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Abstract We observe a stochastic process where a convolution product of
an unknown function f and a known function g is corrupted by Gaussian
noise. We wish to estimate the d-th derivatives of f from the observations.
To reach this goal, we develop an adaptive estimator based on wavelet block
thresholding. We prove that it achieves near optimal rates of convergence under
the mean integrated squared error (MISE) over a wide range of smoothness
classes.
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1 Motivation

We observe the stochastic process {Y (t); t ∈ [0, 1]} where

dY (t) = (f ? g)(t)dt+ εn−1/2dW (t), t ∈ [0, 1], n ∈ N∗, (1)

ε > 0 is a fixed constant, (f ? g) is the convolution product:

(f ? g)(t) =
∫ 1

0

f(t− u)g(u)du,

{W (t); t ∈ [0, 1]} is a non-observed standard Brownian motion, f is an un-
known function and g is a known function. We assume that f and g be-
long to L2

per([0, 1]) = {h; h is 1-periodic on [0, 1] and
∫ 1

0
h2(t)dt < ∞}.

The general goal is to estimate an unknown quantity depending on f from
{Y (t); t ∈ [0, 1]}. The convolution model (1) illustrates the action of a linear
time-invariant system on an input signal f when the data are corrupted with
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additional noise. See, for instance, Bertero and Boccacci (1998) and Neela-
mani, Choi and Baraniuk (2004). This is a standard deconvolution problem in
the field of function estimation. For related results on (1), we refer to Cava-
lier and Tsybakov (2002), Cavalier et al. (2004), Johnstone et al. (2004) and
Cavalier (2008). Extensions of (1) can be found in Willer (2005), Cavalier and
Raimondo (2007) and Pensky and Sapatinas (2009).

The estimation of f has received a lot of attention (see e.g. Cavalier and
Tsybakov (2002), Johnstone et al. (2004) and Chesneau (2008)). In this paper,
we focus on a more general problem: estimate the d-th derivative of f : f (d) with
d ∈ N (we set f (0) = f). This is of interest to detect possible bumps, concavity
or convexity properties of f . For the standard nonparametric models (density,
regression, . . . ), the estimation of f (d) has been investigated in several papers
starting with Bhattacharya (1967). For references using wavelet methods, let
us cite Prakasa Rao (1996), Chaubey and Doosti (2005) and Chaubey et al.
(2006). However, to the best of our knowledge, the estimation of f (d) from (1)
is a new challenge.

Considering the ordinary smooth case where the Fourier coefficients of g
decrease in a polynomial fashion (to be described in (7)), we develop an adap-
tive wavelet estimator f̂n,d of f (d). It is constructed from a periodised Meyer
wavelet basis and a block thresholding rule known under the named of BlockJS.
This construction has been initially elaborated by Cai (1999) for the standard
Gaussian noise model. Further details and recent developments on BlockJS can
be found in Cavalier and Tsybakov (2001), Tsybakov (2004) and Chesneau et
al. (2008).

To measure the performance of f̂n,d, we consider the asymptotic minimax
approach under the mean integrated squared error (MISE) over a wide range
of smoothness spaces: the Besov balls. More precisely, we aim to evaluate the
smallest bound wn such that

sup
f∈Bsπ,r(M)

E
(∫ ∞
−∞

(
f̂n,d(x)− f (d)(x)

)2

dx

)
≤ wn,

where Bsπ,r(M) is the Besov ball (to be defined in subsection 2.2). In this
study, we obtain

wn =

{
Cn−2s/(2s+2δ+2d+1), if π ≥ 2,
C(log n/n)2s/(2s+2δ+2d+1), if π ∈ [1, 2), s > (1/π − 1/2)(2δ + 2d+ 1),

where C > 0 is a constant and δ is a parameter which refers to the ordinary
smooth assumption on g. We prove that wn is near optimal via the determina-
tion of the lower bound. The proof of the upper bound uses a general theorem
proved by Chesneau et al. (2008) and technical probability inequalities. The
lower bound is proved by applying the Fano lemma.

The paper is organized as follows. In Section 2, we present wavelets and
Besov balls. Section 3 clarifies the assumptions made on g and introduces some
intermediate estimators. The BlockJS estimator is defined in Section 4. Section
5 is devoted to the results. The proofs are postponed in Section 6.
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2 Wavelets and Besov balls

2.1 Wavelets

We consider an orthonormal wavelet basis generated by dilations and transla-
tions of a ”father” Meyer-type wavelet φ and a ”mother” Meyer-type wavelet
ψ. The features of such wavelets are:

– the Fourier transforms of φ and ψ have bounded support. More precisely,
we have {

supp (F(φ)) ⊂ [−4π3−1, 4π3−1],
supp (F(ψ)) ⊂ [−8π3−1,−2π3−1] ∪ [2π3−1, 8π3−1],

(2)

where supp denotes the support and, for any h ∈ L2
per([0, 1]), F(h) denotes

the Fourier transform of h defined by

F(h)(`) =
∫ 1

0

h(x)e−2iπ`xdx, ` ∈ Z.

– for any ` ∈ [−2π,−π] ∪ [π, 2π], there exists a constant c > 0 such that

|F(ψ)(`)| ≥ c.

– (φ, ψ) is r-regular for a chosen r ∈ N, i.e. φ ∈ Cr, ψ ∈ Cr and, for any
u ∈ {0, . . . , r}, ∫ ∞

−∞
xuψ(x)dx = 0. (3)

A consequence of (2) and (3) is that, for any m ∈ N and any u ∈ {0, . . . , r},

sup
x∈R

(∣∣∣φ(u)(x)
∣∣∣ (|x|2 + 1

)m)
<∞, sup

x∈R

(
|ψ(u)(x)|

(
|x|2 + 1

)m)
<∞. (4)

For the purposes of this paper, we use the periodised wavelet bases on the unit
interval. For any x ∈ [0, 1], any integer j and any k ∈ {0, . . . , 2j − 1}, let

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k)

be the elements of the wavelet basis, and

φperj,k (x) =
∑
`∈Z

φj,k(x− l), ψperj,k (x) =
∑
`∈Z

ψj,k(x− l),

their periodised versions. There exists an integer τ such that the collection ζ
defined by

ζ =
{
φperτ,k (.), k ∈ {0, . . . , 2τ − 1}; ψperj,k (.), j ≥ τ, k ∈ {0, . . . , 2j − 1}

}
constitutes an orthonormal basis of L2

per([0, 1]). In what follows, the super-
script ”per” will be suppressed from the notations for convenience.
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Then, for any m ≥ τ , a function h ∈ L2
per([0, 1]) can be expanded into a

wavelet series as

h(x) =
2m−1∑
k=0

αm,kφm,k(x) +
∞∑
j=m

2j−1∑
k=0

βj,kψj,k(x), x ∈ [0, 1],

where

αm,k =
∫ 1

0

h(t)φm,k(t)dt, βj,k =
∫ 1

0

h(t)ψj,k(t)dt. (5)

For further details about Meyer-type wavelets and wavelet decomposition, see
Cohen et al. (1993), Walter (1994) and Zayed and Walter (1996).

2.2 Besov balls

Let M ∈ (0,∞), s ∈ (0,∞), π ∈ [1,∞) and r ∈ [1,∞). Let us set βτ−1,k =
ατ,k. We say that a function h belongs to the Besov balls Bsπ,r(M) if and only
if there exists a constant M∗ > 0 (depending on M) such that the associated
wavelet coefficients (5) satisfy ∞∑

j=τ−1

2j(s+1/2−1/π)

2j−1∑
k=0

|βj,k|π
1/π


r

1/r

≤M∗. (6)

For a particular choice of parameters s, π and r, these sets contain the Hölder
and Sobolev balls. See Meyer (1992).

3 Preliminary study

3.1 Ordinary smooth assumption on g

We suppose that there exist three constants, c > 0, C > 0 and δ > 1, such
that, for any ` ∈ Z, the Fourier coefficient of g, i.e. F (g)(`), satisfies

c
(
1 + |`|2

)−δ/2 ≤ |F (g)(`)| ≤ C
(
1 + |`|2

)−δ/2
. (7)

For example, consider the square integrable 1-periodic function g defined by

g(x) =
∑
m∈Z

e−|x+m|, x ∈ [0, 1].

Then, for any ` ∈ Z, F (g)(`) = 2
(
1 + 4π2|`|2

)−1 and (7) is satisfied with
δ = 2.

Further examples can be found in Pensky and Vidakovic (1999) and Fan
and Koo (2002).
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3.2 Preliminary to the estimation of f (d)

As in Johnstone et al. (2004), we write the model (1) in the Fourier domain.
First of all, notice that, for any ` ∈ Z, F (f ? g) (`) = F (f)(`)F (g)(`). There-
fore, if we set

y` =
∫ 1

0

e−2πi`tdY (t), e` =
∫ 1

0

e−2πi`tdW (t),

it follows from (1) that

y` = F(f)(`)F(g)(`) + εn−1/2e`.

Assume that f (d) ∈ L2
per([0, 1]). Then, for any m ≥ τ , f (d) can be expanded

into a wavelet series as

f (d)(x) =
2m−1∑
k=0

αm,kφm,k(x) +
∞∑
j=m

2j−1∑
k=0

βj,kψj,k(x), x ∈ [0, 1],

where

αm,k =
∫ 1

0

f (d)(t)φm,k(t)dt, βj,k =
∫ 1

0

f (d)(t)ψj,k(t)dt.

Let us now investigate the estimation of βj,k. Since f is 1-periodic, for any
u ∈ {0, . . . , d}, f (u) is 1-periodic and f (u)(0) = f (u)(1). By d integrations by
parts, for any ` ∈ Z, we have

F
(
f (d)

)
(`) = (2πi`)dF(f)(`).

The Plancherel-Parseval theorem gives

βj,k =
∫ 1

0

f (d)(t)ψj,k(t)dt =
∑
`∈Z
F
(
f (d)

)
(`)F (ψj,k) (`)

=
∑
`∈Z

(2πi`)dF(f)(`)F (ψj,k) (`).

Therefore, if we set

β̂j,k =
∑
`∈Z

(2πi`)d
F (ψj,k) (`)
F(g)(`)

y`,

then

β̂j,k =
∑
`∈Z

(2πi`)dF(f)(`)F (ψj,k) (`) + εn−1/2
∑
`∈Z

(2πi`)d
F (ψj,k) (`)
F(g)(`)

e`

= βj,k + εn−1/2
∑
`∈Z

(2πi`)d
F (ψj,k) (`)
F(g)(`)

e`.
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Since (e`)`∈Z are i.i.d. N (0, 1), β̂j,k is an unbiased estimator of βj,k with dis-
tribution

N

(
βj,k, ε

2n−1
∑
`∈Z

(2π`)2d
|F (ψj,k) (`)|2

|F(g)(`)|2

)
.

4 BlockJS estimator

We use the notations introduced in subsection 3.2. We suppose that f (d) ∈
L2
per([0, 1]) and that (7) is satisfied (δ refers to this assumption). We now

present the considered adaptive procedure for the estimation of f (d). Let j1
and j2 be the integers defined by

j1 = blog2(log n)c, j2 = b(1/(2δ + 2d+ 1)) log2(n/ log n)c,

where, for any a ∈ R, bac denotes the whole number part of a. For any j ∈
{j1, . . . , j2}, set L = blog nc and Aj = {1, . . . , 2jL−1}. For any K ∈ Aj , we
consider the set

Bj,K = {k ∈ {0, . . . , 2j − 1}; (K − 1)L ≤ k ≤ KL− 1}.

We define the Block James Stein estimator (BlockJS) by

f̂n,d(x) =
2j1−1∑
k=0

α̂j1,kφj1,k(x) +
j2∑
j=j1

∑
K∈Aj

∑
k∈Bj,K

β̂∗j,kψj,k(x), x ∈ [0, 1], (8)

where

β̂∗j,k = β̂j,k

(
1− λε2n−122j(δ+d)

1
L

∑
k∈Bj,K |β̂j,k|

2

)
+

,

with, for any a ∈ R, (a)+ = max(a, 0), λ > 0, and

α̂j1,k =
∑
`∈Dj1

(2πi`)d
F (φj1,k) (`)
F(g)(`)

y`, β̂j,k =
∑
`∈Cj

(2πi`)d
F (ψj,k) (`)
F(g)(`)

y`. (9)

Here,

Dj1 = supp (F(φj1,0)) = supp (F (φj1,k)) , Cj = supp (F(ψj,0)) = supp (F (ψj,k)) .

For the original construction of BlockJS (i.e. in the standard Gaussian
noise model), we refer to Cai (1999).

Remark 1 The setsAj andBj,K are chosen such that
⋃
K∈Aj Bj,K = {0, . . . , 2j−

1}, for any (K,K ′) ∈ A2
j with K 6= K ′, Bj,K ∩ Bj,K′ = ∅ and Card(Bj,K) =

L = blog nc.

Remark 2 Notice that, thanks to (2), for any j ∈ {j1, . . . , j2}, we have{
Dj1 ⊂ [−4π3−12j1 , 4π3−12j1 ],
Cj ⊂ [−8π3−12j ,−2π3−12j ] ∪ [2π3−12j , 8π3−12j ].

(10)
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5 Main results

Theorem 1 below determines the rates of convergence achieved by f̂n,d under
the MISE over Besov balls.

Theorem 1 Consider the model (1) and recall that we want to estimate f (d)

with d ∈ N. Assume that (φ, ψ) is r-regular for some r ≥ d and (7) is satisfied.
Let f̂n,d be the estimator defined by (8) with a large enough λ. Then there
exists a constant C > 0 such that, for any M ∈ (0,∞), π ∈ [1,∞), r ∈ [1,∞),
s ∈ (1/π,∞) and n large enough, we have

sup
f(d)∈Bsπ,r(M)

E
(∫ 1

0

(
f̂n,d(x)− f (d)(x)

)2

dx

)
≤ Cϕn,

where

ϕn =

{
n−2s/(2s+2δ+2d+1), if π ≥ 2,
(log n/n)2s/(2s+2δ+2d+1), if π ∈ [1, 2), s > (1/π − 1/2)(2δ + 2d+ 1).

It is natural to address the following question: is it ϕn the optimal rate of
convergence ? Theorem 2 below gives the answer.

Theorem 2 Consider the model (1) and recall that we want to estimate f (d)

with d ∈ N. Assume that (7) is satisfied. Then there exists a constant c > 0
such that, for any M ∈ (0,∞), π ∈ [1,∞), r ∈ [1,∞), s ∈ (1/π,∞) and n
large enough, we have

inf
f̃n,d

sup
f(d)∈Bsπ,r(M)

E
(∫ 1

0

(
f̃n,d(x)− f (d)(x)

)2

dx

)
≥ cϕ∗n,

where

ϕ∗n = n−2s/(2s+2δ+2d+1).

Theorem 2 shows that the rate of convergence ϕn achieved by f̂n,d is near op-
timal. Near is only due to the case π ∈ [1, 2) and s > (1/π− 1/2)(2δ+ 2d+ 1)
where there is an extra logarithmic term.

Theorems 1 and 2 prove that f̂n,d is near optimal in the minimax sense.

6 Proofs

In the following proofs, c and C denote positive constants which can take dif-
ferent values for each mathematical term.

Proof of Theorem 1. Theorem 1 can be proved by using a more general theorem:
(Chesneau et al. 2008, Theorem 3.1). To apply this result, two conditions
on the estimators (9) are required: a moment condition and a concentration
condition. They are presented in the two propositions below.
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Proposition 1 (Moment condition) Consider the framework of Theorem
1. Then

– there exists a constant C > 0 such that, for any k ∈ {0, . . . , 2j1 − 1}, the
estimator α̂j1,k defined by (9) satisfies

E
(
|α̂j1,k − αj1,k|2

)
≤ Cε222(δ+d)j1n−1,

– there exists a constant C > 0 such that, for any j ∈ {j1, . . . , j2} and any
k ∈ {0, . . . , 2j − 1}, the estimator β̂j,k defined by (9) satisfies

E
(
|β̂j,k − βj,k|4

)
≤ Cε424(δ+d)jn−2.

Proof of Proposition 1. Let us prove the second point, the first one can be
proved in a similar way. For any j ∈ {j1, . . . , j2} and any k ∈ {0, . . . , 2j − 1},
we have

β̂j,k − βj,k = εn−1/2
∑
`∈Cj

(2πi`)d
F (ψj,k) (`)
F(g)(`)

e` ∼ N
(
0, n−1σ2

j,k

)
, (11)

where

σ2
j,k = ε2

∑
`∈Cj

(2π`)2d
|F (ψj,k) (`)|2

|F(g)(`)|2
. (12)

Due to (7) and (10), we have

sup
`∈Cj

(
(2π`)2d

|F(g)(`)|2

)
≤ C sup

`∈Cj

(
(2π`)2d

(
1 + |`|2

)δ) ≤ C22(δ+d)j . (13)

It follows from (13) and the Plancherel-Parseval theorem that

σ2
j,k ≤ ε2 sup

`∈Cj

(
(2π`)2d

|F(g)(`)|2

)∑
`∈Cj

|F (ψj,k) (`)|2

≤ Cε222(δ+d)j
∑
`∈Cj

|F (ψj,k) (`)|2 = Cε222(δ+d)j

∫ ∞
−∞
|F (ψj,k) (y)|2dy

= Cε222(δ+d)j

∫ 1

0

|ψj,k(x)|2dx = Cε222(δ+d)j . (14)

Putting (11), (12) and (14) together, we obtain

E
(
|β̂j,k − βj,k|4

)
≤ C(ε222(δ+d)jn−1)2 ≤ Cε424(δ+d)jn−2.

Proposition 1 is proved.

�
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Proposition 2 (Concentration condition) Consider the framework of The-
orem 1. Then there exists a constant λ > 0 such that, for any j ∈ {j1, . . . , j2},
any K ∈ Aj and n large enough, the estimators

(
β̂j,k

)
k∈Bj,K

defined by (9)

satisfy

P


 ∑
k∈Bj,K

|β̂j,k − βj,k|2
1/2

≥ λ2(δ+d)j(log n/n)1/2

 ≤ n−2.

Proof of Proposition 2. We need the Cirelson inequality presented in Lemma
1 below.

Lemma 1 (Cirelson, Ibragimov and Sudakov (1976)) Let D be a subset
of R and (ϑt)t∈D be a centered Gaussian process. If

E
(

sup
t∈D

ϑt

)
≤ N, sup

t∈D
V (ϑt) ≤ V

then, for any x > 0, we have

P
(

sup
t∈D

ϑt ≥ x+N

)
≤ exp

(
− x

2

2V

)
.

For the sake of simplicity, set

Vj,k = β̂j,k − βj,k = εn−1/2
∑
`∈Cj

(2πi`)d
F (ψj,k) (`)
F(g)(`)

e`.

Recall that Vj,k ∼ N
(

0, n−1σ2
j,k

)
, where σ2

j,k is defined by (12). Consider the

set Ω defined by Ω =
{
a = (ak) ∈ R;

∑
k∈Bj,K a

2
k ≤ 1

}
. For any a ∈ Ω, let

Z(a) be the centered Gaussian process defined by

Z(a) =
∑

k∈Bj,K

akVj,k = εn−1/2
∑
`∈Cj

(2πi`)d
e`

F(g)(`)

∑
k∈Bj,K

akF (ψj,k) (`).

By an argument of duality, we have

sup
a∈Ω

Z(a) =

 ∑
k∈Bj,K

|Vj,k|2
1/2

=

 ∑
k∈Bj,K

|β̂j,k − βj,k|2
1/2

.

Now, let us determine the values of N and V which appeared in the Cirelson
inequality.
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Value of N . Using the Hölder inequality and (14), we obtain

E
(

sup
a∈Ω

Z(a)
)

= E


 ∑
k∈Bj,K

|Vj,k|2
1/2

 ≤
 ∑
k∈Bj,K

E
(
|Vj,k|2

)1/2

≤ C

n−1
∑

k∈Bj,K

σ2
j,k

1/2

≤ Cε2(δ+d)jn−1/2 (Card(Bj,K))1/2

= Cε2(δ+d)j(log n/n)1/2.

Hence N = Cε2(δ+d)j(log n/n)1/2.

Value of V . Since, for any (`, `′) ∈ Z2,

E (e`e`′) =
∫ 1

0

e−2iπ(`−`′)tdt

{
1 if ` = `′

0 otherwise,

it comes

sup
a∈Ω

V(Z(a)) = sup
a∈Ω

E


∣∣∣∣∣∣
∑

k∈Bj,K

akVj,k

∣∣∣∣∣∣
2


= sup
a∈Ω

E

 ∑
k∈Bj,K

∑
k′∈Bj,K

akak′Vj,kVj,k′


= ε2n−1 sup

a∈Ω

∑
k∈Bj,K

∑
k′∈Bj,K

akak′
∑
`∈Cj

∑
`′∈Cj

(2πi`)d

F(g)(`)
F(ψj,k)(`)×

(2πi`′)d

F(g)(`′)
F(ψj,k′)(`′)E (e`e`′)

= ε2n−1 sup
a∈Ω

∑
k∈Bj,K

∑
k′∈Bj,K

akak′
∑
`∈Cj

(2π`)2d

|F(g)(`)|2
F (ψj,k) (`)F(ψj,k′)(`)

= ε2n−1 sup
a∈Ω

∑
`∈Cj

(2π`)2d

|F(g)(`)|2

∣∣∣∣∣∣
∑

k∈Bj,K

akF (ψj,k) (`)

∣∣∣∣∣∣
2

. (15)
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For any a ∈ Ω, the Plancherel-Parseval theorem gives

∑
`∈Cj

∣∣∣∣∣∣
∑

k∈Bj,K

akF(ψj,k)(`)

∣∣∣∣∣∣
2

=
∑
`∈Cj

∣∣∣∣∣∣F
 ∑
k∈Bj,K

akψj,k

 (`)

∣∣∣∣∣∣
2

=
∫ ∞
−∞

∣∣∣∣∣∣F
 ∑
k∈Bj,K

akψj,k

 (y)

∣∣∣∣∣∣
2

dy =
∫ 1

0

∣∣∣∣∣∣
∑

k∈Bj,K

akψj,k(x)

∣∣∣∣∣∣
2

dx

=
∑

k∈Bj,K

a2
k ≤ 1. (16)

Putting (15), (13) and (16) together, we have

sup
a∈Ω

V(Z(a)) ≤ Cε2n−122(δ+d)j sup
a∈Ω

∑
`∈Cj

∣∣∣∣∣∣
∑

k∈Bj,K

akF (ψj,k) (`)

∣∣∣∣∣∣
2

≤ Cε2n−122(δ+d)j .

Hence V = Cε2n−122(δ+d)j .

Taking λ large enough and x = 2−1λε2(δ+d)j(log n/n)1/2, the Cirelson
inequality described in Lemma 1 yields

P


 ∑
k∈Bj,K

|Vj,k|2
1/2

≥ λε2(δ+d)j(log n/n)1/2


≤ P


 ∑
k∈Bj,K

|Vj,k|2
1/2

≥ 2−1λε2(δ+d)j(log n/n)1/2 +N


= P

(
sup
a∈Ω

Z(a) ≥ x+N

)
≤ exp

(
−x2/(2V )

)
≤ exp

(
−Cλ2 log n

)
≤ n−2.

Proposition 2 is proved.

�

Putting Propositions 1 and 2 in (Chesneau et al. 2008, Theorem 3.1), we end
the proof of Theorem 1.

�

Proof of Theorem 2. Let us now present a consequence of the Fano lemma.
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Lemma 2 Let m ∈ N∗ and A be a sigma algebra on the space Ω. For any
i ∈ {0, . . . ,m}, let Ai ∈ A such that, for any (i, j) ∈ {0, . . . ,m}2 with i 6= j,

Ai ∩Aj = ∅.

Let (Pi)i∈{0,...,m} be m+ 1 probability measures on (Ω,A). Then

sup
i∈{0,...,m}

Pi (Aci ) ≥ min
(
2−1, exp(−3e−1)

√
m exp(−χm)

)
,

where

χm = inf
v∈{0,...,m}

1
m

∑
k∈{0,...,m}

k 6=v

K(Pk,Pv),

and K is the Kullbak-Leibler divergence defined by

K(P,Q) =

{∫
ln
(
dP
dQ

)
dP if P << Q,

∞ otherwise.

The proof of Lemma 2 can be found in DeVore et al. (2006, Lemma 3.3). For
further details and applications of the Fano lemma, see Tsybakov (2004).

Consider the Besov balls Bsπ,r(M) (see (6)). Let j0 be an integer suitably
chosen below. For any ε = (εk)k∈{0,...,2j0−1} ∈ {0, 1}2

j0 and d ∈ N∗, set

hε(x) = M∗2−j0(s+1/2)
2j0−1∑
k=0

εk
1

(d− 1)!

∫ x

−∞
(x− y)d−1ψj0,k(y)dy,

x ∈ [0, 1],

(and, if d = 0, set hε(x) = M∗2−j0(s+1/2)
∑2j0−1
k=0 εkψj0,k(x), x ∈ [0, 1]). Notice

that, due to (4), hε exists and, since ψj0,k is 1-periodic, hε is also 1-periodic.
Using the Cauchy formula for repeated integration, we have

h(d)
ε (x) = M∗2−j0(s+1/2)

2j0−1∑
k=0

εkψj0,k(x), x ∈ [0, 1].

So, for any j ≥ τ and any k ∈ {0, . . . , 2j − 1}, the (mother) wavelet coefficient
of h(d)

ε is

βj,k =
∫ 1

0

h(d)
ε (x)ψj,k(x)dx =

{
M∗εk2−j0(s+1/2), if j = j0,

0, otherwise.

Therefore h(d)
ε ∈ Bsπ,r(M). Let us now recall the theorem of Varshamov-Gilbert

(see, for instance, Tsybakov (2004, Lemma 2.7)): there exist a subset Ej0 =
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ε(0), . . . , ε(Tj0 )

}
of {0, 1}2j0 and two constants, c ∈]0, 1[ and α ∈]0, 1[, such

that, for any (u, v) ∈ {0, . . . , Tj0}2 with u < v,

2j0−1∑
k=0

|ε(u)
k − ε

(v)
k | ≥ c2

j0 , Tj0 ≥ eα2j0 .

Considering such a Ej0 , for any (u, v) ∈ {0, . . . , Tj0}2 with u 6= v, we have

(∫ 1

0

(
h

(d)

ε(u)(x)− h(d)

ε(v)
(x)
)2

dx

)1/2

= c2−j0(s+1/2)

2j0−1∑
k=0

∣∣∣ε(u)
k − ε

(v)
k

∣∣∣
1/2

≥ 2δj0 ,

where
δj0 = c2j0/22−j0(s+1/2) = c2−j0s.

Using the Chebychev inequality, for any f̃n,p, we have

δ−2
j0

sup
f(d)∈Bsπ,r(M)

E
(∫ 1

0

(
f̃n,d(x)− f (d)(x)

)2

dx

)
≥ sup
u∈{0,...,Tj0}

Ph
ε(u) (Acu) = p,

where

Au =

{(∫ 1

0

(
f̃n,d(x)− h(d)

ε(u)(x)
)2

dx

)1/2

< δj0

}
and Pf is the distribution of (1). Notice that, for any (u, v) ∈ {0, . . . , Tj0}2
with u 6= v, Au ∩ Av = ∅. Lemma 2 applied to the probability measures(
Ph

ε(u)

)
u∈{0,...,Tj0}

gives

p ≥ min
(

2−1, exp(−3e−1)
√
Tj0 exp(−χTj0 )

)
, (17)

where
χTj0 = inf

v∈{0,...,Tj0}

1
Tj0

∑
u∈{0,...,Tj0}

u 6=v

K
(
Ph

ε(u) ,Phε(v)
)
.

Let us now bound χTj0 . For any functions f1 and f2 in L2
per([0, 1]), we have

K (Pf1 ,Pf2) =
n

2ε2

∫ 1

0

((f1 ? g)(x)− (f2 ? g)(x))2 dx

=
n

2ε2

∫ 1

0

(((f1 − f2) ? g)(x))2 dx.

The Plancherel-Parseval theorem yields

K (Pf1 ,Pf2) =
n

2ε2
∑
`∈Z
|F(f1 − f2)(`)|2 |F(g)(`)|2.
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So, for any (u, v) ∈ {0, . . . , Tj0}2 with u 6= v, we have

K
(
Ph

ε(u) ,Phε(v)
)

=
n

2ε2
∑
`∈Z
|F (hε(u) − hε(v)) (`)|2 |F(g)(`)|2. (18)

By definition, for any (u, v) ∈ {0, . . . , Tj0}2 with u 6= v and ` ∈ Z, we have

F (hε(u) − hε(v)) (`)

= M∗2−j0(s+1/2)
2j0−1∑
k=0

(
ε
(u)
k − ε

(v)
k

)
×

1
(d− 1)!

F
(∫ .

−∞
(.− y)d−1ψj0,k(y)dy

)
(`). (19)

Let us set, for any k ∈ {0, . . . , 2j0 − 1},

θk(x) =
∫ x

−∞
(x− y)d−1ψj0,k(y)dy, x ∈ [0, 1].

Then, for any u ∈ {0, . . . , d}, θ(u)
k is 1-periodic and θ

(u)
k (0) = θ

(u)
k (1). There-

fore, by d integrations by parts, for any ` ∈ Z, we have

F
(
θ
(d)
k

)
(`) = (2πi`)dF(θk)(`).

Using again the Cauchy formula for repeated integration, we have θ(d)k (x) =
ψj0,k(x), x ∈ [0, 1]. So, for any ` ∈ Cj0 (excluding 0), (19) implies that

F(hε(u) − hε(v))(`)

=
M∗

(d− 1)!
2−j0(s+1/2)

2j0−1∑
k=0

(
ε
(u)
k − ε

(v)
k

) 1
(2πi`)d

F (ψj0,k) (`). (20)

The equalities (18) and (20) imply that

K
(
Ph

ε(u) ,Phε(v)
)

= Cn2−2j0(s+1/2)
∑
`∈Cj0

∣∣∣∣∣∣
2j0−1∑
k=0

(
ε
(u)
k − ε

(v)
k

)
F (ψj0,k) (`)

∣∣∣∣∣∣
2

1
(2π`)2d

|F(g)(`)|2.

(21)

By (7) and (10),

sup
`∈Cj0

(
1

(2π`)2d
|F(g)(`)|2

)
≤ C sup

`∈Cj0

(
1

(2π`)2d
(
1 + |`|2

)−δ) ≤ C2−2j0(δ+d).

(22)
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Moreover, the Plancherel-Parseval theorem implies that

∑
`∈Cj0

∣∣∣∣∣∣
2j0−1∑
k=0

(
ε
(u)
k − ε

(v)
k

)
F (ψj0,k) (`)

∣∣∣∣∣∣
2

=
∑
`∈Cj0

∣∣∣∣∣∣F
2j0−1∑

k=0

(
ε
(u)
k − ε

(v)
k

)
ψj0,k

 (`)

∣∣∣∣∣∣
2

=
∫ ∞
−∞

∣∣∣∣∣∣F
2j0−1∑

k=0

(
ε
(u)
k − ε

(v)
k

)
ψj0,k

 (y)

∣∣∣∣∣∣
2

dy

=
∫ 1

0

∣∣∣∣∣∣
2j0−1∑
k=0

(
ε
(u)
k − ε

(v)
k

)
ψj0,k(x)

∣∣∣∣∣∣
2

dx =
2j0−1∑
k=0

(
ε
(u)
k − ε

(v)
k

)2

≤ C2j0 .

(23)

It follows from (21), (22) and (23) that

K
(
Ph

ε(u) ,Phε(v)
)
≤ Cn2−2j0(s+1/2)2−2j0(δ+d)2j0 = Cn2−2j0(s+1/2+δ+d)2j0 .

Hence

χTj0 = inf
v∈{0,...,Tj0}

1
Tj0

∑
u∈{0,...,Tj0}

u6=v

K
(
Ph

ε(u) ,Phε(v)
)

≤ Cn2−2j0(s+1/2+δ+d)2j0 . (24)

Putting (17) and (24) together and choosing j0 such that

2−j0(s+1/2+δ+d) = c0n
−1/2,

where c0 denotes a well chosen constant, for any estimator f̃n,d of f (d), we
have

δ−2
j0

sup
f(d)∈Bsπ,r(M)

E
(∫ 1

0

(
f̃n,d(x)− f (d)(x)

)2

dx

)
≥ c exp

(
(α/2)2j0 − Cc202j0

)
≥ c,

where
δj0 = c2−j0s = n−s/(2s+2δ+2d+1).

This complete the proof of Theorem 2.

�
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