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PERTURBATION METHOD FOR PARTICLELIKE SOLUTIONS OF EINSTEIN-DIRAC EQUATIONS

The aim of this work is to prove by a perturbation method the existence of solutions of the coupled Einstein-Dirac equations for a static, spherically symmetric system of two fermions in a singlet spinor state. We relate the solutions of our equations to those of the nonlinear Choquard equation and we show that the nondegenerate solution of Choquard's equation generates solutions for Einstein-Dirac equations.

Introduction

In this paper, we study the coupled Einstein-Dirac equations for a static, spherically symmetric system of two fermions in a singlet spinor state. Using numerical methods, F. Finster, J. Smoller and ST. Yau found, in [START_REF] Finster | Particlelike solutions of the Einstein-Dirac equations[END_REF], particlelike solutions; our goal is to give a rigorous proof of their existence by a perturbation method 1 .

The Einstein-Dirac equations take the form (Dm)ψ = 0 (1.1)

R i j - 1 2 Rδ i j = -8πT i j (1.2)
where D denotes the Dirac operator, ψ is the wave function of a fermion of mass m, R i j is the Ricci curvature tensor, R indicates the scalar curvature and, finally, T i j is the energy-momentum tensor of the Dirac particle. In [START_REF] Finster | Particlelike solutions of the Einstein-Dirac equations[END_REF], Finster, Smoller and Yau work with the Dirac operator into a static, spherically symmetric space-time where the metric, in polar coordinates (t, r, ϑ, ϕ), is given by (1.3)

g ij = diag 1 T 2 , - 1 A , -r 2 , -r 2 sin 2 ϑ (1.4) g ij = diag T 2 , -A, - 1 r 2 , - 1 r 2 sin 2 ϑ
with A = A(r), T = T (r) positive functions; so, the Dirac operator can be written as

(1.5) D = iγ t ∂ t + γ r i∂ r + i r 1 -A -1/2 - i 2 
T ′ T + iγ ϑ ∂ ϑ + iγ ϕ ∂ ϕ
Date: October 2, 2009. 1 After completing this work, we learned from professor Joel Smoller that Erik J. Bird had proved the existence of small solutions of the Einstein-Dirac equations in his doctoral thesis in 2005 [START_REF] Bird | A proof of existence of particle-like solutions of Einstein Dirac Equations[END_REF]. His method is quite different from ours: he uses Schauder's fixed point theorem. with γ t = T γ0 (1.6) γ r = √ A γ1 cos ϑ + γ2 sin ϑ cos ϕ + γ3 sin ϑ sin ϕ (1.7)

γ ϑ = 1 r
-γ 1 sin ϑ + γ2 cos ϑ cos ϕ + γ3 cos ϑ sin ϕ (1.8)

γ ϕ = 1 r sin ϑ -γ 2 sin ϕ + γ3 cos ϕ (1.9)
where γi are the Dirac matrices in Minkowski space (see [START_REF] Finster | Particlelike solutions of the Einstein-Dirac equations[END_REF]).

Moreover, Finster, Smoller and Yau are looking for solutions taking the form

(1.10) ψ = e -iωt r -1 T 1/2     Φ 1 1 0 iΦ 2 σ r 1 0     ,
where σ r = σ1 cos ϑ + σ2 sin ϑ cos ϕ + σ3 sin ϑ sin ϕ is a linear combination of the Pauli matrices σi and Φ 1 (r), Φ 2 (r) are radial real functions. We remind also that the energy-momentum tensor is obtained as the variation of the classical Dirac action

S = ψ(D -m)ψ |g| d 4 x
and takes the form

T i j = 1 r 2 diag 2ωT 2 |Φ| 2 , -2ωT 2 |Φ| 2 + 4T 1 r Φ 1 Φ 2 + 2mT Φ 2 1 -Φ 2 2 , -2T 1 r Φ 1 Φ 2 , -2T 1 r Φ 1 Φ 2
(see [START_REF] Finster | Particlelike solutions of the Einstein-Dirac equations[END_REF] for more details). In this case, the coupled Einstein-Dirac equations can be written as

√ AΦ ′ 1 = 1 r Φ 1 -(ωT + m)Φ 2 (1.11) √ AΦ ′ 2 = (ωT -m)Φ 1 - 1 r Φ 2 (1.12) rA ′ = 1 -A -16πωT 2 Φ 2 1 + Φ 2 2 (1.13) 2rA T ′ T = A -1 -16πωT 2 Φ 2 1 + Φ 2 2 + 32π 1 r T Φ 1 Φ 2 + +16πmT Φ 2 1 -Φ 2 2 (1.14)
with the normalization condition

(1.15) ∞ 0 |Φ| 2 T √ A dr = 1 4π .
In order that the metric be asymptotically Minkowskian, Finster, Smoller and Yau assume that lim r→∞

T (r) = 1.
Finally, they also require that the solutions have finite (ADM) mass; namely

lim r→∞ r 2 (1 -A(r)) < ∞.
In this paper, we will prove the existence of solutions of (1.1-1.2) in the form (1.10) by a perturbation method. In particular, we follow the idea described by Ounaies in [START_REF] Ounaies | Perturbation method for a class of non linear Dirac equations[END_REF] (see also [START_REF] Guan | Solitary Wave Solutions for the Nonlinear Dirac Equations[END_REF] for a rigorous existence proof of nonlinear Dirac solitons based on Ounaies' approach). Ounaies, by a perturbation parameter, relates the solutions of a nonlinear Dirac equation to those of nonlinear Schrödinger equation. Imitating the idea of Ounaies, we relate the solutions of ours equations to those of nonlinear Choquard's equation (see [START_REF] Lieb | Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation[END_REF], [START_REF] Lions | The Choquard equation and related questions[END_REF] for more details on Choquard's equation) and we obtain the following result.

Theorem 1.1. Given 0 < ω < m such that mω is sufficiently small, there exists a non trivial solution of (1.11-1.14).

In Section 2, we solve the Einstein-Dirac equations by means of the perturbation method suggested by Ounaies; in particular in the first subsection we describe a useful rescaling and some properties of the operators involved, whereas in the second subsection we prove the existence of solutions generated by the solution of the Choquard equation.

Perturbation method for Einstein-Dirac equations

First of all, we observe that writing T (r) = 1 + t(r) and using equation (1.13), the coupled Einstein-Dirac equations become

√ AΦ ′ 1 = 1 r Φ 1 -(ω + m)Φ 2 -ωtΦ 2 (2.1) √ AΦ ′ 2 = (ω -m)Φ 1 + ωtΦ 1 - 1 r Φ 2 (2.2) 2rAt ′ = (A -1)(1 + t) -16πω(1 + t) 3 Φ 2 1 + Φ 2 2 + +32π 1 r (1 + t) 2 Φ 1 Φ 2 + 16πm(1 + t) 2 Φ 2 1 -Φ 2 2 (2.3)
where

(2.4) A(r) = 1 - 16πω r r 0 (1 + t(s)) 2 Φ 1 (s) 2 + Φ 2 (s) 2 ds := 1 - 16πω r Q(r).
Furthermore, because we want A(r) > 0, we have that the following condition must be satisfied

(2.5) 0 ≤ Q(r) r < 1 16πω
for all r ∈ (0, ∞). Now, to find a solution of the equations (2.1-2.3), we exploit the idea used by Ounaies in [START_REF] Ounaies | Perturbation method for a class of non linear Dirac equations[END_REF]. In particular, we proceed as follow: in a first step we use a rescaling argument to transform (2.1-2.3) in a perturbed system of the form (2.6)

       A (ε, ϕ, χ, τ ) d dr ϕ -1 r ϕ + 2mχ + K 1 (ε, ϕ, χ, τ ) = 0 A (ε, ϕ, χ, τ ) d dr χ + 1 r χ + ϕ -mϕτ + K 2 (ε, ϕ, χ, τ ) = 0 A (ε, ϕ, χ, τ ) d dr τ + 8πm r 2 r 0 ϕ 2 ds + K 3 (ε, ϕ, χ, τ ) = 0
where ϕ, χ, τ : (0, ∞) → R. Second, we relate the solutions of (2.6) to those of the nonlinear system (2.7)

         -d 2 dr 2 ϕ + 2mϕ -16πm 3 ∞ 0 ϕ 2 max(r,s) ds ϕ = 0 χ(r) = 1 2m 1 r ϕ -d dr ϕ τ (r) = 8πm ∞ 0 ϕ 2 max(r,s) ds.
We remark that ϕ is a solution of (2.7) if and only if u(x) = ϕ(|x|) |x| solves the nonlinear Choquard equation

(2.8) -△u + 2mu -4m 3 R 3 |u(y)| 2 |x-y| dy u = 0 in H 1 R 3 .
To prove this fact it's enough to remind that for a radial function ρ,

△ρ = 1 r 2 d dr r 2 d dr ρ and (| • | ⋆ ρ) (x) = 4π ∞ 0 s 2 ρ(s) max(r, s) ds with r = |x|.
We observe also that if we write

u(x) v(x) = r -1     ϕ(r) 1 0 iχ(r)σ r 1 0     with r = |x|, (ϕ, χ) is a solution of (2.7) if and only if (u(x), v(x)) solve (2.9) -△u + 2mu -4m 3 R 3 |u(y)| 2 |x-y| dy u = 0 v = -iσ∇u 2m in R 3 where σ∇ = 3 i=1
σi ∂ i . It's well known that Choquard's equation (2.8) has a unique radial, positive solution u 0 with |u 0 | 2 = N for some N > 0 given. Furthermore, u 0 is infinitely differentiable and goes to zero at infinity; more precisely there exist some positive constants

C δ,η such that |D η (u 0 )| ≤ C δ,η exp(-δ|x|) for x ∈ R 3 . At last, u 0 ∈ H 1 (R 3
) is a radial nondegenerate solution; by this we mean that the linearization of (2.8) around u 0 has a trivial nullspace in L 2 r (R 3 ). In particular, the linear operator L given by [START_REF] Lieb | Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation[END_REF], [START_REF] Lions | The Choquard equation and related questions[END_REF], [START_REF] Lenzmann | Uniqueness of ground states for pseudo-relativistic Hartree equations[END_REF] for more details). The main idea is that the solutions of (2.6) are the zeros of a

Lξ = -△ξ + 2mξ -4m 3 R 3 |u 0 (y)| 2 |x -y| dy ξ -8m 3 R 3 ξ(y)u 0 (y) |x -y| dy u 0 satisfies ker L = {0} when L is restricted to L 2 r (R 3 ) (see
C 1 operator D : R × X ϕ × X χ × X τ → Y ϕ × Y χ × Y τ . If we denote by D ϕ,χ,τ (ε, ϕ, χ, τ ) the derivative of D(ε, •, •, •)
, by (ϕ 0 , χ 0 , τ 0 ) the ground state solution of (2.7) and we observe that D ϕ,χ,τ (ε, ϕ 0 , χ 0 , τ 0 ) is an isomorphism, the application of the implicit function theorem (see [START_REF] Renardy | An Introduction to Partial Differential Equations[END_REF]) yields the following result, which is equivalent to theorem 1.1.

Theorem 2.1. Let (ϕ 0 , χ 0 , τ 0 ) be the ground state solution of (2.7), then there exists δ > 0 and a function η ∈ C((0, δ), X ϕ ×X χ ×X τ ) such that η(0) = (ϕ 0 , χ 0 , τ 0 ) and (ε, η(ε)) is a solution of (2.6), for 0 ≤ ε < δ.

2.1.

Rescaling. In this subsection we are going to introduce the new variable (ϕ, χ, τ ) such that Φ 1 (r) = αϕ(λr), Φ 2 (r) = βχ(λr) and t(r) = γτ (λr), where Φ 1 , Φ 2 , t satisfy (2.1-2.3) and α, β, γ, λ > 0 are constants to be chosen later.

Using the explicit expressions of A, given in (2.4), we have

A(Φ 1 , Φ 2 , t) = 1 - 16πωα 2 r r 0 (1 + γτ ) 2 ϕ 2 + β α χ 2 ds := A α,β,γ (ϕ, χ, τ ) (2.10) It's now clear that if Φ 1 , Φ 2 , t satisfy (2.1-2.3), then ϕ, χ, τ satisfy the system (2.11)        A α,β,γ αλ β d dr ϕ -αλ β 1 r ϕ + (m + ω)χ + ωγτ χ = 0 A α,β,γ d dr χ + 1 r χ + α βλ (m -ω)ϕ -αγ βλ ωτ ϕ = 0 2A α,β,γ r d dr τ + K α,β,γ = 0 with K α,β,γ (ϕ, χ, τ ) = 16πω r α 2 γ r 0 (1 + γτ ) 2 ϕ 2 + β α χ 2 ds (1 + γτ ) + +16πω α 2 γ (1 + γτ ) 3 ϕ 2 + β α χ 2 -32π λαβ γ 1 r (1 + γτ ) 2 ϕχ + -16πm α 2 γ (1 + γτ ) 2 ϕ 2 - β α χ 2 .

By adding the conditions

α βλ (m-ω) = 1, αλ β = 1, αγ βλ = 1, α 2 γ = 1 and m-ω ≥ 0, we obtain α = (m -ω) 1/2 , λ = (m -ω) 1/2 , β = m -ω and γ = m -ω. Denoting ε = m -ω, (2.11) is equivalent to (2.12)        A (ε, ϕ, χ, τ ) d dr ϕ -1 r ϕ + 2mχ + K 1 (ε, ϕ, χ, τ ) = 0 A (ε, ϕ, χ, τ ) d dr χ + 1 r χ + ϕ -mϕτ + K 2 (ε, ϕ, χ, τ ) = 0 A (ε, ϕ, χ, τ ) d dr τ + 8πm r 2 r 0 ϕ 2 ds + K 3 (ε, ϕ, χ, τ ) = 0 where A (ε, ϕ, χ, τ ), K 1 (ε, ϕ, χ, τ ), K 2 (ε, ϕ, χ, τ ) and K 3 (ε, ϕ, χ, τ ) are defined by A (ε, ϕ, χ, τ ) = 1 - 16π(m -ε)ε r r 0 (1 + ετ ) 2 ϕ 2 + εχ 2 ds; (2.13) K 1 (ε, ϕ, χ, τ ) = -εχ + ε(m -ε)τ χ; (2.14) K 2 (ε, ϕ, χ, τ ) = ετ ϕ; (2.15) and K 3 (ε, ϕ, χ, τ ) = 8πmε r 2 r 0 χ 2 ds + 16πmε r 2 r 0 τ ϕ 2 + εχ 2 ds + + 8πmε 2 r 2 r 0 τ 2 ϕ 2 + εχ 2 ds + - 8πε r 2 r 0 (1 + ετ ) 2 ϕ 2 + εχ 2 ds τ + + 8π(m -ε)ε r 2 r 0 (1 + ετ ) 2 ϕ 2 + εχ 2 ds τ + +16πmε χ 2 r + 8πmε(3τ + 3ετ 2 + ε 2 τ 3 ) ϕ 2 + εχ 2 r + -8πε(1 + ετ ) 3 ϕ 2 + εχ 2 r -16πε(1 + ετ ) 2 ϕχ r 2 + -8πmε(2τ + ετ 2 ) ϕ 2 -εχ 2 r . (2.16)
For ε = 0, (2.12) becomes (2.17)

       d dr ϕ -1 r ϕ + 2mχ = 0 d dr χ + 1 r χ + ϕ -mϕτ = 0 d dr τ + 8πm r 2 r 0 ϕ 2 ds = 0 that is equivalent to (2.18)          -d 2 dr 2 ϕ + 2mϕ -16πm 3 ∞ 0 ϕ 2 max(r,s) ds ϕ = 0 χ(r) = 1 2m 1 r ϕ -d dr ϕ τ (r) = 8πm ∞ 0 ϕ 2 max(r,s) ds.
Then, we denote by (ϕ 0 , χ 0 , τ 0 ) a solution of (2.18); in particular

χ 0 (r) = - r 2m d dr ϕ 0 r τ 0 (r) = 8πm ∞ 0 ϕ 2 0 max(r, s) ds.
Now, to obtain a solution of (2.12) from (ϕ 0 , χ 0 , τ 0 ), we define the operators L 1 :

R×X ϕ ×X χ ×X τ → Y ϕ , L 2 : R×X ϕ ×X χ ×X τ → Y χ , L 3 : R×X ϕ ×X χ ×X τ → Y τ and D : R × X ϕ × X χ × X τ → Y ϕ × Y χ × Y τ by L 1 (ε, ϕ, χ, τ ) = A (ε, ϕ, χ, τ ) 1 r d dr ϕ - ϕ r 2 + 2m χ r + 1 r K 1 (ε, ϕ, χ, τ ) L 2 (ε, ϕ, χ, τ ) = A (ε, ϕ, χ, τ ) 1 r d dr χ + χ r 2 + ϕ r -m ϕ r τ + 1 r K 2 (ε, ϕ, χ, τ ) L 3 (ε, ϕ, χ, τ ) = A (ε, ϕ, χ, τ ) d dr τ + 8πm r 2 r 0 ϕ 2 ds + K 3 (ε, ϕ, χ, τ ) and D(ε, ϕ, χ, τ ) = (L 1 (ε, ϕ, χ, τ ), L 2 (ε, ϕ, χ, τ ), L 3 (ε, ϕ, χ, τ ))
where

X ϕ = ϕ : (0, ∞) → R ϕ(|x|) |x| 1 0 ∈ H 1 R 3 , R 2 X χ = χ : (0, ∞) → R χ(|x|) |x| σ r 1 0 ∈ H 1 R 3 , C 2 X τ = τ : (0, ∞) → R lim r→∞ τ (r) → 0, d dr τ ∈ L 1 ((0, ∞), dr) Y ϕ = Y χ = L 2 R 3 Y τ = L 1 ((0, ∞), dr).
Furthermore we define the following norms:

ϕ Xϕ = ϕ(|x|) |x| H 1 (R 3 ) , χ Xχ = χ(|x|) |x| σ r 1 0 H 1 (R 3 ) , τ Xτ = d dr τ L 1 ((0,∞),dr)
.

It's well known that

H 1 R 3 ֒→ L q R 3 2 ≤ q ≤ 6 X τ ֒→ L ∞ ((0, ∞), dr) .
Moreover, using Hardy's inequality

R 3 |f | 2 |x| 2 dx ≤ 4 R 3 |∇f | 2 dx,
we get the following properties:

(2.19) ρ ∈ H 1 ((0, ∞), dr) ֒→ L ∞ ((0, ∞), dr) ρ r ∈ L 2 ((0, ∞), dr) . ∀ρ ∈ X ϕ , ∀ρ ∈ X χ .
Since the operator A(ε, ϕ, χ, τ ) must be strictly positive, we consider B ϕ , B χ , B τ , defined as the balls of the spaces X ϕ , X χ , X τ , and ε 1 , ε 2 , depending on m and on the radius of B ϕ , B χ , B τ , such that

1 - 16π(m -ε)ε r r 0 (1 + ετ ) 2 ϕ 2 + εχ 2 ds ≥ δ > 0 for all (ε, ϕ, χ, τ ) ∈ (-ε 1 , ε 2 ) × B ϕ × B χ × B τ . The existence of ε 1 , ε 2 is assured by the fact that ϕ, χ, τ are bounded; in particular, if ε ≥ 0, 1 - 16π(m -ε)ε r r 0 (1 + ετ ) 2 ϕ 2 + εχ 2 ds ≥ ≥ 1 -20mε ϕ 2 Xϕ -8mε 2 5 τ Xτ ϕ 2 Xϕ + χ 2 Xχ + -4mε 3 τ Xτ 5 τ Xτ ϕ 2 Xϕ + 4 χ 2 Xχ -8mε 4 τ 2 Xτ χ 2 Xχ ,
then there exists ε 2 > 0 such that A(ε, ϕ, χ, τ ) > 0 for all ε ∈ [0, ε 2 ). In the same way, if ε < 0,

1 - 16π(m -ε)ε r r 0 (1 + ετ ) 2 ϕ 2 + εχ 2 ds ≥ ≥ 1 -8mε 2 χ 2 Xχ -8m|ε| 3 χ 2 Xχ 1 + 2 τ Xτ + -8mε 4 χ 2 Xχ τ Xτ 2 + 1 τ Xτ -8m|ε| 5 τ 2 Xτ χ 2 Xχ , then there exists ε 1 > 0 such that A(ε, ϕ, χ, τ ) > 0 for all ε ∈ (-ε 1 , 0). Lemma 2.2. The operators L 1 , L 2 ∈ C 1 ((-ε 1 , ε 2 ) × B ϕ × B χ × B τ , Y ϕ ) and L 3 ∈ C 1 ((-ε 1 , ε 2 ) × B ϕ × B χ × B τ , Y τ ).
Before starting the proof of the lemma we observe that for a radial function ρ such that ρ r ∈ H 1 r R 3 we have

(2.20) |ρ(r)| ≤ r 1/2 d dr ρ(r) r L 2 rad .
We remind that

H 1 r R 3 = u ∈ H 1 R 3 | u is radial .
Proof. We begin with L 3 ; first, we have to prove that it is well defined in Y τ = L 1 ((0, ∞), dr). We remark that 

|L 3 (ε, ϕ, χ, τ )| ≤ C 1 d dr τ + C 2 r 2 r 0 ϕ 2 + εχ 2 ds + C 3 r ϕ 2 + εχ 2 + + C 4 r 2 |ϕχ| + C 5 r ϕ 2 -
ϕ 2 + εχ 2 , 1 r ϕ 2 -εχ 2 ∈ Y τ . Finally, ∞ 0 |ϕ| r |χ| r dr ≤ C ϕ r L 2 ((0,∞)) χ r L 2 ((0,∞)) < +∞ thanks to (2.19), then 1 r 2 ϕχ ∈ Y τ . Now, we have to prove that L 3 (ε, ϕ, χ, τ ) is C 1 ; by classical arguments, it's enough to show that for (h 1 , h 2 , h 3 ) ∈ B ϕ × B χ × B τ ∂ ∂ϕ (L 3 (ε, ϕ, χ, τ )) h 1 ∈ Y τ , ∂ ∂χ (L 3 (ε, ϕ, χ, τ )) h 2 ∈ Y τ , ∂ ∂τ (L 3 (ε, ϕ, χ, τ )) h 3 ∈ Y τ . We begin with ∂ ∂ϕ (L 3 (ε, ϕ, χ, τ )), ∂ ∂ϕ (L 3 (ε, ϕ, χ, τ )) h 1 = ∂ ∂ϕ (A (ε, ϕ, χ, τ )) h 1 d dr τ + + 16π(m -ε) r 2 r 0 (1 + ετ ) 2 ϕh 1 ds (1 + ετ ) + +16π(m -ε)(1 + ετ ) 3 ϕh 1 r -16πε(1 + ετ ) 2 h 1 χ r 2 + -16πm(1 + ετ ) 2 ϕh 1 r ; for ∂ ∂χ (L 3 (ε, ϕ, χ, τ )), ∂ ∂χ (L 3 (ε, ϕ, χ, τ )) h 2 = ∂ ∂χ (A (ε, ϕ, χ, τ )) h 2 d dr τ + + 16π(m -ε)ε r 2 r 0 (1 + ετ ) 2 χh 2 ds (1 + ετ ) + +16π(m -ε)ε(1 + ετ ) 3 χh 2 r -16πε(1 + ετ ) 2 ϕh 2 r 2 + -16πmε(1 + ετ ) 2 χh 2 r and, finally, ∂ ∂τ (L 3 (ε, ϕ, χ, τ )) h 3 = ∂ ∂τ (A (ε, ϕ, χ, τ )) h 3 d dr τ + +A (ε, ϕ, χ, τ ) d dr h 3 + + 16π(m -ε)ε r 2 r 0 (1 + ετ )h 3 ϕ 2 + εχ 2 ds (1 + ετ ) + + 8π(m -ε)ε r 2 r 0 (1 + ετ ) 2 ϕ 2 + εχ 2 ds h 3 + +24π(m -ε)ε(1 + ετ ) 2 ϕ 2 + εχ 2 r h 3 -32πε 2 (1 + ετ ) ϕχ r 2 h 3 + -16πmε(1 + ετ ) ϕ 2 -εχ 2 r h 3 .
First of all, we remark that if ϕ, h

1 ∈ B ϕ , χ, h 2 ∈ B χ and τ, h 3 ∈ B τ , then ∂ ∂ϕ (A (ε, ϕ, χ, τ )) h 1 , ∂ ∂χ (A (ε, ϕ, χ, τ )) h 2 and ∂ ∂τ (A (ε, ϕ, χ, τ )) h 3 are bounded. So, we have that ∂L 3 ∂ϕ h 1 ≤ C 1 d dr τ + C 2 r 2 r 0 |ϕh 1 | ds + C 3 |ϕh 1 | r + C 4 |h 1 χ| r 2 ∂L 3 ∂χ h 2 ≤ C 5 d dr τ + C 6 r 2 r 0 |χh 2 | ds + C 7 |χh 2 | r + C 8 |ϕh 2 | r 2 ∂L 3 ∂τ h 3 ≤ C 9 d dr τ + C 10 d dr h 3 + C 11 r 2 r 0 ϕ 2 + εχ 2 ds + C 12 ϕ 2 + εχ 2 r + +C 13 |ϕχ| r 2 + C 14 ϕ 2 -εχ 2 r
with C i positive constants. With exactly the same arguments used above, we conclude that

∞ 0 ∂ ∂ϕ (L 3 (ε, ϕ, χ, τ )) h 1 dr < +∞ ∞ 0 ∂ ∂χ (L 3 (ε, ϕ, χ, τ )) h 2 dr < +∞ ∞ 0 ∂ ∂τ (L 3 (ε, ϕ, χ, τ )) h 3 dr < +∞ if (ε, ϕ, χ, τ ) ∈ (-ε 1 , ε 2 ) × B ϕ × B χ × B τ , and (h 1 , h 2 , h 3 ) ∈ B ϕ × B χ × B τ . Furthermore ∂L3 ∂ϕ , ∂L3
∂χ and ∂L3 ∂τ are continuous; thus the proof for L 3 . We consider now L 1 ; first, we have to prove that it is well defined in Y ϕ . We observe that

|L 1 (ε, ϕ, χ, τ )| ≤ C 1 1 r d dr ϕ + ϕ r 2 + C 2 χ r with C 1 , C 2 positive constants then, L 1 (ε, ϕ, χ, τ ) ∈ L 2 R 3 , thanks to conditions (2.19). Now, we have to prove that L 1 (ε, ϕ, χ, τ ) is C 1 ; by classical arguments, it's enough to show that for (h 1 , h 2 , h 3 ) ∈ B ϕ × B χ × B τ ∂ ∂ϕ (L 1 (ε, ϕ, χ, τ )) h 1 ∈ Y ϕ , ∂ ∂χ (L 1 (ε, ϕ, χ, τ )) h 2 ∈ Y ϕ , ∂ ∂τ (L 1 (ε, ϕ, χ, τ )) h 3 ∈ Y ϕ .
By a straightforward computation, we find out

∂L 1 ∂ϕ h 1 = 1 2 A -1/2 ∂A ∂ϕ h 1 1 r d dr ϕ + A 1/2 1 r d dr h 1 - h 1 r 2 , ∂L 1 ∂χ h 2 = 1 2 A -1/2 ∂A ∂χ h 2 1 r d dr ϕ + (2m -ε) h 2 r + ε(m -ε)τ h 2 r , ∂L 1 ∂τ h 3 = 1 2 A -1/2 ∂A ∂τ h 3 1 r d dr ϕ + ε(m -ε)h 3 χ r ;
and, using the positivity of A,

∂L 1 ∂ϕ h 1 ≤ C 1 1 r d dr ϕ + C 2 1 r d dr h 1 + h 1 r 2 ∂L 1 ∂χ h 2 ≤ C 3 1 r d dr ϕ + C 4 h 2 r ∂L 3 ∂τ h 3 ≤ C 5 1 r d dr ϕ + C 6 χ r .
with C i positive constants. Then, we can conclude that

R 3 ∂ ∂ϕ (L 3 (ε, ϕ, χ, τ )) h 1 2 dx < +∞ R 3 ∂ ∂χ (L 3 (ε, ϕ, χ, τ )) h 2 2 dx < +∞ R 3 ∂ ∂τ (L 3 (ε, ϕ, χ, τ )) h 3 2 dx < +∞ if (ε, ϕ, χ, τ ) ∈ (-ε 1 , ε 2 ) × B ϕ × B χ × B τ , and (h 1 , h 2 , h 3 ) ∈ B ϕ × B χ × B τ .
Furthermore ∂L1 ∂ϕ , ∂L1 ∂χ and ∂L1 ∂τ are continuous; thus the proof for L 1 and with the same arguments for L 2 .

2.2. Branches generated by solutions of Choquard equation. In this subsection, we show that a solution φ 0 = (ϕ 0 , χ 0 , τ 0 ) of (2.7) can generate a local branch of solutions of (2.6).

First, we linearize the operator D on (ϕ, χ, τ ) around (0, φ 0 )

D ϕ,χ,τ (0, φ 0 )(h, k, l) =     1 r d dr h -h r 2 + 2m k r 1 r d dr k + k r 2 + h r -m h r τ 0 -m ϕ0 r l d dr l + 16πm r 2 r 0 ϕ 0 h ds     .
Now, if we prove that D ϕ,χ,τ (0, φ 0 ) is an isomorphism, the implicit function theorem can be applied and we can find solutions of (2.6) near the ground state φ 0 .

Lemma 2.3. We define the operator V :

X ϕ × X χ → Y ϕ × Y χ , by V (ϕ, χ) = 1 r d dr ϕ -1 r 2 ϕ + 2m 1 r χ 1 r d dr χ + 1 r 2 χ + 1 r ϕ , then V is an isomorphism of X ϕ × X χ onto Y ϕ × Y χ .
This lemma is obvious if we remind that L 2 (R 3 , C 4 ) can be written as the direct sum of partial wave subspaces and that the Dirac operator leaves invariant all these subspaces (see [START_REF] Thaller | The Dirac Equation[END_REF]). So, thanks to lemma 2.3 of [START_REF] Ounaies | Perturbation method for a class of non linear Dirac equations[END_REF], we know that V :

H 1 R 3 , C 2 × H 1 R 3 , C 2 → L 2 R 3 , C 2 × L 2 R 3 , C 2 defined by V (u, v) = iσ∇u + 2mv -iσ∇v + u is an isomorphism of H 1 R 3 , C 2 × H 1 R 3 , C 2 onto L 2 R 3 , C 2 × L 2 R 3 , C 2 
and then V is an isomorphism of each partial wave subspace. In particular, V coincide with V on the partial wave subspace X ϕ × X χ .

Lemma 2.4. We define the operator W :

X ϕ × X χ × X τ → Y ϕ × Y χ × Y τ , by W (h, k, l) =     1 r d dr h -h r 2 + 2m k r 1 r d dr k + k r 2 + h r -m ϕ0 r l d dr l     , then W is an isomorphism of X ϕ × X χ × X τ onto Y ϕ × Y χ × Y τ .
Proof. First we prove that W is one to one. We observe that W (h, k, l) = 0 if and only if (h, k, l) satisfies

       1 r d dr h -h r 2 + 2m k r = 0 1 r d dr k + k r 2 + h r -m ϕ0 r l = 0 d dr l = 0 in Y ϕ × Y χ × Y τ .
In particular, we must have l ≡ 0 and (h, k) solution of

1 r d dr h -h r 2 + 2m k r = 0 1 r d dr k + k r 2 + h r = 0 that is equivalent to V (h, k) = 0. So, thank to lemma 2.3, h ≡ k ≡ 0 and W is one to one in Y ϕ × Y χ × Y τ .
Secondly, we have to prove that for f

= (f 1 , f 2 , f 3 ) ∈ Y ϕ × Y χ × Y τ , there exists (h, k, l) ∈ X ϕ × X χ × X τ such that W (h, k, l) = f . This means that the system        1 r d dr h -h r 2 + 2m k r = f 1 1 r d dr k + k r 2 + h r -m ϕ0 r l = f 2 d dr l = f 3 has a solution in X ϕ × X χ × X τ for all (f 1 , f 2 , f 3 ) ∈ Y ϕ × Y χ × Y τ . We observe that ∀f 3 ∈ L 1 ((0, ∞), dr) there exist l * (r) = - ∞ r f 3 ds such that d dr l * = f 3 ; furthermore l * ∈ X τ . So, we have to show that (2.21) 1 r d dr h -h r 2 + 2m k r = f 1 1 r d dr k + k r 2 + h r = f 2 + m ϕ0 r l * has a solution in X ϕ × X χ for all (f 1 , f 2 ) ∈ Y ϕ × Y χ .
Now, we remark that ϕ0 r l * ∈ L 2 R 3 and then, thanks to lemma 2.3, (2.21) has a solution in

X ϕ × X χ for all (f 1 , f 2 ) ∈ Y ϕ × Y χ . In conclusion W is an isomorphism of X ϕ × X χ × X τ onto Y ϕ × Y χ × Y τ .
Finally, we observe that D ϕ,χ,τ (0, φ 0 )(h, k, l) can be written as

(2.22) D ϕ,χ,τ (0, φ 0 )(h, k, l) = W (h, k, l) + S(h) with (2.23) S(h) =     0 -m h r τ 0 16πm r 2 r 0 ϕ 0 h ds     .
Theorem 2.5. Let φ 0 be the ground state solution of (2.7), then there exists δ > 0 and a function η ∈ C((0, δ), X ϕ × X χ × X τ ) such that η(0) = φ 0 and D(ε, η(ε)) = 0 for 0 ≤ ε < δ.

Proof. Since D(0, φ 0 ) = 0 and D is continuously differentiable in a neighborhood of (0, φ 0 ), to apply the implicit function theorem we have to prove that D ϕ,χ,τ (0,

φ 0 ) is an isomorphism of X ϕ × X χ × X τ onto Y ϕ × Y χ × Y τ .
We observe that D ϕ,χ,τ (0, φ 0 )(h, k, l) = 0 if and only if (h, k, l) satisfies (2.24) It's well known that the unique solution of the first equation of (2.26) in H 1 r (R 3 ) is ξ ≡ 0 (see [START_REF] Lenzmann | Uniqueness of ground states for pseudo-relativistic Hartree equations[END_REF] for more details) and that implies ζ ≡ l ≡ 0. So the unique solution of (2.24) is h ≡ k ≡ l ≡ 0 and D ϕ,χ,τ (0, φ 0 ) is one to one in X ϕ × X χ × X τ .

       d dr h -h r + 2mk = 0 d dr k + k r + h -mhτ 0 -mϕ 0 l = 0 d dr l + 16πm r 2 r 0 ϕ 0 h ds = 0 that means (2.25)        -d 2 dr 2 h + 2mh -16πm 3 ∞ 0 ϕ 2 0 max(r,s) ds h -32πm 3 
Next, if we show that S(h) is a compact operator, we have that D ϕ,χ,τ (0, φ 0 ) is a one to one operator that can be written as a sum of an isomorphism and a compact operator and then it's an isomorphism. First, we can easily see that T (h) = 1 r 2 r 0 ϕ 0 h ds is a compact operator from X ϕ on Y τ ; in particular, we use the fact that H 1 r R 3 is compactly embedded in L q R 3 , for 2 < q < 6, to prove that for any bounded sequence {h n } ⊂ X ϕ , the sequence {T (h n )} ⊂ Y τ contains a Cauchy subsequence. Second, we have to show that the operator h r τ 0 from X ϕ to L 2 R 3 is compact. If hn r is a bounded sequence in H 1 (R 3 ) then hn r τ 0 is precompact on L 2 loc (R 3 ), thanks to compact Sobolev embedding and, since τ 0 (r) → 0 when r → +∞, we can conclude that hn r τ 0 is precompact on L 2 (R 3 ). So S(h) is a compact operator from X ϕ on Y ϕ × Y χ × Y τ and D ϕ,χ,τ (0,

φ 0 ) is an isomorphism of X ϕ × X χ × X τ onto Y ϕ × Y χ × Y τ .
In conclusion, we can apply the implicit function theorem to find that there exists δ > 0 and a function η ∈ C((0, δ), X ϕ × X χ × X τ ) such that η(0) = φ 0 and D(ε, η(ε)) = 0 for 0 ≤ ε < δ.

εχ 2 where C 1 ,ϕ 2 + 0 ϕ 2 2 r 0 ϕ 2 +

 2120222 C 2 , C 3 , C 4 , C 5 are positive constants and, by definition, we have that d dr τ ∈ L 1 ((0, ∞), dr). εχ 2 ds dr = ∞ + εχ 2 s ds < +∞, using Hölder's inequality, then 1 r εχ 2 ds ∈ Y τ . In the same way, we can conclude that 1 r

-4m 3 R 3 |u0(y)| 2 |x-y| dy ξ -8m 3 R 3 ξ

 33233 ,s) ds Now, if we write ξ(x) = h(|x|) |x| and we remind that ϕ 0 (|x|) = |x|u 0 (x) with u 0 solution of (2.8), we have that (h, k, l) is a solution of (2.25) if ξ(x) ζ(x) = r -1
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