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We observe a stochastic process where a convolution product of an unknown function f and a known function g is corrupted by Gaussian noise. We wish to estimate the d-th derivatives of f from the observations. To reach this goal, we develop an adaptive estimator based on wavelet block thresholding. We prove that it achieves near optimal rates of convergence under the mean integrated squared error (MISE) over a wide range of smoothness classes.

Motivation

We observe the stochastic process {Y (t); t ∈ [0, 1]} where

dY (t) = (f g)(t)dt + n -1/2 dW (t), t ∈ [0, 1], n ∈ N * , (1) 
> 0 is a fixed constant, (f g) is the convolution product:

(f g)(t) = 1 0 f (t -u)g(u)du, {W ( 
t); t ∈ [0, 1]} is a non-observed standard Brownian motion, f is an unknown function and g is a known function. We assume that f and g belong to L 2 per ([0, 1]) = {h; h is 1-periodic on [0, 1] and 1 0 h 2 (t)dt < ∞}. The general goal is to estimate an unknown quantity depending on f from {Y (t); t ∈ [0, 1]}. The convolution model (1) illustrates the action of a linear time-invariant system on an input signal f when the data are corrupted with Laboratoire de Mathématiques Nicolas Oresme, Université de Caen Basse-Normandie, Campus II, Science 3, 14032 Caen, France. E-mail: chesneau@math.unicaen.fr additional noise. See, for instance, [START_REF] Bertero | Introduction to Inverse Problems in Imaging[END_REF] and [START_REF] Neelamani | Forward: Fourier-wavelet regularized deconvolution for ill-conditioned systems[END_REF]. This is a standard deconvolution problem in the field of function estimation. For related results on (1), we refer to [START_REF] Cavalier | Sharp adaptation for inverse problems with random noise[END_REF], [START_REF] Cavalier | Block thresholding and sharp adaptive estimation in severely ill-posed inverse problems[END_REF], [START_REF] Johnstone | Wavelet deconvolution in a periodic setting[END_REF] and [START_REF] Cavalier | Nonparametric statistical inverse problems[END_REF]. Extensions of (1) can be found in [START_REF] Willer | Deconvolution in white noise with a random blurring effect[END_REF], [START_REF] Cavalier | Wavelet deconvolution with noisy eigenvalues[END_REF] and [START_REF] Pensky | Functional deconvolution in a periodic setting: Uniform Case[END_REF].

The estimation of f has received a lot of attention (see e.g. [START_REF] Cavalier | Sharp adaptation for inverse problems with random noise[END_REF], [START_REF] Johnstone | Wavelet deconvolution in a periodic setting[END_REF] and [START_REF] Chesneau | Wavelet estimation via block thresholding: A minimax study under the L p risk[END_REF]). In this paper, we focus on a more general problem: estimate the d-th derivative of f : f (d) with d ∈ N (we set f (0) = f ). This is of interest to detect possible bumps, concavity or convexity properties of f . For the standard nonparametric models (density, regression, . . . ), the estimation of f (d) has been investigated in several papers starting with [START_REF] Bhattacharya | Estimation of a probability density function and its derivatives[END_REF]. For references using wavelet methods, let us cite Prakasa [START_REF] Rao | Nonparametric estimation of the derivatives of a density by the method of wavelets[END_REF], [START_REF] Chaubey | Wavelet based estimation of the derivatives of a density for m-dependent random variables[END_REF] and [START_REF] Chaubey | Wavelet based estimation of the derivatives of a density with associated variables[END_REF]. However, to the best of our knowledge, the estimation of f (d) from ( 1) is a new challenge.

Considering the ordinary smooth case where the Fourier coefficients of g decrease in a polynomial fashion (to be described in ( 7)), we develop an adaptive wavelet estimator f n,d of f (d) . It is constructed from a periodised Meyer wavelet basis and a block thresholding rule known under the named of BlockJS. This construction has been initially elaborated by [START_REF] Cai | Adaptive Wavelet Estimation: A Block Thresholding And Oracle Inequality Approach[END_REF] for the standard Gaussian noise model. Further details and recent developments on BlockJS can be found in [START_REF] Cavalier | Penalized blockwise Stein's method, monotone oracles and sharp adaptive estimation[END_REF], [START_REF] Tsybakov | Introduction à l'estimation nonparametrique[END_REF] and [START_REF] Chesneau | Wavelet estimation via block thresholding: A minimax study under the L p risk[END_REF].

To measure the performance of f n,d , we consider the asymptotic minimax approach under the mean integrated squared error (MISE) over a wide range of smoothness spaces: the Besov balls. More precisely, we aim to evaluate the smallest bound w n such that sup

f ∈B s π,r (M ) E ∞ -∞ f n,d (x) -f (d) (x) 2 dx ≤ w n ,
where B s π,r (M ) is the Besov ball (to be defined in subsection 2.2). In this study, we obtain

w n = Cn -2s/(2s+2δ+2d+1) , if π ≥ 2, C(log n/n) 2s/(2s+2δ+2d+1) , if π ∈ [1, 2), s > (1/π -1/2)(2δ + 2d + 1),
where C > 0 is a constant and δ is a parameter which refers to the ordinary smooth assumption on g. We prove that w n is near optimal via the determination of the lower bound. The proof of the upper bound uses a general theorem proved by [START_REF] Chesneau | Stein block thresholding for image denoising[END_REF] and technical probability inequalities. The lower bound is proved by applying the Fano lemma.

The paper is organized as follows. In Section 2, we present wavelets and Besov balls. Section 3 clarifies the assumptions made on g and introduces some intermediate estimators. The BlockJS estimator is defined in Section 4. Section 5 is devoted to the results. The proofs are postponed in Section 6.

Wavelets and Besov balls

Wavelets

We consider an orthonormal wavelet basis generated by dilations and translations of a "father" Meyer-type wavelet φ and a "mother" Meyer-type wavelet ψ. The features of such wavelets are:

the Fourier transforms of φ and ψ have bounded support. More precisely, we have

supp (F(φ)) ⊂ [-4π3 -1 , 4π3 -1 ], supp (F(ψ)) ⊂ [-8π3 -1 , -2π3 -1 ] ∪ [2π3 -1 , 8π3 -1 ], (2) 
where supp denotes the support and, for any h ∈ L 2 per ([0, 1]), F(h) denotes the Fourier transform of h defined by

F(h)( ) = 1 0 h(x)e -2iπ x dx, ∈ Z.
for any ∈ [-2π, -π] ∪ [π, 2π], there exists a constant c > 0 such that

|F(ψ)( )| ≥ c.
-(φ, ψ) is r-regular for a chosen r ∈ N, i.e. φ ∈ C r , ψ ∈ C r and, for any u ∈ {0, . . . , r},

∞ -∞ x u ψ(x)dx = 0. (3) 
A consequence of (2) and ( 3) is that, for any m ∈ N and any u ∈ {0, . . . , r},

sup x∈R φ (u) (x) |x| 2 + 1 m < ∞, sup x∈R |ψ (u) (x)| |x| 2 + 1 m < ∞. (4)
For the purposes of this paper, we use the periodised wavelet bases on the unit interval. For any x ∈ [0, 1], any integer j and any k ∈ {0, . . . , 2 j -1}, let

φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k)
be the elements of the wavelet basis, and

φ per j,k (x) = ∈Z φ j,k (x -l), ψ per j,k (x) = ∈Z ψ j,k (x -l),
their periodised versions. There exists an integer τ such that the collection ζ defined by

ζ = φ per τ,k (.), k ∈ {0, . . . , 2 τ -1}; ψ per j,k (.), j ≥ τ, k ∈ {0, . . . , 2 j -1} constitutes an orthonormal basis of L 2 per ([0, 1]).
In what follows, the superscript "per" will be suppressed from the notations for convenience.

Then, for any m ≥ τ , a function h ∈ L 2 per ([0, 1]) can be expanded into a wavelet series as

h(x) = 2 m -1 k=0 α m,k φ m,k (x) + ∞ j=m 2 j -1 k=0 β j,k ψ j,k (x), x ∈ [0, 1],
where

α m,k = 1 0 h(t)φ m,k (t)dt, β j,k = 1 0 h(t)ψ j,k (t)dt. ( 5 
)
For further details about Meyer-type wavelets and wavelet decomposition, see [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF], [START_REF] Walter | Wavelets and other orthogonal systems in applications[END_REF] and [START_REF] Zayed | Characterization of analytic functions in term of their wavelet coefficients[END_REF].

Besov balls

Let

M ∈ (0, ∞), s ∈ (0, ∞), π ∈ [1, ∞) and r ∈ [1, ∞). Let us set β τ -1,k = α τ,k .
We say that a function h belongs to the Besov balls B s π,r (M ) if and only if there exists a constant M * > 0 (depending on M ) such that the associated wavelet coefficients (5) satisfy

   ∞ j=τ -1   2 j(s+1/2-1/π)   2 j -1 k=0 |β j,k | π   1/π    r    1/r ≤ M * . (6) 
For a particular choice of parameters s, π and r, these sets contain the Hölder and Sobolev balls. See [START_REF] Meyer | Wavelets and Operators[END_REF].

3 Preliminary study

Ordinary smooth assumption on g

We suppose that there exist three constants, c > 0, C > 0 and δ > 1, such that, for any ∈ Z, the Fourier coefficient of g, i.e. F (g)( ), satisfies

c 1 + | | 2 -δ/2 ≤ |F (g)( )| ≤ C 1 + | | 2 -δ/2 . ( 7 
)
For example, consider the square integrable 1-periodic function g defined by

g(x) = m∈Z e -|x+m| , x ∈ [0, 1]. Then, for any ∈ Z, F (g)( ) = 2 1 + 4π 2 | | 2 -1 and (7) is satisfied with δ = 2.
Further examples can be found in [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF] and [START_REF] Fan | Wavelet deconvolution[END_REF].

Preliminary to the estimation of f (d)

As in [START_REF] Johnstone | Wavelet deconvolution in a periodic setting[END_REF], we write the model (1) in the Fourier domain. First of all, notice that, for any ∈ Z, F (f g) ( ) = F (f )( )F (g)( ). Therefore, if we set

y = 1 0 e -2πi t dY (t), e = 1 0 e -2πi t dW (t),
it follows from (1) that d) can be expanded into a wavelet series as

y = F(f )( )F(g)( ) + n -1/2 e . Assume that f (d) ∈ L 2 per ([0, 1]). Then, for any m ≥ τ , f ( 
f (d) (x) = 2 m -1 k=0 α m,k φ m,k (x) + ∞ j=m 2 j -1 k=0 β j,k ψ j,k (x), x ∈ [0, 1],
where

α m,k = 1 0 f (d) (t)φ m,k (t)dt, β j,k = 1 0 f (d) (t)ψ j,k (t)dt.
Let us now investigate the estimation of

β j,k . Since f is 1-periodic, for any u ∈ {0, . . . , d}, f (u) is 1-periodic and f (u) (0) = f (u) (1)
. By d integrations by parts, for any ∈ Z, we have

F f (d) ( ) = (2πi ) d F(f )( ).
The Plancherel-Parseval theorem gives

β j,k = 1 0 f (d) (t)ψ j,k (t)dt = ∈Z F f (d) ( )F (ψ j,k ) ( ) = ∈Z (2πi ) d F(f )( )F (ψ j,k ) ( ).
Therefore, if we set

β j,k = ∈Z (2πi ) d F (ψ j,k ) ( ) F(g)( ) y , then β j,k = ∈Z (2πi ) d F(f )( )F (ψ j,k ) ( ) + n -1/2 ∈Z (2πi ) d F (ψ j,k ) ( ) F(g)( ) e = β j,k + n -1/2 ∈Z (2πi ) d F (ψ j,k ) ( ) F(g)( ) e .
Since (e ) ∈Z are i.i.d. N (0, 1), β j,k is an unbiased estimator of β j,k with distribution

N β j,k , 2 n -1 ∈Z (2π ) 2d |F (ψ j,k ) ( )| 2 |F(g)( )| 2 .

BlockJS estimator

We use the notations introduced in subsection 3.2. We suppose that f (d) ∈ L 2 per ([0, 1]) and that ( 7) is satisfied (δ refers to this assumption). We now present the considered adaptive procedure for the estimation of f (d) . Let j 1 and j 2 be the integers defined by

j 1 = log 2 (log n) , j 2 = (1/(2δ + 2d + 1)) log 2 (n/ log n) ,
where, for any a ∈ R, a denotes the whole number part of a. For any j ∈ {j 1 , . . . , j 2 }, set L = log n and A j = {1, . . . , 2 j L -1 }. For any K ∈ A j , we consider the set

B j,K = {k ∈ {0, . . . , 2 j -1}; (K -1)L ≤ k ≤ KL -1}.
We define the Block James Stein estimator (BlockJS) by

f n,d (x) = 2 j 1 -1 k=0 α j1,k φ j1,k (x) + j2 j=j1 K∈Aj k∈B j,K β * j,k ψ j,k (x), x ∈ [0, 1], (8) 
where

β * j,k = β j,k 1 - λ 2 n -1 2 2j(δ+d) 1 L k∈B j,K | β j,k | 2 + ,
with, for any a ∈ R, (a) + = max(a, 0), λ > 0, and

α j1,k = ∈Dj 1 (2πi ) d F (φ j1,k ) ( ) F(g)( ) y , β j,k = ∈Cj (2πi ) d F (ψ j,k ) ( ) F(g)( ) y . (9)
Here,

D j1 = supp (F(φ j1,0 )) = supp (F (φ j1,k )) , C j = supp (F(ψ j,0 )) = supp (F (ψ j,k )) .
For the original construction of BlockJS (i.e. in the standard Gaussian noise model), we refer to [START_REF] Cai | Adaptive Wavelet Estimation: A Block Thresholding And Oracle Inequality Approach[END_REF].

Remark 1 The sets A j and B j,K are chosen such that K∈Aj B j,K = {0, . . . , 2 j -1}, for any (K,

K ) ∈ A 2 j with K = K , B j,K ∩ B j,K = ∅ and Card(B j,K ) = L = log n .
Remark 2 Notice that, thanks to (2), for any j ∈ {j 1 , . . . , j 2 }, we have

D j1 ⊂ [-4π3 -1 2 j1 , 4π3 -1 2 j1 ], C j ⊂ [-8π3 -1 2 j , -2π3 -1 2 j ] ∪ [2π3 -1 2 j , 8π3 -1 2 j ].
(10)

Main results

Theorem 1 below determines the rates of convergence achieved by f n,d under the MISE over Besov balls.

Theorem 1 Consider the model ( 1) and recall that we want to estimate f (d) with d ∈ N. Assume that (φ, ψ) is r-regular for some r ≥ d and ( 7) is satisfied. Let f n,d be the estimator defined by ( 8) with a large enough λ. Then there exists a constant C > 0 such that, for any

M ∈ (0, ∞), π ∈ [1, ∞), r ∈ [1, ∞), s ∈ (1/π, ∞)
and n large enough, we have sup

f (d) ∈B s π,r (M ) E 1 0 f n,d (x) -f (d) (x) 2 dx ≤ Cϕ n ,
where

ϕ n = n -2s/(2s+2δ+2d+1) , if π ≥ 2, (log n/n) 2s/(2s+2δ+2d+1) , if π ∈ [1, 2), s > (1/π -1/2)(2δ + 2d + 1).
It is natural to address the following question: is it ϕ n the optimal rate of convergence ? Theorem 2 below gives the answer.

Theorem 2 Consider the model ( 1) and recall that we want to estimate f (d) with d ∈ N. Assume that ( 7) is satisfied. Then there exists a constant c > 0 such that, for any

M ∈ (0, ∞), π ∈ [1, ∞), r ∈ [1, ∞), s ∈ (1/π, ∞) and n large enough, we have inf f n,d sup f (d) ∈B s π,r (M ) E 1 0 f n,d (x) -f (d) (x) 2 dx ≥ cϕ * n ,
where 2s+2δ+2d+1) .

ϕ * n = n -2s/(
Theorem 2 shows that the rate of convergence ϕ n achieved by f n,d is near optimal. Near is only due to the case π ∈ [1, 2) and s > (1/π -1/2)(2δ + 2d + 1) where there is an extra logarithmic term.

Theorems 1 and 2 prove that f n,d is near optimal in the minimax sense.

Proofs

In the following proofs, c and C denote positive constants which can take different values for each mathematical term.

Proof of Theorem 1. Theorem 1 can be proved by using a more general theorem: (Chesneau et al. 2008, Theorem 3.1). To apply this result, two conditions on the estimators (9) are required: a moment condition and a concentration condition. They are presented in the two propositions below.

Proposition 1 (Moment condition) Consider the framework of Theorem 1. Then there exists a constant C > 0 such that, for any k ∈ {0, . . . , 2 j1 -1}, the estimator α j1,k defined by ( 9) satisfies

E | α j1,k -α j1,k | 2 ≤ C 2 2 2(δ+d)j1 n -1 ,
there exists a constant C > 0 such that, for any j ∈ {j 1 , . . . , j 2 } and any k ∈ {0, . . . , 2 j -1}, the estimator β j,k defined by ( 9) satisfies

E | β j,k -β j,k | 4 ≤ C 4 2 4(δ+d)j n -2 .
Proof of Proposition 1. Let us prove the second point, the first one can be proved in a similar way. For any j ∈ {j 1 , . . . , j 2 } and any k ∈ {0, . . . , 2 j -1}, we have

β j,k -β j,k = n -1/2 ∈Cj (2πi ) d F (ψ j,k ) ( ) F(g)( ) e ∼ N 0, n -1 σ 2 j,k , (11) 
where

σ 2 j,k = 2 ∈Cj (2π ) 2d |F (ψ j,k ) ( )| 2 |F(g)( )| 2 . ( 12 
)
Due to ( 7) and ( 10), we have

sup ∈Cj (2π ) 2d |F(g)( )| 2 ≤ C sup ∈Cj (2π ) 2d 1 + | | 2 δ ≤ C2 2(δ+d)j . (13) 
It follows from ( 13) and the Plancherel-Parseval theorem that

σ 2 j,k ≤ 2 sup ∈Cj (2π ) 2d |F(g)( )| 2 ∈Cj |F (ψ j,k ) ( )| 2 ≤ C 2 2 2(δ+d)j ∈Cj |F (ψ j,k ) ( )| 2 = C 2 2 2(δ+d)j ∞ -∞ |F (ψ j,k ) (y)| 2 dy = C 2 2 2(δ+d)j 1 0 |ψ j,k (x)| 2 dx = C 2 2 2(δ+d)j . ( 14 
)
Putting ( 11), ( 12) and ( 14) together, we obtain

E | β j,k -β j,k | 4 ≤ C( 2 2 2(δ+d)j n -1 ) 2 ≤ C 4 2 4(δ+d)j n -2 .
Proposition 1 is proved.

Proposition 2 (Concentration condition) Consider the framework of Theorem 1. Then there exists a constant λ > 0 such that, for any j ∈ {j 1 , . . . , j 2 }, any K ∈ A j and n large enough, the estimators β j,k k∈B j,K defined by ( 9)

satisfy P      k∈B j,K | β j,k -β j,k | 2   1/2 ≥ λ2 (δ+d)j (log n/n) 1/2    ≤ n -2 .
Proof of Proposition 2. We need the Cirelson inequality presented in Lemma 1 below.

Lemma 1 [START_REF] Cirelson | Norm of Gaussian sample functions[END_REF]) Let D be a subset of R and (ϑ t ) t∈D be a centered Gaussian process. If

E sup t∈D ϑ t ≤ N, sup t∈D V (ϑ t ) ≤ V
then, for any x > 0, we have

P sup t∈D ϑ t ≥ x + N ≤ exp - x 2 2V .
For the sake of simplicity, set

V j,k = β j,k -β j,k = n -1/2 ∈Cj (2πi ) d F (ψ j,k ) ( ) F(g)( ) e .
Recall that V j,k ∼ N 0, n -1 σ 2 j,k , where σ 2 j,k is defined by (12). Consider the set Ω defined by Ω = a = (a k ) ∈ R;

k∈B j,K a 2 k ≤ 1 . For any a ∈ Ω, let Z(a) be the centered Gaussian process defined by

Z(a) = k∈B j,K a k V j,k = n -1/2 ∈Cj (2πi ) d e F(g)( ) k∈B j,K a k F (ψ j,k ) ( ).
By an argument of duality, we have

sup a∈Ω Z(a) =   k∈B j,K |V j,k | 2   1/2 =   k∈B j,K | β j,k -β j,k | 2   1/2
. Now, let us determine the values of N and V which appeared in the Cirelson inequality.

Value of N . Using the Hölder inequality and ( 14), we obtain

E sup a∈Ω Z(a) = E      k∈B j,K |V j,k | 2   1/2    ≤   k∈B j,K E |V j,k | 2   1/2 ≤ C   n -1 k∈B j,K σ 2 j,k   1/2 ≤ C 2 (δ+d)j n -1/2 (Card(B j,K )) 1/2 = C 2 (δ+d)j (log n/n) 1/2 . Hence N = C 2 (δ+d)j (log n/n) 1/2 .
Value of V . Since, for any ( ,

) ∈ Z 2 , E (e e ) = 1 0 e -2iπ( -)t dt 1 if = 0 otherwise, it comes sup a∈Ω V(Z(a)) = sup a∈Ω E    k∈B j,K a k V j,k 2    = sup a∈Ω E   k∈B j,K k ∈B j,K a k a k V j,k V j,k   = 2 n -1 sup a∈Ω k∈B j,K k ∈B j,K a k a k ∈Cj ∈Cj (2πi ) d F(g)( ) F(ψ j,k )( ) × (2πi ) d F(g)( ) F(ψ j,k )( )E (e e ) = 2 n -1 sup a∈Ω k∈B j,K k ∈B j,K a k a k ∈Cj (2π ) 2d |F(g)( )| 2 F (ψ j,k ) ( )F(ψ j,k )( ) = 2 n -1 sup a∈Ω ∈Cj (2π ) 2d |F(g)( )| 2 k∈B j,K a k F (ψ j,k ) ( ) 2 . ( 15 
)
For any a ∈ Ω, the Plancherel-Parseval theorem gives

∈Cj k∈B j,K a k F(ψ j,k )( ) 2 = ∈Cj F   k∈B j,K a k ψ j,k   ( ) 2 = ∞ -∞ F   k∈B j,K a k ψ j,k   (y) 2 dy = 1 0 k∈B j,K a k ψ j,k (x) 2 dx = k∈B j,K a 2 k ≤ 1. (16) 
Putting ( 15), ( 13) and ( 16) together, we have

sup a∈Ω V(Z(a)) ≤ C 2 n -1 2 2(δ+d)j sup a∈Ω ∈Cj k∈B j,K a k F (ψ j,k ) ( ) 2 ≤ C 2 n -1 2 2(δ+d)j . Hence V = C 2 n -1 2 2(δ+d)j .
Taking λ large enough and x = 2 -1 λ 2 (δ+d)j (log n/n) 1/2 , the Cirelson inequality described in Lemma 1 yields

P      k∈B j,K |V j,k | 2   1/2 ≥ λ 2 (δ+d)j (log n/n) 1/2    ≤ P      k∈B j,K |V j,k | 2   1/2 ≥ 2 -1 λ 2 (δ+d)j (log n/n) 1/2 + N    = P sup a∈Ω Z(a) ≥ x + N ≤ exp -x 2 /(2V ) ≤ exp -Cλ 2 log n ≤ n -2 .
Proposition 2 is proved.

Putting Propositions 1 and 2 in (Chesneau et al. 2008, Theorem 3.1), we end the proof of Theorem 1.

Proof of Theorem 2. Let us now present a consequence of the Fano lemma.

Lemma 2 Let m ∈ N * and A be a sigma algebra on the space Ω. For any i ∈ {0, . . . , m}, let A i ∈ A such that, for any (i, j) ∈ {0, . . . , m} 2 with i = j, A i ∩ A j = ∅.

Let (P i ) i∈{0,...,m} be m + 1 probability measures on (Ω, A). Then sup i∈{0,...,m}

P i (A c i ) ≥ min 2 -1 , exp(-3e -1 ) √ m exp(-χ m ) ,
where

χ m = inf v∈{0,...,m} 1 m k∈{0,...,m} k =v K(P k , P v ),
and K is the Kullbak-Leibler divergence defined by

K(P, Q) = ln dP dQ dP if P << Q, ∞ otherwise.
The proof of Lemma 2 can be found in DeVore et al. (2006, Lemma 3.3). For further details and applications of the Fano lemma, see [START_REF] Tsybakov | Introduction à l'estimation nonparametrique[END_REF].

Consider the Besov balls B s π,r (M ) (see ( 6)). Let j 0 be an integer suitably chosen below. For any ε = (ε k ) k∈{0,...,2 j 0 -1} ∈ {0, 1} 2 j 0 and d ∈ N * , set

h ε (x) = M * 2 -j0(s+1/2) 2 j 0 -1 k=0 ε k 1 (d -1)! x -∞ (x -y) d-1 ψ j0,k (y)dy, x ∈ [0, 1],
(and, if d = 0, set h ε (x) = M * 2 -j0(s+1/2) 2 j 0 -1 k=0 ε k ψ j0,k (x), x ∈ [0, 1]). Notice that, due to (4), h ε exists and, since ψ j0,k is 1-periodic, h ε is also 1-periodic. Using the Cauchy formula for repeated integration, we have

h (d) ε (x) = M * 2 -j0(s+1/2) 2 j 0 -1 k=0 ε k ψ j0,k (x), x ∈ [0, 1].
So, for any j ≥ τ and any k ∈ {0, . . . , 2 j -1}, the (mother) wavelet coefficient of h

(d) ε is β j,k = 1 0 h (d) ε (x)ψ j,k (x)dx = M * ε k 2 -j0(s+1/2) , if j = j 0 , 0, otherwise. Therefore h (d) ε ∈ B s π,r (M ).
Let us now recall the theorem of Varshamov-Gilbert (see, for instance, Tsybakov (2004, Lemma 2.7)): there exist a subset E j0 = ε (0) , . . . , ε (Tj 0 ) of {0, 1} 2 j 0 and two constants, c ∈]0, 1[ and α ∈]0, 1[, such that, for any (u, v) ∈ {0, . . . , T j0 } 2 with u < v,

2 j 0 -1 k=0 |ε (u) k -ε (v) k | ≥ c2 j0 , T j0 ≥ e α2 j 0 .
Considering such a E j0 , for any (u, v) ∈ {0, . . . , T j0 } 2 with u = v, we have

1 0 h (d) ε (u) (x) -h (d) ε (v) (x) 2 dx 1/2 = c2 -j0(s+1/2)   2 j 0 -1 k=0 ε (u) k -ε (v) k   1/2 ≥ 2δ j0 , where δ j0 = c2 j0/2 2 -j0(s+1/2) = c2 -j0s .
Using the Chebychev inequality, for any f n,p , we have

δ -2 j0 sup f (d) ∈B s π,r (M ) E 1 0 f n,d (x) -f (d) (x) 2 dx ≥ sup u∈{0,...,Tj 0 } P h ε (u) (A c u ) = p,
where

A u = 1 0 f n,d (x) -h (d) ε (u) (x) 2 dx 1/2 < δ j0
and P f is the distribution of (1). Notice that, for any (u, v) ∈ {0, . . . , T j0 } 2 with u = v, A u ∩ A v = ∅. Lemma 2 applied to the probability measures

P h ε (u) u∈{0,...,Tj 0 } gives p ≥ min 2 -1 , exp(-3e -1 ) T j0 exp(-χ Tj 0 ) , (17) 
where

χ Tj 0 = inf v∈{0,...,Tj 0 } 1 T j0 u∈{0,...,Tj 0 } u =v K P h ε (u) , P h ε (v) .
Let us now bound χ Tj 0 . For any functions f 1 and f 2 in L 2 per ([0, 1]), we have

K (P f1 , P f2 ) = n 2 2 1 0 ((f 1 g)(x) -(f 2 g)(x)) 2 dx = n 2 2 1 0 (((f 1 -f 2 ) g)(x)) 2 dx.
The Plancherel-Parseval theorem yields

K (P f1 , P f2 ) = n 2 2 ∈Z |F(f 1 -f 2 )( )| 2 |F(g)( )| 2 .
So, for any (u, v) ∈ {0, . . . , T j0 } 2 with u = v, we have

K P h ε (u) , P h ε (v) = n 2 2 ∈Z |F (h ε (u) -h ε (v) ) ( )| 2 |F(g)( )| 2 . ( 18 
)
By definition, for any (u, v) ∈ {0, . . . , T j0 } 2 with u = v and ∈ Z, we have

F (h ε (u) -h ε (v) ) ( ) = M * 2 -j0(s+1/2) 2 j 0 -1 k=0 ε (u) k -ε (v) k × 1 (d -1)! F . -∞ (. -y) d-1 ψ j0,k (y)dy ( ). ( 19 
)
Let us set, for any k ∈ {0, . . . , 2 j0 -1},

θ k (x) = x -∞ (x -y) d-1 ψ j0,k (y)dy, x ∈ [0, 1].
Then, for any u ∈ {0, . . . , d}, θ

(u) k is 1-periodic and θ (u) k (0) = θ (u)
k (1). Therefore, by d integrations by parts, for any ∈ Z, we have

F θ (d) k ( ) = (2πi ) d F(θ k )( ).
Using again the Cauchy formula for repeated integration, we have θ 

F(h ε (u) -h ε (v) )( ) =
M * (d -1)! 2 -j0(s+1/2)

2 j 0 -1 k=0 ε (u) k -ε (v) k 1 (2πi ) d F (ψ j0,k ) ( ).
(20)

The equalities ( 18) and (20) imply that

K P h ε (u) , P h ε (v) = Cn2 -2j0(s+1/2) ∈Cj 0 2 j 0 -1 k=0 ε (u) k -ε (v) k F (ψ j0,k ) ( ) 2 1 (2π ) 2d |F(g)( )| 2 .
(21) By ( 7) and (10), sup

∈Cj 0 1 (2π ) 2d |F(g)( )| 2 ≤ C sup ∈Cj 0 1 (2π ) 2d 1 + | | 2 -δ ≤ C2 -2j0(δ+d) . (22)
Moreover, the Plancherel-Parseval theorem implies that ∈Cj 0

2 j 0 -1 k=0 ε (u) k -ε (v) k F (ψ j0,k ) ( ) 2 = ∈Cj 0 F   2 j 0 -1 k=0 ε (u) k -ε (v) k ψ j0,k   ( ) 2 = ∞ -∞ F   2 j 0 -1 k=0 ε (u) k -ε (v) k ψ j0,k   (y) 2 dy = 1 0 2 j 0 -1 k=0 ε (u) k -ε (v) k ψ j0,k (x) 2 dx = 2 j 0 -1 k=0 ε (u) k -ε (v) k 2 ≤ C2 j0 . ( 23 
)
It follows from ( 21), ( 22) and ( 23) that K P h ε (u) , P h ε (v) ≤ Cn2 -2j0(s+1/2) 2 -2j0(δ+d) 2 j0 = Cn2 -2j0(s+1/2+δ+d) 2 j0 . Hence χ Tj 0 = inf v∈{0,...,Tj 0 } 1 T j0 u∈{0,...,Tj 0 } u =v

K P h ε (u) , P h ε (v) ≤ Cn2 -2j0(s+1/2+δ+d) 2 j0 . (24) 
Putting ( 17) and ( 24) together and choosing j 0 such that 2 -j0(s+1/2+δ+d) = c 0 n -1/2 , where c 0 denotes a well chosen constant, for any estimator f n,d of f (d) , we have This complete the proof of Theorem 2.
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  ψ j0,k (x), x ∈ [0, 1]. So, for any ∈ C j0 (excluding 0), (19) implies that

  d (x) -f (d) (x) 2 dx ≥ c exp (α/2)2 j0 -Cc 2 0 2 j0 ≥ c,where δ j0 = c2 -j0s = n -s/(2s+2δ+2d+1) .