
HAL Id: hal-00399609
https://hal.science/hal-00399609v1

Submitted on 26 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast and Accurate Embedded Systems Energy
Characterization Using Non-intrusive Measurements

Nicolas Fournel, Antoine Fraboulet, Paul Feautrier

To cite this version:
Nicolas Fournel, Antoine Fraboulet, Paul Feautrier. Fast and Accurate Embedded Systems Energy
Characterization Using Non-intrusive Measurements. Integrated Circuit and System Design. Power
and Timing Modeling, Optimization and Simulation 17th International Workshop, Sep 2007, Gothen-
burg, Sweden. pp.10-19, �10.1007/978-3-540-74442-9�. �hal-00399609�

https://hal.science/hal-00399609v1
https://hal.archives-ouvertes.fr


Fast and Accurate Embedded Systems Energy

Characterization Using Non-intrusive

Measurements

Nicolas Fournel1, Antoine Fraboulet2, and Paul Feautrier1

1 INRIA/Compsys ENS de Lyon/LIP, Lyon F-69364 France
2 INRIA/Compsys INSA-Lyon/CITI, Villeurbanne F-69621 France

Abstract. In this paper we propose a complete system energy model
based on non-intrusive measurements. This model aims at being inte-
grated in fast cycle accurate simulation tools to give energy consumption
feedback for embedded systems software design. Estimations takes into
account the whole system consumption including peripherals. Experi-
ments on a complex ARM9 platform show that our model estimates are
in error by less than 10% from real system consumption, which is pre-
cise enough for source code application design, while simulation speed
remains fast.

1 Introduction

With present day technology, it is possible to build very small platforms with
enormous processing power. However, physical laws dictate that high processing
power is linked to high energy consumption. Embedded platforms are mostly
used in hand held appliances, and since battery capacity does not increases
at the same pace as clock frequency, designers are faced with the problem of
minimizing power requirements under performance constraints.

The first approach is the devising of low-energy technologies, but this is out-
side the scope of this paper. The second approach is to make the best possible
use of the available energy e.g. by adjusting the processing power to the instanta-
neous needs of the application, or by shutting down unused parts of the system.
These tasks can be delegated to the hardware; however it is well known that the
hardware only source of knowledge is the past of the application; only software
that can anticipate future needs. Energy can also be minimized as a side effect of
performance optimization. For instance, replacing a conventional Fourier trans-
form by an FFT greatly improves the energy budget; the same can be said of
data locality optimization, which aims at replacing costly main memory accesses
by low-power cache accesses.

The ultimate judge in the matter of energy consumption is measurement
of the finished product. However, software designers, compilers and operating
systems need handier methods for assessing the qualities of their designs and
directing possible improvements. Hence designers need simple analytical models
which must be expressed in term of software visible events like instructions,



cache hits and misses, peripheral activity and the like. There are several ways of
constructing such models. One possibility is electrical simulation of the design;
this method is too time-consuming for use on systems of realistic size. Another
method is to interpolate/extrapolate from measurements on a prototype. This
is the method we have applied in this work.

The paper is organized as follows. After reviewing state of the art techniques
in section 2 we present in section 3 a methodology to build complete platform en-
ergy consumption models oriented for software development. Section 4 presents
the resulting model for an ARM9 development platform. This section also val-
idates our model on more significant pieces of code, multimedia applications,
thanks to its implementation in a fast and cycle accurate simulation tool. We
then conclude and discuss future work.

2 Related Works

Many works focus on energy characterization of VLSI circuits. We can organize
them using two main criteria: their level of hardware abstraction and the cali-
bration method. For the first criterion, we can group the models in three main
categories which are, by increasing level of abstraction, transistor/gate level mod-
els, architectural level models and finally instruction level models. Among these
models there are usually three methods for building consumption models. The
first method is analytical construction, the second one is simulation based, and
the third is based on physical measurements.

In transistor (gate) level models, all transistor (gate) state changes are com-
puted to give an energy consumption approximation for a VLSI component.
This method is highly accurate, but a complete description of the component is
needed. The models built at this level of abstraction are generally reserved to
hardware designers and are very long to simulate.

At the upper level of abstraction, architectural or RTL level, the system is
divided in functional units. Each unit can be represented by a specific model
adapted to its internal structure.(e.g. bit-dependent or bit-independent models
for Chen et al. [1]). To be more accurate some works, like Kim et al. [5], subdivide
the block into sub-blocks to apply different models on each sub-block. This
family of models allows to extend model to a complete platform, but the models
proposed so far are not able to execute a full software system.

The highest level is instruction/system level of abstraction. At this level,
models are based on events such as instructions execution ([13,7,9]). Tiwari et

al. in [13] propose to characterize the inter-instructions energy consumption,
which represents the logic switching between two different instructions. Others
works also take into account the logic switching due to data parameters [11].
The system considered in these models is generally composed of CPU, bus and
memory. Only few works focus on modeling a complete platform. Among them,
EMSIM [12] is a simulator based on Simunic et al. [10] model for the StrongARM
SA110 energy characterization. This simulator poorly characterizes the periph-
erals. The SoftWatt simulator proposed in [4] uses a complete system simulator



based on SimOS to monitor a complex operating system and interactions among
CPU, memory hierarchy and hard disk operations. Their simulator is modified
to include analytical energy models and the output reports kernel and user mode
energy consumption up to the operating system services level of granularity. Data
are sampled during simulation and dumped to log files at a coarser granularity
than cycle level, leading to average power consumption figures. The closest work
to ours, AEON’s model [6], is a complete platform energy consumption model
based on measurement and uses simulator internal energy counters. The tar-
geted platform is an 8 bit AVR micro-controller based sensor network node that
does not include CPU pipelines, complex memory hierarchy and peripherals.
Our model allows the simulation of much more complex hardware architectures
while being independant of simulator internals.

As far as calibration methods are concerned, analytical models are generaly
based on manufacturers data, e.g. in Simunic et al. [10] the model is built thanks
to datasheet informations. Simulation based calibration needs a full knowledge of
the underlying level architecture, which means that it needs a description of low
level hardware (VHDL, or Verilog descriptions). Measurement based methods
only need few informations on the hardware and works like [13,2] have shown that
it is possible to extract internal unit consumption from system measurements.

In this paper we propose a methodology for complete platform energy con-
sumption model construction based on simple and non-intrusive measurements.
The model is built at a level of abstraction close to the system level presented
before, but is extended to the complete platform by coupling it with architec-
tural level principles presented by Kim et al. in [5]. We also take peripherals
energy models and dynamic frequency and voltage scaling into account.

3 Model construction basics

We present in this section our methodology to build complete platform models.
We first give more details on the structure and the parameters of the energy
model. Section 4 will present the target dependent model parameters through a
case study on an ARM9 based platform.

3.1 Model structure and parameters

Our choice among all the modeling methods which have been presented in Sect. 2
is to build an architectural level model, in which the system is divided into its
main functional blocks at the platform based level such as CPU, interconnection
bus, memory hierarchy, peripherals. . . The energy consumption of an application
Eapp is obtained be adding all blocks consumptions Ebl.

Each block can have its own energy consumption model. To have a platform
model better suited for software development, we use instruction level abstrac-
tion for CPU. CPU energy consumption ECPU is described in equation 1.

ECPU = Einsn + Ecache + EMMU (1)



The energy consumption is the sum of the energy consumed by instruction
execution, plus cache and MMU overheads consumptions, and consumption of
all other blocks of the platform.

Eapp = ECPU +
∑

Ebl (2)

This model aims at being integrated in a full platform cycle accurate simula-
tion tool. The most interesting way of writing the model for this kind of purpose
is to define a time slot energy consumption. The chosen time slot is the CPU
instruction execution. There are two reason for choosing this time reference. The
first is that it is the finest time reference since CPU have generally the high-
est clock frequency in embedded systems. Secondly, interrupt requests, the only
mean for the hardware peripherals to interact with the software, are managed
at the end of instructions execution. From a software point of view, there is no
need to use a finer time reference to report hardware events more precisely.

The model can be rewritten in a form where the consumption of CPU and
other blocks are reported for the currently executed instruction. All E∗ will be
kept for overall application consumptions, for the sake of notation simplicity the
consumption at instruction level of granularity will be noted as E∗. This new
model formula is expressed in the following equation:

Eslot = ECPU +
∑

blocks

Ebl (3)

The last peculiarity in this model is the measurement based data collection.
As we only get global measures for the platform consumption, we can foresee
that the base consumptions of each block will not be easily distinguishable. We
mean here that once the embedded system is put in its laziest state, idle state for
example with all possible units powered off, the resulting consumption is consid-
ered as a base consumption regrouping the base consumption of every powered
peripherals. Obviously, a part of this consumption is static power dissipation.
We will call this term Ebase, it is important to note that this consumption is
reported to the current executed instruction on the CPU. It can be expressed
as in equation (5), as it is dependent on the instruction length linsn in terms of
clock cycles. Equation (3) becomes equation (4).

Eslot = Ebase + ECPU +
∑

Ebl (4)

Ebase = linsn × Ec base (5)

The CPU and other blocks consumption are then expressed as overhead
against the idle state. As described in equation (1), CPU energy consumption is
given by the executed instruction energy cost. This model can be simplified by
regrouping instructions in classes as proposed in [7]. As far as other blocks are
concerned, we can expand them as bus, memories and other peripherals. This
is interesting since bus and memories will be subject to events generated by the
processor, such as memory writes. The peripherals will be then modeled by state
machines giving the energy consumption of the peripheral during the time slot.



The last step in model construction consists in defining all possible parame-
ters for these components. Due to the limited information available, the devel-
opers would not necessarily know the behavior of intra-blocks logic. The param-
eters for the CPU are already selected, since it is modeled thanks to instructions
consumptions. The same can be done for cache, MMU and even co-processors
consumptions. The parameters for other blocks are limited to behavioral param-
eters (UART sending a byte) and their states such as operating modes.

Each energy cost in this model is function of the running frequency and
power supply voltage to allow dynamic and frequency scaling capabilities of the
platform to be modeled. An example of this is presented in the next section.

4 Model Construction Case Study

In this section we propose an example of our methodology application. This
methodology was applied on a ARM based development board. This platform
uses an ARM922T and usual embedded systems peripherals (e.g. UART, Timers,
network interface) on the same chip. Our hardware architecture exploration re-
veals that the platform has three distinct levels of memory, a cache, a scratchpad
and main memory. All peripherals are accessible through two levels of AMBA
bus. We will give details about the energy consumption model construction for
this platform, then we will check the accuracy of the resulting model.

4.1 Methodology application

The complete platform modeling method presented in section 3.1 is applied on
our ARM9 platform in this section. The measurement setup used for these ex-
periments is close to the one depicted in [9]. We used a digitalizing oscilloscope,
the shunt resistor is replaced by a current probe and we also used a voltage probe.

Calibration benchmarks. We built benchmarks to calibrate our model, more
precisely our block models. The hardware exploration gives us the main blocks
to be modeled, namely the CPU, the different bus levels, the memory levels, and
the other peripherals such as UART, interrupt controller or timers.

For example, the selected parameters for our CPU model are the CPU in-
structions, or possibly class of instructions, plus the caches and MMU activities.
We thus built benchmarks to evaluate the cost of possible parameters, in order
to select only relevant ones. Here are examples of benchmarks that were used,
and their target event:
• loop-calibration: Measurement loop overhead benchmark. By running an
empty loop, we can estimate the loop overhead.
• insn-XXX: Comparison of CPU instructions execution costs (add, mov, . . . ).
The target instruction is executed many times inside a loop.
• XXX-access: Calibration of costs of each bus level (AHB1/2) and memory
level (cache, scratchpad or main memory), depending on the address accessed.
• timer-test: Example of peripherals energy characterization, this benchmark



Table 1. Benchmarks results for simple operation energy calibration

bench name length energy (nJ) error (pJ)

loop-calibration 4 69.084 5.1777
insn-nop 1 16.747 1.2884
AHB1-access 6 101.33 7.7132
AHB2-access 18 300 22.998
Dcache-access 1 17.146 1.3007
mem-access 40 775.44 54.551
spm-access 8 131.72 10.168
timer-test on(nop) 1 16.754 1.2857

allows us to measure the timer power consumption. It is subdivided into two
benchmarks, one in which the timer is stopped and the second in which the
timer is running. The structure of the loop is the same as the insn-XXX bench-
mark with a nop instruction.

Calibration results. Benchmark energy results examples are listed in table
1. Full results are available in [3]. These results represent for each benchmark
the length of the calibrated event in CPU clock cycles (second column), the
per-event raw energy cost measured on the complete platform (third column)
and the measurement error (fourth column). Energy costs reported here give
the consumption of the complete platform for an full event execution. These raw
costs have to be refined to get the final parameters.

As an example, the scratchpad memory access benchmark result (spm-access)
gives the energy consumption of the CPU executing a load instruction, the bus
conveying the load request and response and finally the scratchpad memory. The
bus access cost includes the register accesses in the targeted peripherals since it
is impossible to dissociate their costs. By removing the consumption of the CPU
(one load and seven nop) and bus consumption, we finally obtain the scratch-
pad memory access cost. Experiments reported in [3] shows that the scratchpad
memory does not consume more energy than a register accessed via the bus.

Other model simplifications are possible. For example, the CPU cache models
are simplified by taking into account only memory access bursts in case of misses
since the overhead can be neglected.

The basic model presented in section 3.1 can be rewritten, by using models
simplifications obtained by calibration. We found that most instructions have
the same energy consumption as long as they stay inside the CPU. Currently
only ARM32 instruction set is modeled. Thumbs (16bit) instruction set can
be modeled using the same benchmark methodology. In our setup, it is not
possible to isolate the instruction cache consumption, which is lumped with the
instruction consumption. ICache misses can be modeled as memory accesses.

We finally have a model for which CPU instructions are grouped in two
classes, arithmetic and logic intra-CPU instructions, and load / store instruc-
tions. A memory load access is modeled as a load instruction, plus a bus over-
head, plus a memory overhead. Peripherals energy consumption are taken into



1 3 5 7 9 11 13 15 17
0.0e+00

2.0e−07

4.0e−07

6.0e−07

8.0e−07

1.0e−06

1.2e−06

1.4e−06

1.6e−06

1.8e−06

2.0e−06

clock divisor

en
er

gy
 p

er
 e

ve
nt

 (
J)

+ +
+

+

+

+
+ +

+

+

+ + + +
+

+
+

+

+

+

+

+

+

+

+

loop−cal
insn−cmp_mul
insn−cmp_nop

AHB1−reg−write
AHB2−reg−write

Fig. 1. Multiple frequencies experiments: This figure shows that the energy per
event increases linearly with the clock period.

account thanks to state machines that give their consumption during instructions
execution. The final model is written on Equation (6).

Eslot = Ebase + Einsn + Ebus access + Emem +
∑

Eperiph state (6)

Eslot is the energy consumption of the instruction execution time slot, Einsn

is the cost of instruction given by its class cost, Ebus access is the bus overhead
cost for load or store instructions, Emem is the overhead for memory accesses.
The last term represents the sum of the energy overhead of peripherals state.
These cost are all overhead costs, since the full consumption of a peripheral cost,
for example, is given by its base energy cost comprised in Ebase and the overhead.

Frequency Scaling. The model presented before is valid for full speed software
execution. However, the Integrator CM922T has frequency scaling capabilities
but no dynamic voltage scaling (DVS) capabilities, hence when we reduce the
frequency we cannot decrease energy consumption. When repeating five bench-
marks at different frequencies, we obtain the curves in Fig. 1. This figure rep-
resents the per event energy values for the five benchmarks as a function of the

clock divisor, r = fref

f
where fref is the nominal frequency (198 MHz here).

These curves show that energy per event increases when frequency is de-
creased, and this may seem counter-intuitive. To understand these results ob-
serve first that a given event, e.g. the execution of some specific instruction,
entails an almost constant number of bit flips, and that each flip uses a fixed
amount of energy. Hence, to a first approximation, and in the absence of volt-
age scaling, the energy for a given event should be a constant. However, in our
platform, frequency scaling acts only on the processor and Excalibur embedded
peripherals; the consumption of other peripherals and external memories is not
affected. Hence, the addition of a parasitic term which is roughly proportional to



Table 2. Linear regression from curves of Fig. 1 based on the formula 7

Benchmark name Erp base (nJ) Emc (nJ) error (pJ)

insn-mul 10.91 26.37 572.36

loop-calibration 10.52 19.22 258.90

insn-nop 10.54 6.35 105.61

access-AHB1 11.06 36.72 1085.37

access-AHB2 11.06 106.32 3431.46

the duration of the event or inversely proportional to frequency. This is clearly
the case for the curves of Fig. 1.

We must underline that all five benchmarks generate activity in the modified
clock domain (CPU), but not on the remaining part of the platform. On top of
that we kept all peripherals in the modified clock domain in an idle state. Hence,
the event energy cost namely Eevt, which can be an instruction execution or a bus
access for examples. In this consumption we can identify two types of sources.
The first is the energy due to modified clock domain Emc, which is constant
The second is the one due to the remaining part of the platform Erp base. Their
relation in the total consumption of event is given by relation:

Eevt = Erp base × linsn × r + Emc (7)

The first term is dependent on the frequency ratio r and the instruction length
linsn, whereas the second is not. Linear regressions on the results presented in
Fig. 1 are shown on table 2. As shown in this table, equation (7) give a good
explanation for the experiments on clock frequency variation. These results gives
us an estimation of what we can consider as base energy, which is not changing
against software execution. The last two columns are the events real consumption
and the regression error. The value for the base energy can be approximated by
the mean value 10.82 nJ per cycle (with a standard deviation of ±2.6 10−2).

4.2 Model validation

We describe here our accuracy tests experiments. Our model is implemented in
a simulator, and its results were compared to physical measurements.

Simulator Integration. Our model is implemented in a simulation tool suite.
The simulation tools are composed of two simulators. The first is a complete
platform functional simulator in charge of generating a cycle-accurate execution
trace of the software. This trace reports all executed instructions, and all pe-
ripherals activities (state changes). This first step allow software developers to
functionally debug their applications and supply them the material to make the
second step simulation. To fulfill this first task, we implemented the behaviour
of the Integrator platform in the open source simulator skyeye. We also up-
graded it to the cycle accurate trace generation. The second tool is the energy
simulation tool. This simulator implements the model presented in the previous



Table 3. Simulators results: the results obtained for execution time and en-
ergy consumption by real hardware measurement are shown in second and third
columns, the simulation ones in fourth and fifth columns. The last two columns
give the error percentile of the simulation

Measured values Simulated values Error

Benchmark cycles energy (J) cycles energy (J) cycles (%) energy (%)

jpeg 6916836 1.142440e-01 6607531 1.037940e-01 - 4.4 - 9.1

jpeg2k 7492173 1.268535e-01 7663016 1.200488e-01 + 2.2 - 5.3

mpeg2 13990961 2.335522e-01 14387358 2.208065e-01 + 2.8 - 5.4

section. Its main task is to compute model parameters from the cycle-accurate
execution trace. It accumulates all computed energies, and reports them in an
energy profile file for source level (C code) instrumentation and annotation.

Validation Methodology. To check the accuracy of the resulting model, we
propose to compare the consumption estimation of the model, thus implemented
in our tool to physical measurement on the real platform. The test application
chosen for this model validation are widely spread multimedia applications :
JPEG, JPEG2000 and MPEG2. The implementations of these three applica-
tions are Linux standard libraries. Hence they use operating system services
and standard libc functions. All experiments could have been made with Linux
(or even uClinux), since the simulation tools are complete enough to run these
operating systems. For limited measurement duration reasons, we decided to re-
place these heavy OS by the lightweight one, Mutek [8]. Linux hardware layer
abstraction makes interrupt request managment too long to allow a reasonable
sized image to be decoded in our measure time window. The three applications
are executed in the simulation tools to get estimations of their execution.

Accuracy. Results of model estimations and physical measurements are pre-
sented in table 3. The second and third columns reports the physical measure-
ment results, in terms of execution duration in CPU clock cycles and in terms
of energy consumption in Joules. Fourth and fifth columns gives the same kind
of informations concerning the simulation results. Finally, the last two columns
gives the percentile error of simulation errors of the simulation results against
the physical measurement on the target hardware platform. These results show
that a 10% error rate can be achieve by our simple complete platform energy
model. This estimations are obtained in roughly less than a minute (25s for the
first simulation plus 20s for the second). We think that the error rate of 10% is
largely acceptable in regard of the simulation time.

5 Conclusion

In this paper we have explained how an accurate, energy consumption model for
a full embedded system can be built from external measurements and micro-



benchmarks. Our methodology requires a prototype platform of comparable
technology. Quantitative energy data are gathered at the battery output and
are translated into per instruction energy figures by data analysis. The resulting
model is thus driven by the embedded software activity and can be used with
a simulation execution trace as input. It is thus possible to very easily add an
energy estimator to a software functional simulator so as to get feedback at the
source level. As simulation tools modifications are kept at a minimum the sim-
ulation speed is not impacted. Consumption data clearly identify power hungry
operations, thus offering guidelines for software design tradeoffs. The model built
on an ARM9 based development board using this methodology achieved an error
rate of less than 10 % at the source level, which is acceptable compared to its
simplicity of implementation and its fast running time.

References

1. R. Y. Chen, M. J. Irwin, and R. S. Bajwa. Architecture-level power estimation
and design experiments. In ACM TODAES, volume 6, pages 50–66, January 2001.

2. G. Contreras, M. Martonosi, J. Peng, R. Ju, and G.-Y. Lueh. XTREM: a power
simulator for the Intel XScale core. In LCTES ’04, pages 115–125, 2004.

3. N. Fournel, A. Fraboulet, and P. Feautrier. Embedded Systems Energy Charac-
terization using non-Intrusive Instrumentation. Research Report RR2006-37, LIP
- ENS Lyon, Nov 2006.

4. S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, M. Kandemir,
T. Li, and L. K. John. Using complete machine simulation for software power esti-
mation: The softwatt approach. In International Symposium on High Performance

Computer Architecture, 2002.
5. N. S. Kim, T. Austin, T.r Mudge, and D. Grunwald. Power Aware Computing,

chapter Challenges for Architectural Level Power Modeling. Kluwer Academic,
2001.

6. O. Landsiedel, K. Wehrle, and S. Götz. AEON: Accurate Prediction of Power
Consumption in Sensor Nodes. In SECON, Santa Clara, October 2004.

7. M. T.-C. Lee, M. Fujita, V. Tiwari, and S. Malik. Power analysis and minimization
techniques for embedded dsp software. IEEE Transactions on VLSI Systems, 1997.

8. F. Pétrot and P. Gomez. Lightweight Implementation of the POSIX Threads
API for an On-Chip MIPS Multiprocessor with VCI Interconnect. In DATE 03

Embedded Software Forum, pages 51–56, 2003.
9. J. T. Russell and M. F. Jacome. Software power estimation and optimization for

high performance, 32-bit embedded processors. In International Conference on

Computer Design, October 1998.
10. T. Simunic, L. Benini, and G. De Micheli. Cycle-accurate simulation of energy

consumption in embedded systems. In 36th Design Automation Conference, pages
867–872, May 1999.

11. S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An accurate and fine grain
instruction-level energy model supporting software optimizations. In PATMOS,
2001.

12. T. K. Tan, A. Raghunathan, and N. K. Jha. EMSIM: An Energy Simulation
Framework for an Embedded Operating System. In ISCAS 2002, May 2002.

13. V. Tiwari, S. Malik, A. Wolfe, and M. Lee. Instruction level power analysis and
optimization of software. Journal of VLSI Signal Processing, 1996.


	Fast and Accurate Embedded Systems Energy Characterization Using Non-intrusive Measurements
	N. Fournel, A. Fraboulet and P. Feautrier

