight line behavior over a range of scales. The slope of the linear regression « is directly
related to the Hurst parameter (H = (a 4 1)/2), and especially if the slope is 0 (horizontal line),
H = 0.5 and there is no LRD.

Over scales 2% — 211 a regular long-range-dependent behavior is observed, which will be dis-
cussed in the next section. At higher scale range, we observed a line which would lead to H > 1,
being interpreted as non-stationarity in the complete trace. This shows clearly that the trace
should not be analyzed completely, but rather cut into reasonably stationary part for the results
to make sense. So we manually identified stationary parts and next section will show statistical
results on one of the extracted piece.

On the MP3 code, similar results were found not presented here. We can identify each frame
decoding, and inside each of these frames, we have been able to identify a randomly-varying part
corresponding to the heart of the algorithm, and a very regular write back to memory part.
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Figure 5: Comparison of original and synthetic (generated by TG) aggregated throughput trace
for a phase in the T1 part of the jpeg2000 application. Left column is the first order statistics,
right column is the Log-diagram of the covariance function.



4.3 Results about stochastic modelling

Figure 5 shows results for a phase extracted in the T1 part of JPEG2000 application on the SoC
platform mentioned above. Original traffic and synthetic traffic (obtained from synthesized TG) are
analyzed. As a summary of the discussion below, these results show clearly that our TG precisely
follow first and second order statistic properties of traces analyzed while this is not the case for
TG based on classical models.

e First order statistics are presented in Figure 5-(a), which shows the probability distribution
function. One can see that the distribution does not look like any classical distribution, so we
decided to keep it as it is, that is the parameters are the probabilities of apparition of each value.
e Second order statistics are depicted in the Figure 5-(b). The long-range-dependence is clearly
attested in the range of scale 24-2!! (linear behavior), which means over a range of about 250000
cycles. The trace has been fitted to a FARIMA process, so that the short range correlation (slight
decrease of the curve at small scale) is also fitted. We estimated H = 0.85, which is a classically
observed value in computer networks traffic analysis.

e Synthetic trace generation: We generated a realization of the fitted process (FARIMA and
custom probability distribution function) as explained in Section 3.2. Figure 5-(c,d,e,f) present
both the PDF (left figures) and the covariance (right figures) of a realization with the same size as
the input trace with LRD (c,d) and without LRD (e,f). We can see that first and second statistical
orders characteristics are in agreement with the one of the original trace in the LRD case, so that
statistical properties of first and second order have been captured. In the case of IID process,
we clearly see that only first order statistics are reproduced, leading in major difference in the
resulting traffic shape.

5 Conclusion and Future Work

In this paper, we have presented an on-chip traffic analysis and synthesis flow that can use several
traffic models for NoC traffic simulation. In particular, we introduced the use of long-range-
dependence stochastic models that can be used to generate bursty traffic in cycle-accurate simu-
lations. This LRD traffic generator bridges the gap between classical random generators, for which
each transaction is independent, and deterministic traffic generators.

Simulation phase splitting and TG generation have been illustrated using the SOCLIB cycle-
accurate simulation environment. Results show that first and second order statistical properties
are precisely simulated by our traffic generator, hence taking into account the bursty behavior of
traffic.

Future work is currently going on for automating the splitting procedure and validating this
flow for NoC architecture prototyping, including the optimization of buffer sizes in NoC routers.
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