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Abstract: the aim of this paper is to model thermal flux versus temperature in an aluminum
rod. The objective is to check whether a theoretical model applies to experimental data and
then to investigate some more effective fractional models from black box identification. For this
particular system, it is shown that fractional models are more suitable than rational ones, since
they require fewer parameters to achieve the same quality of approximation.
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1. INTRODUCTION

Fractional calculus is a generalization of the traditional
calculus and dates back to Liouville [1832] and Riemann
[1892]. It remained for a long time an interesting but
abstract mathematical concept. The past two decades have
witnessed considerable development in the use of fractional
calculus in various fields. It is now an important tool for
the international scientific and industrial communities.

Many diffusive phenomena can be modeled by fractional
transfer functions. In electrochemistry for instance, dif-
fusion of charges in acid batteries is governed by Randles
models (Rodrigues et al. [2000], Sabatier et al. [2006]) that
involve Warburg impedance with an integrator of order
0.5. Electrochemical diffusion, investigated in semi-infinite
planar, spherical and cylindrical media by Oldham and
Spanier [1970, 1972, 1973], showed to have a tight relation
with derivatives of order 0.5. In thermal diffusion of a
semi-infinite homogeneous medium, Battaglia et al. [2001]
have shown that the exact solution for the heat equation
links thermal flux to a half order derivative of the surface
temperature on which the flux is applied.

The objective here is to investigate thermal diffusion in
an aluminum rod and to check whether the theoretical
model of thermal diffusion applies to experimental data.
Then, a more effective fractional model is determined using
black box identification and compared to rational models
obtained in the same manner.

The paper is organized as follows. After a mathematical
background on fractional derivatives, a physical model of
the aluminum rod is elaborated under some simplifying
assumptions. Then, in section 3, the system is identified in
a black box context and the obtained fractional models are
compared to rational models identified using the ContSid
toolbox Garnier et al. [2006].

1.1 Mathematical background

A fractional mathematical model is based on a fractional
differential equation:

y (t) + a1D
α1y (t) + · · · + amA

DαmA y (t) =

b0D
β0u (t) + b1D

β1u (t) + · · · + bmB
DβmB u (t) (1)

where (aj , bi) ∈ R
2, differentiation orders

α1 < α2 < . . . < αmA
, (2)

β0 < β1 < . . . < βmB
. (3)

are allowed to be non-integer positive numbers. The con-
cept of differentiation to an arbitrary (non-integer) order
γ, with γ ∈ R

∗
+ (set of strictly positive real numbers):

Dγ ∆
=

(

d

dt

)γ

, (4)

was defined in the 19th century by Riemann and Liouville.
The γ-order fractional derivative of x(t) is defined as being
an integer derivative of order ⌊γ⌋ + 1 (⌊.⌋ stands for the
floor operator) of a non-integer integral of order ⌊γ⌋−γ+1
Samko et al. [1993]:

Dγx(t)=D⌊γ⌋+1
(

I⌊γ⌋+1−γx(t)
)

∆
=

(

d

dt

)⌊γ⌋+1




1

Γ (⌊γ⌋ + 1 − γ)

t
∫

0

x (τ) dτ

(t − τ )γ−⌊γ⌋



 , (5)

where t > 0, γ ∈ R
∗
+, and the Euler’s Γ function is defined

in the set of real numbers except zero and negative integers
(x ∈ R

∗ \ N
−) as:

Γ(x) =

∞
∫

0

e−ttx−1dt. (6)

The Laplace transform is a more concise algebraic tool
generally used to represent fractional systems Oldham and
Spanier [1974]:

L {Dγx (t)} = sγX (s) if x(t) = 0 ∀t ≤ 0. (7)



This property allows to write the fractional differential
equation (1), provided u(t) and y(t) equal 0 for all t < 0,
in a transfer function form:

F (s) =
B(s)

A(s)
=

mB
∑

i=0

bis
βi

1 +
mA
∑

j=1

ajsαj

. (8)

Moreover if F (s) is commensurable of order γ, i.e. all
differentiation orders are exactly divisible by the same
number γ an integral number of times (the biggest number
is always chosen), then F (s) can be rewritten as:

F (s) =

n
∑

i=0

b̃is
iγ

1 +
m
∑

j=1

ãjsjγ

, (9)

where n =
βmB

γ
and m =

αmA

γ
are integers and:

{

b̃i = bi if iγ = βi and b̃i = 0 if iγ 6= βi

ãj = aj if jγ = αj and ãj = 0 if jγ 6= αj .
(10)

In rational transfer functions γ equals 1 and usually
numerator αmA

and denominator βmB
orders are both

fixed, then all coefficients bi, i = 1, . . . , βmB
and aj , j =

1, . . . , αmA
are estimated. Generally, no care is taken to

check whether any intermediate coefficient, as in (10),
equals zero.

1.2 Time-domain simulation of fractional models

Many different algorithms for simulating fractional sys-
tems in the time-domain exist (Aoun et al. [2004]). Al-
though identification algorithms presented in our paper
could be implemented with any of these simulation al-
gorithms, the simulation algorithm used in our paper is
explained here.

Due to the consideration that real physical systems gener-
ally have bandlimited fractional behavior and due to the
practical limitations of input and output signals (Shan-
non’s cut-off frequency for the upper band and the spec-
trum of the input signal for the lower band), fractional
operators are usually approximated by high order rational
models. As a result, a fractional model and its rational
approximation have the same dynamics within a limited
frequency band. The most commonly used approximation
of sν , and by the way the one used in this paper, in the
frequency band [ωA, ωB] is the recursive distribution of
zeros and poles proposed by Oustaloup [1995]:

sγ → sγ

[ωA,ωB ] = C0

(

1 + s
ωA

1 + s
ωB

)γ

≈ C0

N
∏

k=1

1 + s
ω′

k

1 + s
ωk

, (11)

where ωi = αω′
i, ω′

i+1 = ηω′
i and

γ = 1 − log α

log αη
, (12)

α and η define the differentiation order γ. The bigger N
the better the approximation of the differentiator sν within
[ωA, ωB].

Fig. 1. Insulated long aluminum rod heated by a resistor

2. PHYSICAL MODELING OF THE ALUMINUM
ROD

2.1 Plant description

A long aluminum rod heated by a resistor is considered in
this experiment. To ensure unidirectional heat transfer, the
entire surface of the rod is insulated by a foam as shown
in Fig. 1. The input signal is a thermal flux generated by
a resistor glued at one end and the output signal is the
temperature of the rod measured at a distance x from the
heated end.

The injected heat flux is controlled by a computer through
an on-off transistor with a controlled amplitude of the
input voltage. Temperature is measured using a platinum
probe and an amplifier with a quantification error of 0.125
degree and which dynamic behavior is neglected.

2.2 Physical modeling

To demonstrate the fractional behavior of this thermal
system, the aluminum rod is modeled under the following
assumptions:

(i) the rod is perfectly isolated,
(ii) the rod is considered as a semi-infinite homogeneous

plane medium with conductivity λ and diffusivity α,
(iii) at rest, the rod is at ambient temperature, so that

there is no thermal exchange with the environment,
(iv) Losses on the surface where the thermal flux is applied

are neglected. The electrical energy consumed in the
resistor is assumed to be totally transformed into
thermal energy and diffused by conduction in the only
direction of the aluminum rod.

The last assumption is required in order to compute
the thermal flux from the electrical energy injected in
the resistor. Care is taken so that assumption (iii) is
fulfilled. A time period of 24 hours is observed between two
consecutive experiments so that the temperature of the
aluminum rod cools down to the ambient temperature and
hence initial conditions are zero at the beginning of each
experiment, since there is initially no thermal exchange
with the environment. Fractional systems with non zero
initial conditions are much harder to tackle ; see Lorenzo
and Hartley [2008], Sabatier et al. [2008].

A one-dimensional heat transfer is governed by the follow-
ing partial differential equation and boundary effects:





















∂T (x, t)

∂t
= α

∂2T (x, t)

∂x2
, 0 < x < ∞, t > 0

−λ
∂T (x, t)

∂x
= ϕ (t) , x = 0, t > 0

T (x, t) = 0, 0 ≤ x < ∞, t = 0

(13)

where T (x, t) is the temperature measured at a distance
x, ϕ is the injected heat flux, λ the thermal conductivity,
and α the thermal diffusivity.

Evaluating the Laplace transform of the first equation
leads to the ordinary differential equation:

∂2T̄ (x, s)

∂x2
− s

α
T̄ (x, s) = 0, (14)

where T̄ (x, s) = L {T (x, t)} . (15)

Solving with respect to x yields:

T̄ (x, s) = K1 (s) e−x
√

s
α + K2 (s) ex

√
s
α . (16)

Taking into account limit conditions, the following transfer
function is obtained:

H (x, s) =
T̄ (x, s)

ϕ̄ (s)
=

√
α

λ
√

s
e−x

√
s
α . (17)

ϕ̄ stands for the Laplace transform of ϕ.

Setting z = x
√

s
α
, and evaluating the Pth order Padé

approximation of e−z yields:

e−z ≈

P
∑

k=0

(2P−k)!
k!(P−k)! (−z)k

P
∑

k=0

(2P−k)!
k!(P−k)!z

k

. (18)

Evaluating H(x, s), at a fixed coordinate x = x∗, gives:

H(x∗, s) ≈ HP (s) =

√
α

λ
√

s

P
∑

k=0

(2P−k)!
k!(P−k)! (−x∗√ s

α
)k

P
∑

k=0

(2P−k)!
k!(P−k)! (x

∗√ s
α
)k

. (19)

In the notation HP (s), the subscript P stands for the Padé
approximation order. Note that H0(s) reduces to a simple

integrator of order 0.5: H0(s) =
√

α

λ
√

s
.

Values of physical parameters The following values of
physical parameters are considered:

• the aluminum rod has a cylindrical shape with a
length of 40cm and a diameter of 2cm,

• temperature (output signal) is measured at a distance
x∗ = 0.5cm, with a sampling period Ts = 0.5s.

• thermal conductivity and diffusivity of the aluminum
rod are respectively: λ = 237 Wm−1K−1 and α =
9975 × 10−8 m2/s.

The integrator H0(s) and a first order order Padé approx-
imation are respectively given by:

H0(s) =
4.21 × 10−5

s0.5
, (20)

H1(s) =
10−5

s0.5

(−2.11s0.5 + 8.43

0.50s0.5 + 2.00

)

. (21)

In Fig.2, the frequency response of the theoretical model
(17) is compared to the integrator (20) and the first order
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0 order Pade Approximation

1st order Pade approximation

Nyquist Frequency

Physical model H(x, s) as in (17)

Fig. 2. Physical model H(x, s) as in (17), and its Padé
approximations H0(s) corresponding to a simple inte-
grator and H1(s) as in (21).

Padé approximation (21) in a frequency band [10−3 ωNq],
with ωNq Nyquist frequency. The first order Padé approx-
imation matches quite well the theoretical model. Higher
order Padé approximations are clearly unnecessary for a
good approximation of the theoretical model up to the
Nyquist frequency.

2.3 Applying experimental data to the physical model

The injected thermal flux is a pseudo random binary
sequence (PRBS) varying from 0 to φ ≈ 41KW/m2. The
injected heat flux is applied to the approximations H0(s)
and H1(s) of the physical model H(x, s) and the output
of each model is compared to the measured temperature
in Fig.3. The models exhibit similar dynamics as the true
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Fig. 3. Input/output experimental data and H0(s) and
H1(s) model outputs.

system. However, system temperature increases less than
model temperature which is most probably due to the heat



leakage. Assumption (i) p.2 is most probably violated as
the aluminum rod is not perfectly isolated. Because of the
heat leakage, hypothesis (ii) is violated either as the exact
geometry (cylindrical) of the aluminum rod must be taken
into account when considering boundary conditions.

All in all, the dynamical behaviors of the theoretical
models might have been satisfactory, if the assumptions
were satisfied. Unfortunately, this is not the case. So
let’s examine now the models obtained from a black box
identification.

3. SYSTEM IDENTIFICATION IN AN OUTPUT
ERROR CONTEXT

System identification using fractional models was initiated
by Mathieu et al. [1995], Le Lay [1998], Cois et al.
[2000, 2001]. Output-error-based methods (OE) applied
on fractional models allow simultaneous estimation of
differentiation orders and model parameters by Non Linear
Programming (NLP) Malti et al. [2006].

OE methods for fractional models were first developed in
Cois et al. [2000] who have chosen to represent the system
in a modal form. They however constrained all sγ-poles
to be real-valued and of multiplicity one. In general, sγ-
poles can be real or complex conjugate, and of multiplicity
greater or equal than one.

3.1 The OE model

The system to be identified is assumed to be initially at
rest, modeled by (8) and characterized by input/output
vector formed of coefficients and differentiation orders
θ = [a1, . . . amA

, b0, . . . bmB
, α1, . . . αmA

, β0, . . . βmB
]. Con-

straints (2) and (3) are necessary for identifiability pur-
poses.

When the number of parameters in (8) is high, opti-
mization algorithms might be ill-conditioned. One way for
limiting the number of parameters consists of optimizing
the commensurable order γ instead of all differentiation
orders. In this case, the fractional transfer function (8) is
rewritten in a commensurable form as in (9). Numerator
and denominator orders, respectively αmA

and βmB
, both

multiples of γ, are fixed as in classical rational mod-
els. Henceforth, the system is entirely characterized by
coefficients vector: θ = [ã1, . . . , ãmA

, b̃0, . . . , b̃mB
, γ]. As

far as identification of stable systems is concerned, the
commensurable order is constrained to ]0, 2[; see Matignon
[1998] for details on stability of commensurable fractional
systems.

Considering observed data u(t) and y∗(t) = y(t) + p(t),
p(t) being an output white noise, regularly sampled with
a sampling period of Ts, the quadratic norm:

J
(

θ̂
)

=
K−1
∑

k=0

ε2
(

kTs, θ̂
)

(22)

of the output error:

ε
(

kTs, θ̂
)

= y∗ (kTs) − ŷ
(

kTs, θ̂
)

(23)

is minimized. Model’s output ŷ(kTs, θ̂) being non linear

in θ̂, gradient-based algorithms, such as the Marquardt

algorithm (Marquardt [1963]), are used to estimate θ̂
iteratively:

θ̂i+1 = θ̂i −
{

[J′′
θθ + ξI]

−1
J′

θ

}

θ=θ̂i

, (24)


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
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





J′
θ = −2

K−1
∑

k=0

ε (kTs)S
(

kTs, θ̂
)

: gradient

J′′
θθ ≈ 2

K−1
∑

k=0

S
(

kTs, θ̂
)

ST
(

kTs, θ̂
)

: pseudo − Hessian

S
(

kTs, θ̂
)

=
∂ŷ
(

kTs, θ̂
)

∂θ
: output sensitivity functions

ξ : Marquardt parameter
(25)

Output sensitivity functions can be computed by differen-
tiating (9) with respect to b̃i, ãk and γ (see Malti et al.
[2006] for details).

3.2 Application to the aluminum rod under study

The OE model is now used for the identification of the
aluminum rode based on measurement data. A two stage
algorithm is applied. First of all, a model is estimated
with an optimal commensurable order (reduced number
of parameters) which is then used as an initial guess to
compute an optimal model with all differentiation orders
optimized.

Based on the study of the physical model, the following
model structures are chosen:

H̃0(s) =
b0

sα0

, (26)

H̃1(s) =
b0

sα0(a1sα1 + 1)
, (27)

and their optimal parameters estimated.

A time lag of three samples (1.5 sec) is noticed between
the input and the output signals, probably due to the
time-lag in flux diffusion in the medium. Consequently,
the following optimal models are obtained

H̃0(s) =
4.8 × 10−5

s0.45
× e−1.5s, (28)

H̃1(s) =
19 × 10−5

s0.29(16s0.59 + 1)
× e−1.5s. (29)

System and models outputs are plotted in Fig.4 on iden-
tification data and in Fig.5 on validation data. The model
H̃1(s) clearly exhibits a better performance. Moreover, the
normalized mean squared error is computed (with x = id
for identification data and x = val for validation data):

Jx =
J(θ̂)

K−1
∑

k=0

(y∗(kTs))
2

. (30)

The performance index Jx is given for every model in the
first two lines of Table 1.

It is interesting to notice, in validation data, that the
model H̃1(s) fits exactly the measured output up to t ≈
2500s, and then there is a deviation between these two
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Fig. 4. Measured output compared to fractional models
outputs on identification data
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Fig. 5. Measured output compared to fractional models
outputs on validation data

signals. This is most probably due to the presence of a
fractional integrator in the model. Like integer integrators,
fractional integrators accumulate the output signal. The
difficulty with fractional integrators is that there exact
value is unknown and even if it is approximated with a
good precision, during long-time experiments, model inte-
grator might accumulate the signal in a different way as
compared to the true system integrator. In the frequency
domain, long-time behavior is reflected in low frequencies.
Hence in the presence of a fractional integrator, the slope
of Bode’s gain diagram is non zero in low frequencies as
in Fig. 7. The difficulty with fractional integrators is that
there exact slope is unknown and even if it is approximated
with a good precision, below the spectrum of input/output
data (below 6×10−3 in Fig. 7), model integrator might be
different from true system integrator which again explains
the time-domain deviation after t ≈ 2500s.

Model numb. of

opt. param.

Jid Jval

Fractional model H̃0 2 4.24h 5.30h

Fractional model H̃1 4 0.11h 1.65h

Rational model F2 4 5.06h 6.11h

Rational model F4 8 0.01h 1.39h

Table 1. Comparison between fractional and
rational models.
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Fig. 6. Measured output compared to rational models
outputs on validation data

3.3 Comparison with continuous-time rational models

Continuous-time rational OE model is used for the iden-
tification of the aluminum rode based on measurement
data. For a fair comparison, a second order model F2(s) is
first computed with the same number of parameters (four)

as the fractional model H̃1(s). The coe function of the
ContSid toolbox (Garnier et al. [2006]) is used and the
following model obtained:

F2(s) =
5.86 × 10−6(s + 10−3)

s2 + 8.8 × 10−3s + 1.25 × 10−6
× e−1.5s. (31)

Then, model order is augmented until the performance
of the new rational model becomes comparable to the
fractional one on the basis of identification and valida-
tion criteria. The fourth order model F4(s) as in (32) is
obtained.

The performance index Jx of every rational model is given
in the last two lines of Table 1. If one focuses on the
validation index (Jval column), then he or she can verify
that for a rational model eight parameters are required to
reach a comparable validation index as a four-parameters
fractional model.

This example clearly shows that fractional models are
more adapted than rational models in modeling temper-
ature versus heat flux in an aluminum rod, since they
require less parameters. As explained in section 1.2 it is
always possible to find a high order rational model equiva-
lent to a fractional one in a given frequency band. High
order rational models are necessary to get comparable
results.



F4(s) =
1.17 × 10−6s3 + 6.09 × 10−6s2 + 1.17 × 10−7s + 1.97 × 10−10

s4 + 0.76s3 + 0.03s2 + 0.00017s + 8.451 × 10−08
× e−1.5s. (32)
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Fig. 7. Measured output compared to rational models
outputs on identification data

4. CONCLUSIONS

Heat transfer in an aluminum rod was studied in this
paper using real experimental data. It was shown that
fractional models are more adapted for modeling this
system since they require much less parameters to achieve
a good quality of identification as compared to rational
models. Higher order rational models are necessary to
achieve comparable results.
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