
HAL Id: hal-00399618
https://hal.science/hal-00399618v1

Submitted on 27 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generic Multi-Phase On-Chip Traffic Generation
environment

Antoine Scherrer, Antoine Fraboulet, Tanguy Risset

To cite this version:
Antoine Scherrer, Antoine Fraboulet, Tanguy Risset. A Generic Multi-Phase On-Chip Traffic Gener-
ation environment. Application-specific Systems, Architectures and Processors, Sep 2006, Steamboat
Springs, Colorado, United States. pp.23-27, �10.1109/ASAP.2006.5�. �hal-00399618�

https://hal.science/hal-00399618v1
https://hal.archives-ouvertes.fr

A Generic Multi-Phase On-Chip Traffic Generation Environment

Antoine Scherrer∗

LIP - ENS Lyon

46, allée d’Italie

69364, Lyon cedex 7, France

antoine.scherrer@ens-lyon.fr

Antoine Fraboulet† Tanguy Risset

CITI laboratory - INSA Lyon

20 avenue Albert Einstein,

69621, Villeurbanne, France

firstname.lastname@insa-lyon.fr

Abstract

We present hereafter a framework for on-chip traf-

fic generation and networks-on-chip performance eval-

uation. This framework is based on a traffic gen-

erator that has three important characteristics: the

splitting of traffic generation in multiple phases, the

ability to replay a previously recorded trace in var-

ious interconnect systems, and the capacity to pro-

duce stochastic traffic with advanced statistical prop-

erties. We focus here on the second characteristics,

by validating it in cycle-accurate SystemC simula-

tions.

1. Introduction

In a near future, multi-processor SoC (MPSoC)
will be commonly used in every day’s life products.
This will represent a major technological shift with
the introduction of on-chip parallel architectures and
networks-on-chip (NoC). During the design of a SoC,
simulation is used extensively at various level of ab-
straction to validate the system. These levels, called
transaction level, bus accurate, synthesizable, etc.
have an increasing complexity. They are used to re-

fine the specification down to the hardware and soft-
ware components used in the SoC. Cycle-accurate
simulations are particularly costly, and are often
performed using extremely expensive hardware em-
ulators. However, these precise simulations are nec-
essary to prototype performances of highly non-pre-

∗This work has been partly founded by CNRS and ST-
Microelectronics

†This work has been done during a one year INRIA dele-
gation in the COMPSYS group at ENS Lyon

dictable behaviors such as cache misses and net-
work contention. This paper presents the princi-
ples of a simulation framework that we developed
for NoC performances evaluation. We believe that
the prototyping of on-chip network (or of any on-
chip communication medium) will be extremely im-
portant in next generation SoC because i) an exact
prediction of the network traffic is impossible and
ii) over-dimensioning the on-chip network might be
very costly in terms of chip area and power con-
sumption. To perform NoC prototyping, designers
commonly use traffic generators in simulation be-
cause cycle-accurate simulations integrating all SoC
components are too slow. These traffic generators
are supposed to emulate hardware components (or
intellectual properties, ips) and can be built after
analyzing simulation traces of original components.
This approach is efficient for dedicated ips (such
as hardware accelerators) but is much less precise
for processors and caches which clearly exhibit non-
predictable behaviors.

This paper explains how we have set up a traf-
fic generation (mptg) environment integrating ad-
vanced statistical analysis to model efficiently on-
chip communication traffic. An important property
of our environment is the fact that it can produce
multi-phase traffic in order to switch model parame-
ters during the simulation to match application com-
putational phases. Another original feature, com-
pared to existing similar environments, is the ability
to create long-range-dependence (lrd) behavior for
stochastic phases. This feature will not be presented
here (the interested reader is referred to [11]). This
paper focuses on practical experiments to demon-
strate that i) the traffic generated by our environ-
ment is very close to the traffic it is supposed to
emulate and ii) the multi-phase approach is manda-

1

antoine.scherrer@ens-lyon.fr
firstname.lastname@insa-lyon.fr

tory to model traffic generated by embedded mul-
timedia applications. These facts are demonstrated
by cycle-accurate simulation of complete SoC plat-
forms in SystemC using the SoCLib [1] simulation
environment. Next section presents more in detail
the work related to on-chip traffic modelling. In
Section 3, we present our simulation framework and
more details about the mptg are given in Section 4.
Experimental results are shown in Section 5.

2. On Chip Traffic Modelling

NoC performances are mainly evaluated with traf-
fic generators (tg). A traffic generator generates
a sequence of transactions (we call a transaction
a request/response pair) with some characteristics
which are as close as possible to the ip it emu-
lates. The characteristics that are usually emulated
are: target address, command (read or write), delay
(number of cycles between two successive transac-
tions), burst size (number of bus-words transmitted
in a transaction). tg are often chosen because of
the speedup factor they can achieve compared to
the complete ip simulation but their most impor-
tant advantage is that they can be parameterized,
leading to a more flexible prototyping environment.
Generating a tg should be done automatically. For
instance, in [7] a trace compiler generates a program
for a reduced instruction set processor. The latter
will play the transactions in a cycle-accurate simu-
lation without having to simulate the complete ip.

Traffic generators can be deterministic or stochas-
tic. The deterministic approach is used to model
ips with a very regular behavior or when a stochas-
tic framework is not available, this is the approach
taken in [4, 7, 6]. In a stochastic tg the traffic is
produced by parameterized non-deterministic pro-
cess [14, 5, 9]. For example [5] uses stochastic mod-
els for generating transaction’s sizes and times be-
tween two transactions using several statistical laws
(Poisson, Exponential and Normal). Stochastic tg

can be categorized according to the statistical prop-
erties they can emulate. The first property pro-
vided is the emulation of the probability distribu-
tion function (pdf) which is the first order statis-
tics. The pdf shows the statistical distribution of
the values of a process. A more accurate framework
takes into account the correlations between values
of a process (second order statistics), represented by
the covariance function. In particular, long-range-
dependence is detected in second order statistics. To

our knowledge, only our mptg and the simulation
method used in [13] are able to model long-range-
dependence processes in a SoC. However the work
presented in [13] deals with macro-bloc size commu-
nications in mpeg2 applications while we provide
cycle-accurate simulations. Long-range-dependent
behavior is likely to have an important impact on
network contention as is was demonstrated on In-
ternet communications [8]. To our knowledge, none
of the environments mentioned here permit to de-
compose the traffic in phases with different charac-
teristics. We call a phase a splice of a trace whose
statistical characteristic are stable in time, and this
is likely to correspond to different parts of the pro-
gram being executed. This part has often been omit-
ted because emulating with precision a stationary
stochastic process is itself a difficult problem. We
think that multi-phase traffic generation is manda-
tory and is also an interesting research problem.

3. Simulation Framework

The results presented in this paper have been ob-
tained in the SoCLib simulation environment [1].
SoCLib is a library of open-source cycle-accurate
SystemC simulation models. Example of simula-
tion models available in SoCLib are: a mips R3000
processor (with its associated data and instruction
cache), standard on-chip memories, dma controller
and several kinds of networks-on-chip. Two NoC
simulation models are available in SoCLib: Spin [2]
and DSpin which is a distributed version of Spin
with many improvements, both have been provided
by the Lip6 laboratory. The network-on-chip we use
is a set of 4 ports routers that can be interconnected
in mesh topology in order to provide the desired
packet switched network architecture.

The software running on the processors are com-
piled with the gnu gcc tool suite. We used a tiny
multiprocessor operating system called mutek [10]
to run the application. Interconnecting the differ-
ent SystemC models to obtain a complete platform
is not an easy task. A script (called SocGen) has
been written to generate automatically the SystemC
interconnection file from a very simple text file de-
scribing the components used in the platform and
the architecture of the network. This script also gen-
erates software configuration files so that the simu-
lation can immediately take place. We think that a
platform generator tool like SocGen is an essential
component of any SoC simulation environment.

2

Performance EvaluationMulti−Phase Traffic Generator ConfigurationReference Trace

Parser

Segmentation

Analysis

Compression

Synthesis

Stochastic

Selection
Models

Compressed
Trace

TG Config

MPTG
Config

SocGen

Design Space
Exploration

Simulation

Platform
Description

Performance
Analysis

MPTG IP
Generic

SystemC
IP

without interconnect
Simulation

Trace

Application
IP

Processor

Figure 1. Complete simulation flow with MPTG framework

4. Multi-Phase Traffic Generator

In our methodology, a mptg is generated by a
software framework that is described here. The whole
mptg generation process is illustrated on Fig. 1.

• Trace generation: first we generate a trace by sim-
ulating the ip to be emulated. This trace is obtained
with an ideal network environment: no network con-
tention. This point is important, it allows us to
avoid a cycle-accurate simulation of the complete
SoC for tg generation process, and to use again the
tg in various interconnect architectures. In our ex-
periments this ip consists in a mips processor and
its associated instruction and data caches.

• Trace analysis: this trace is parsed, segmented and
analyzed in order to extract the sequence of trans-
actions. This sequence can then be either adjusted
to some stochastic process (see [11] for details), or
just recorded and compressed (using the bz2 block-
sorting algorithm) in order to be replayed later.

• TG configuration: a generic traffic generator ip

has been written, once for all, in SystemC. This tg

uses a configuration file which indicates what kind
of process it should generate. A simple format has
been defined for the configuration file. This file is
generated by the synthesis program, hence the de-
signer do not have to write it. For stochastic process
generation, we used an open source C library called
newran [3], that we have extended with functions to
generate long-range-dependent processes.

• Simulation with TG: a complete SoC platform can
now be simulated using our tg instead of original
ips. This platform can include the simulation model
of a real network and can be run with different pa-
rameters (ips positions, buffer sizes) so that NoC
prototyping can be done.

Multi-phase traffic can have a very important im-
pact on network’s performance. That is to say at

some point the traffic may be very low, whereas as
some other point it can be very high. Each phase in
our tg can be either randomly generated by means
of stochastic processes, or can be constituted of a
recorded piece of the original trace. During execu-
tion, the tg switches between phases. In this work
the segmentation has been done manually. This was
possible because of the regularity of the multimedia
applications we used but still needs to be automated
in a futur work.

5. Performances Results

In this section, after discussing the simulation
time issue, we present experimental results showing
the accuracy of the mptg.

We performed experiments with three different
applications: a mp3 decoder, a jpeg decoder and
a mpeg decoder. In this paper, we present results
with the mp3 application and the DSpin NoC, re-
sults concerning other application and other NoC
are similar and are available in [12]. The SoC plat-
form on which we made our experiments is based
on a mesh architecture using several ips and routing
configurations. We also include background traf-
fic generators to create random network contention
during performance measurements.

5.1. Design time setup

We explain here the work needed to setup a NoC
performance evaluation platform and give an esti-
mation of the additional design effort needed to use
mptg in the design flow. The different steps of the
methodology are the following: i) generation of the

initial platform. It consists in writing the configura-
tion file and running the SocGenwhich is immediate.

3

processors 1 2 3 4

mesh size 0x0 2x2 3x3 4x4

mips Sim. Time 35.44 142.5 304.5 683.50

mptg Sim. Time 15.05 102.9 190.9 406.3

Speedup 2.35 1.38 1.59 1.68

Table 1. Simulation time (s) of MIPS versus
various generated TG (5.106 simulated cy-
cles of MP3 application)

ii) Initial simulation of a mips platform. iii) Trace

analysis and phase determination. Trace analysis
takes approximately a minute for a 5 million cycles
simulation. The mp3 application is decomposed in
a repetitive sequence of two phases, this can be eas-
ily detected as seen on Fig 2. vi)tg configuration

file generation is immediate once the designer has
chosen the phases.

Except for the phase identification process, we
can safely affirm that no additional time is spent by
the designer when using mptg, provided he is used
to mptg tools. Most of the time will be spent in
initial and final simulation. An important feature
of our mptg framework is that when changing a
parameter of the platform (e.g. the architecture or
the router’s buffer size) only the mptg platform has
to be simulated again.

5.2. Simulation Time

We compared the simulation time of the mp3 de-
coder application running on the original mips and
on the corresponding tg generated from it. Sim-
ulation results are shown in table 1, the rows la-
belled mips Sim. Time corresponds to the simula-
tion of a platform including mips processors (with
data and instruction cache) and memories. The Row
labelled mptg Sim. Time corresponds to simulation
in which the tgs replaced the mips and cache.

We insist on an important point here, the mea-
sures presented in this section do not exhibit a dra-
matic reduction in simulation time (between 1.5 and
2.5) because much of the simulation time is spent in
the interconnection system. We argue that the real
benefit of a traffic generation environment lies in the
flexibility of the tool. For instance, the application
probably have a particular phase during which most
of the NoC problems occur. Simulating only this
phase is very easy with mptg just by keeping some

Figure 2. Segmentation of the MP3 aggre-
gated throughput into four phases

phases in the tg configuration file, while it is often
much more difficult to isolate subsets of program
execution from the whole execution of the applica-
tion. Another important point is that tgs can be
used without having access to the source code of the
original ips, which is useful if network prototyping
is done by a third party.

5.3. Validation of the traffic accuracy

We first executed the mp3 application on a mips

(with its associated instruction and data cache) di-
rectly connected to a memory, and recorded the
communication trace at the vci (Virtual Compo-
nent Interface, used in SoCLib interface of the cache.
This platform is referred as no NoC. The trace was
manually segmented into phases (see Fig. 2). We
then followed the flow of Fig. 1 and generated three
different traffic generators used on our mesh plat-
form referred as with NoC. In the replay configura-
tion the mips traces are replayed by the tgs. In
the simple configuration the tgs generate a mono-
phase stochastic traffic with throughput mean and
variance fitted on the reference trace. In the mptg

configuration, the tgs take the two phases into ac-
count and the probability distribution function is
taken into account per phase. These tgs can replace
the mips and emulate the mp3 application traffic.

The results are presented in table 2. We show the
relative cycle count error on the mean throughput
for each identified phases with respect to the origi-
nal mips simulation. As expected, on the platform
without NoC, replay and mptg exhibit very good
results. The simple tg however is inaccurate be-
cause statistics were adjusted on the complete trace,
so even if the global error remains low, the error on

4

Platform Config. #cycle Throughput av. error
error global P0 P1

no NoC replay 0 % 0 % 0 % 0%

no NoC simple 5 % -1.8 % 22.3 % 13.6 %

no NoC mptg 0 % 0 % 0.1 % -0.2 %

with NoC replay 0.08 % 0 % 0 % 0.1 %

with NoC simple 0.65 % -6.6 % 15.4 % 5.8 %

with NoC mptg -1.7 % 1.4 % 1.2 % 1.8 %

Table 2. Relative mean error of cycle count
and throughput (per phase) with respect to
the reference MIPS simulation

each phases is very high (the error is then relative to
the mean of each phase which are different), leading
to a traffic that cannot be acceptable to model the
mp3 application running on the mips. This shows
that multi-phase traffic generation is necessary for
a tg to produce accurate traffic. A very impor-
tant point is that these results hold when the same

TGs are used without NoC and with a real NoC.
The relative error of mptg remains lower than 2%,
whereas for the simple tg is goes up to 15%. This
is achieved because our traffic generator self adapts
to the network, sending the data only if possible,
therefore producing an realistic traffic whatever the
interconnection system might be.

6. Conclusion

In this paper we presented our methodology for
networks-on-chip performance evaluation. We ex-
plained how the mptg was built and we showed that
its ability to replay a trace obtained from a fast
simulation can be used by a designer who wishes
to prototype different network architectures. The
contribution of this paper is to show that mptg is
a very good candidate for NoC traffic prototyping.
We pointed out that multiple phases are necessary to
emulate correctly a processor-like ip. We also show
experimental results that validate the accuracy of
the traffic generated by mptg. This should con-
vince the reader that multi-phase traffic generation
is needed and that our environment provides good
accuracy in traffic modelling. Our current work is
now to provide further experiments in which more
network characteristics are analyzed with our mptg.
We are also actively investigating the automation of
the trace segmentation.

References

[1] Soclib simulation environment. On-line, available
at http://soclib.lip6.fr/, 2005.

[2] A. Adriahantenaina, H. Charlery, A. Greiner,
L. Mortiez, and C. A. Zeferino. Spin: A scalable,
packet switched, on-chip micro-network. In DATE
03 Embedded Software Forum, pages 70–73, 2003.

[3] R. Davies. Newran c++ random number library.
On-line, available at http://www.robertnz.net/,
Nov. 2005.

[4] N. Genko, D. Atienza, G. D. Micheli, J. M. Men-
dias, R. Hermida, and F. Catthoor. A Com-
plete Network-On-Chip Emulation Framework. In
DATE 05, pages 246–251, 2005.

[5] K. Lahiri, S. Dey, and A. Raghunathan. Evaluation
of the traffic-performance characteristics of system-
on-chip communication architectures. In VLSID
’01, 2001.

[6] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and
R. Zafalon. Analyzing On-Chip Communication in
a MPSoC Environment. In DATE 04, pages 752–
757, 2004.

[7] S. Mahadevan, F. Angiolini, M. Storgaard, R. G.
Olsen, J. Sparsø, and J. Madsen. A network traffic
generator model for fast network-on-chip simula-
tion. In DATE 05, pages 780–785, 2005.

[8] K. Park and W. Willinger. Self-similar network
traffic: An overview. In K. Park and W. Willinger,
editors, Self-Similar Network Traffic and Perfor-
mance Evaluation, pages 1–38. 2000.

[9] S. G. Pestana, E. Rijpkema, A. Radulescu,
K. Goossens, and O. P. Gangwal. Cost-
Performance Trade-Offs in Networks on Chip: A
Simulation-Based Approach. In DATE 04, pages
764–769, 2004.

[10] F. Pétrot and P. Gomez. Lightweight Implemen-
tation of the POSIX Threads API for an On-Chip
MIPS Multiprocessor with VCI Interconnect. In
DATE 03 Embedded Software Forum, pages 51–56,
2003.

[11] A. Scherrer, T. Risset, and A. Fraboulet. Analysis
and synthesis of cycle-accurate on-chip traffic with
long range dependence. Research report 2005-53,
École Normale Supérieure de Lyon, Nov. 2005.

[12] A. Scherrer, T. Risset, and A. Fraboulet. Multi-
phase on-chip traffic generation environment. Re-
search report 2006-22, École Normale Supérieure
de Lyon, June 2006.

[13] G. Varatkar and R. Marculescu. On-chip traffic
modeling and synthesis for mpeg-2 video applica-
tions. IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, 12(1):108–119, 2004.

[14] D. Wiklund, S. Sathe, and D. Liu. Network on chip
simulations for benchmarking. In IWSOC, pages
269–274, 2004.

5

http://soclib.lip6.fr/
http://www.robertnz.net/

	. Introduction
	. On Chip Traffic Modelling
	. Simulation Framework
	. Multi-Phase Traffic Generator
	. Performances Results
	. Design time setup
	. Simulation Time
	. Validation of the traffic accuracy

	. Conclusion

