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PERTURBATION METHOD FOR PARTICLELIKE SOLUTIONS
OF EINSTEIN-DIRAC EQUATIONS

SIMONA ROTA NODARI

ABSTRACT. The aim of this work is to prove by a perturbation method the ex-
istence of solutions of the coupled Einstein-Dirac equations for a static, spheri-
cally symmetric system of two fermions in a singlet spinor state. We relate the
solutions of our equations to those of the nonlinear Choquard equation and
we show that the nondegenerate solution of Choquard’s equation generates
solutions for Einstein-Dirac equations.

1. INTRODUCTION

In this paper, we study the coupled Einstein-Dirac equations for a static, spher-
ically symmetric system of two fermions in a singlet spinor state. Our goal is to
prove by a perturbation method the existence of the solutions constructed, using
numerical methods, by F. Finster, J. Smoller and ST. Yau in [m] To our knowledge,
what we find out is the first rigorous existence result for the solitonlike solutions of
the coupled Einstein-Dirac equations.

The Einstein-Dirac equations take the form

(1.1) (D —m)p =0
A ,
(1.2) R} — SRS} = ~87T]

where D denotes the Dirac operator, ¥ is the wave function of a fermion of mass
m, R; is the Ricci curvature tensor, R indicates the scalar curvature and, finally,
T; is the energy-momentum tensor of the Dirac particle.

In [ﬂ], Finster, Smoller and Yau work with the Dirac operator into a static, spher-
ically symmetric space-time where the metric, in polar coordinates (¢t,r,9,p), is
given by

. 1 1 .
(1.3) gij = diag (ﬁ’ - —r2, —r? sin? 19)
- 1 1
1.4 Y= i T2 A —— ——
(1.4) g mg( A T 0)

with A = A(r), T = T(r) positive functions; so, the Dirac operator can be written
as

—intd, o (i, L (1= a2) LD L vg e
(1.5) D=iy"0 +7 (z@r—l-r(l A ) 5T +iv" 09 + 9770,
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with

(1.6) Vo= T

(1.7) = \/Z(Wlcos19+ﬁ2sinﬁcoscp+ﬁ3sinﬁsincp)
1

(1.8) 4 = —(—ﬁlsinﬁ—l—ﬁzcosﬁcoscp—i—ﬁ?’cosﬁsincp)
r
1 =2 =3

(1.9) v = e (=7 sing + 7% cos )

where 4% are the Dirac matrices in Minkowski space (see [l]).
Moreover, Finster, Smoller and Yau are looking for solutions taking the form

| *(0)
(1.10) Y = e~ Whpm1/2

. 1 ’
’L(I)QO'T< 0 >

where 0" = (o' cos ¥ + 52 sin 1 cos ¢ + 77 sin¥ sin ) is a linear combination of the
Pauli matrices 6% and ®1(r), ®2(r) are radial real functions; in this case the coupled
Einstein-Dirac equations can be written as

1
(111) \/A(I)/l = ;‘1)1 — (wT+m)<I>2
1
(1.12) VAD, = (WT —m)®;, — ~®;
(1.13) rd" = 1-A—167wT? (] + 93)
T’ 1
AT = A—1-16mwT? (0F + B3) + 327 —T®1 Py +
T
(1.14) +16rmT (7 — ®3)
with the normalization condition
o0 T 1
1.15 PP —=dr = —.
(1.15) | ez -

In order that the metric be asymptotically Minkowskian, Finster, Smoller and Yau
assume that
lim T(r) = 1.
Finally, they also require that the solutions have finite (ADM) mass; namely
lim g(l — A(r)) < 0.

In this paper, we will prove the existence of solutions of (@—E) in the form
(I.1d) by a perturbation method.
In particular, we follow the idea described by Ounaies in [[J] (see also [{] for a
rigorous existence proof of nonlinear Dirac solitons based on Ounaies’ approach).
Ounaies, by a perturbation parameter, relates the solutions of a nonlinear Dirac
equation to those of nonlinear Schrédinger equation. Imitating the idea of Ounaies,
we relate the solutions of ours equations to those of nonlinear Choquard’s equation
(see [, [l for more details on Choquard’s equation) and we obtain the following
result.

Theorem 1.1. Given 0 < w < m such that m —w is sufficiently small, there exists

a non trivial solution of —).
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In Section E, we solve the Einstein-Dirac equations by means of the perturbation
method suggested by Ounaies; in particular in the first subsection we describe
a useful rescaling and some properties of the operators involved, whereas in the
second subsection we prove the existence of solutions generated by the solution of
the Choquard equation.

2. PERTURBATION METHOD FOR EINSTEIN-DIRAC EQUATIONS

First of all, we observe that writing 7'(r) = 1+ t(r) and using equation ([[.13),
the coupled Einstein-Dirac equations become

21)  JVA®, — %@1 (Wt M)y — widy
(2.2) VAD, = (w—m)®; +wtd; — %rbg
2rAt = (A-1)(1+1t) — 16mw(l +1t)° (3 + ®3) +
(2.3) +327r%(1 + )21 Py + 167m(1 +1)? (9 — D3)
where
(24) Ap)=1-17¢ /O (14 £(5))? (@4(5)° + B3(5)%) ds 1= 1 — 222 Q(1).

Furthermore, because we want A(r) > 0, we have that the following condition must
be satisfied
Q) _ _1

< [
r 167w

(2.5) 0<

for all € (0, c0).

Now, to find a solution of the equations (E@), we exploit the idea used by
Ounaies in @] In particular, we proceed as follow: in a first step we use a rescaling
argument to transform (@-@) in a perturbed system of the form

V A(&%XW)%‘P_ %¢+2mX+Kl (57907)(77') =0
(2.6) A, 0 X, T) X+ Ix + o —mer + Kz (5,0, X,7) =0
8:;71 for 902 ds + K3 (57()07)07—) =0

Ae, o, x,7) L+

where ¢, x,7: (0,00) — R.
Second, we relate the solutions of (2.4) to those of the nonlinear system

_,f—;sﬁ + 2mep — 16mm? (fooo #(178) ds) p=0
27) x(r) = 3 (bo = )
00 2
7(r) = 8mm fo #(KS) ds.

We remark that ¢ is a solution of (R.7) if and only if u(x) = “"fﬁ‘) solves the
nonlinear Choquard equation

(2.8) —Au+ 2mu — 4m3 (IRS lu@)® dy) u=0 inH"(R?).

[z—yl

To prove this fact it’s enough to remind that for a radial function p,

1d ([ ,d
Af’w‘z%(’ﬂ”)
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and
* s%p(s)
. =4 —d
(- e = an ([ 22 )
with r = |z|.
We observe also that if we write
1

( u(z) > _ o(r) 0
v() o ()
with r = |z|, (¢, x) is a solution of (2.7) if and only if (u(z),v(z)) solve

(2.9) —Au+ 2mu — 4m? (fW%dy)u:O v = —lovu
in R? where 6V = Y°_ 579

It’s well known that Choquard’s equation (@) has a unique radial, positive solution
ug with f |ug|?> = N for some N > 0 given. Furthermore, ug is infinitely differen-
tiable and goes to zero at infinity; more precisely there exist some positive constants
Cs.y such that | D" (ug)| < Cs,,, exp(—6|z|) for x € R3. At last, up € H'(R?) is ara-
dial nondegenerate solution; by this we mean that the linearization of (.§) around
ug has a trivial nullspace in LZ(R3). In particular, the linear operator £ given by

2
LE = —NE+2mE — 4m? </Ra%dy>§—8m3< R3§(|y%_2(|wdy>uo

satisfies ker £ = {0} when L is restricted to L2(R?) (see [B], ], [] for more details).
The main idea is that the solutions of (2.6) are the zeros of a C! operator D :
Rx X, x Xy x X; — Y, xY, xY,. If we denote by D, -(¢, ¢, x,T) the derivative
of D(e,",-,-), by (0, X0,70) the ground state solution of (.7) and we observe
that Dy .- (€, %0, X0, 7o) is an isomorphism, the application of the implicit function
theorem (see [ff]) yields the following result, which is equivalent to theorem [[.1]

Theorem 2.1. Let (o, X0,70) be the ground state solution of (B]), then there
exists 6 > 0 and a functionn € C((0,9), X, x X, x X+) such that n(0) = (o, X0, T0)
and (,n(¢)) is a solution of (-4), for 0 <e < 6.

2.1. Rescaling. In this subsection we are going to introduce the new variable
(¢, x,7) such that ®1(r) = ap(Ar), ®2(r) = Bx(Ar) and t(r) = y7(A\r), where
Dy, By, t satisfy (E) and a, 3,7, A > 0 are constants to be chosen later.

Using the explicit expressions of A, given in (@)7 we have

2 T 2
A(@y, @y, t) = 1 20me / (14 77)? <<p2+<§x>>ds
0

r

(210) = Aa,ﬁ,'y(@, X 7—)

It’s now clear that if @1, ®o, ¢ satisfy (EI—B), then ¢, x, 7 satisfy the system
Aapr S io— B Lo+ (m+w)x+wyTx =0

(211) \V Aa,ﬁ,y%){"‘%){"‘%('fﬂ-(ﬂ)@— %WTQOZO

2Aa)ﬁ_’»y'r'%7' —|— KO&,Q,’Y = 0
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2
Kapq(o,x,7) = 167Twa (/0 (14+~7) (@2 + (§x> ) ds) (I+~7)+

2
—|—16ﬂ'w%(1+”y7’) < >+ (§X> )—32#%—6—(1—#’”) ©X +

a? I6] 2
—16mm— (1 + y7)? <g02 - (—X) ) .
0% a

By adding the conditions £ (m—-w) =1, O‘A =15 =1 0‘72 =landm—w >0
we obtain o = (m — w)/2, X\ = (m — w)/?, ﬂ m—wand y=m —w.

Denoting ¢ = m — w, (R.11)) is equivalent to

A, o, T) Lo —Lo+2mx+ Ki(e,0,x,7) =0
(2.12) VAE 0. X, T) X+ Ix+ o —mer + Ky (e,0,x,7) =0

with

3

A(€7</75X7 )dr Sﬂ-mfo 902d5+K3(5 Py X5 T )_0
where A (57 #s X T)a Kl (57 @5 X T)a K2 (Ea 20 ¢ 7—) and K3 (Ea 20 ¢ 7—) are defined by
16 — "
(2.13) _A(a,@,x,T)::1-———lgﬁ%—iaft/j(1—%67)2(¢2—F6X2)d3;
0
(214) Kl (55@7X5T) = _€X+E(m_E)TX;
(2.15) Ky (e,0,x,7) = eT9;
and
8mme [” 16mme ["
Ks(e,0,x,7) = 7r2 / X2 ds + 7r2 / T(g02+5x2) ds +
r 0 r 0
8mme?

"o 2
o /0 2 (¢* +ex?) ds+
8 T
—TL; (/ (1+e7)? (¢* +ex?) ds) T+
0
8 _ r
+7ﬂ-(m e)e (/ (14e7)? (<p2 —|—ax2) ds) T+
0

r2

2 2 2
+e
—|—16ﬂ'm5X— + 8mme (37 + 3e7? 4+ 627'3)u +
r

’
2 2
+e
—8re(1+ 57’)3M — 167e(1 4+ 57’)2% +
(¢ —ex?)

(2.16) —8mme(27 +e7?) "

For ¢ = 0, (£.13) becomes
Lo—Lo+2my=0
(2.17) EXF X T —mpT =0
87”" fo ©*ds =0

dr
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that is equivalent to
2 ) 2
—4 o+ 2mp — 16mm? (fo e ds) =0
@19 X0 = g (o - &)
2

7(r) = 8wm fooo #(ns) ds.

Then, we denote by (o, X0, 7o) a solution of (), in particular

_ r d /o
xo(r) = 2m dr ( r )
TO(T) = 87Tm‘/0 m ds.

Now, to obtain a solution of (R.19) from (¢, X0, 70), we define the operators L :
RxX xX, xX; =Y, Lo : Rx X, x X, xX, =Y, L3 : Rx X, x X, xX;, =Y,
and D:Rx X, x X, x X, =Y, xY, xY, by

1d © x 1

Lie,poxom) = VAle, 9 x,T) oo — 5 +2mo+ Ky (e, 0, 7)
1d X ¥ e 1

L = A -— =4+ ——m— -K

2(€7</75X7T) (€7<P,X7T)Td7"x+’l”2+7" m’I”T+T 2(55907)(57-)

d &mm "

L3(‘€7S07X7T) = A(‘Eu@aXuT) 57-—’— r2 / SOQ d8+K3 (57307X7T)

0
and

D(Ev P, XvT) = (Ll(aa P X5 7—)5 L2(57 P, XvT)v L3(57 P, XvT))

where
X, = {gp:((),oo) —R @TLTD < é ) ik (R3,R2)}
X, — . x(zl) (1 1 (3 2
y = 4x:(0,00) =R 2] N e H' (R*,C?)
d
X, = {T :(0,00) = R| lim 7(r) — 0, o7 € Ll((O,oo),dr)}
r—00 T
Y, = Y,=L*(R?
Y, = LY(0,00),dr).
Furthermore we define the following norms:
o(|=[)
lellx, = :
|| H1(R3)
x(|z]) 1
Ixllx, = |77 ;
* 2] 0 /1l ey
I .
TIXx, = —T .
dr -l L1((0,00),dr)

It’s well known that
H' (R?) — L7 (R?) 2<q<6
X; — L*((0,00),dr) .
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Moreover, using Hardy’s inequality

T dr < V[ dz,
Rs |7 R3

we get the following properties:

p € H ((0,00),dr) — L> ((0,00),dr)

(2.19)
£e L?((0,00),dr).
Vpe X,,VpeX,.

Since the operator A(e, ¢, x,T) must be strictly positive, we consider B, By,
B;, defined as the balls of the spaces X, Xy, X;, and €1, €2, depending on m and
on the radius of By, By, B-, such that

16m(m — ¢

1 )E/ (1+em)?(¢*+ex?) ds >8>0
0

r

for all (e, ¢, x,7T) € (—€1,€2) X B, X By x B;. The existence of 1, ¢ is assured by
the fact that ¢, x, 7 are bounded; in particular, if € > 0,

1 _ T
_ M/ (1 + 57)2 (</72 + 5X2) ds Z
0

2 2 2
> 1 - 20melpllk, - 8me? (517l llell, + Ixlk, ) +

1
r

2 2 2 2
—4me® |7l (51, llelk, +4IIxI%, ) = 8me* Irl% I,

then there exists e > 0 such that A(e, ¢, x,7) > 0 for all € € [0,e2). In the same
way, if € < 0,

1 16m(m — e)e

/ (1+e7)* (¢* +ex?) ds >
r 0
2 2
> 1= 8me? ||xllx, —8mlel® [xllx, (1+2]7lx,) +

2 2 2
—8me* Ixllx, I7llx, 2+ Ll7llx,) = 8mle lI7ll%, Ixllx, -

then there exists €1 > 0 such that A(e, ¢, x,7) > 0 for all € € (—¢1,0).

Lemma 2.2. The operators L1, La € C* ((—e1,e2) x By, X By x B;,Y,,) and L3 €
C'((—e1,62) x By, X By x B, Y;).

Before starting the proof of the lemma we observe that for a radial function p
such that £ € H} (R?) we have
d (p(r)
dr r

We remind that H} (R?®) = {u € H' (R*)| u is radial }.

(2.20) lp(r)| < '/

2
L'r‘ad
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Proof. We begin with Ls; first, we have to prove that it is well defined in Y, =
L'((0,00),dr). We remark that

d
—T
r

|L3 (57¢5X77-)| < C(1 d

T
+%2/ ‘QDQ—I—EXZ’dS—F%‘QOQ—I—EXQ +
r 0 r

Cy Cs
+=5 loxl + = |¢* —ex®|
T r
where C7,C5,Cs,Cy,Cs are positive constants and, by definition, we have that

L1 e LY((0,00),dr).
Next, we have

) T 0o 2 2
/ %/ }<p2—|—ax2}dsdr:/ Mds<+oo,
o ™ Jo 0 s

using Holder’s inequality, then T% for ‘902 + 8X2’ ds € Y. In the same way, we can
conclude that % (cp2 + 5)(2) ,% (cp2 — 5)(2) ey,.

Finally, .
[Tl <o)
o T T r

thanks to (2.19), then Loy € Y;.
Now, we have to prove that L3 (g, ¢, x, 7) is C!; by classical arguments, it’s enough

to show that for (hi, ho, hs) € B, x By X B;

< 400
L2((0,00))

A
:

L2((0,00)) ‘

0
8_@ (L?) (87 S07X77—)) hl S Y7'7

0
a_X (L?) (87 S07X77—)) h2 S Y7'7

)
E (L3 (57 29 ¢ T)) h3 S YT'
We begin with 2 (L3 (£, ¢, X, 7)),

0 9 d
g (T epoemin = (5o (Aleponr) i) S+

| Lom(m —¢) (/Or(l +e7)ph ds) (L+er)+

h h
+16m(m — &)(1+ 7)o — 16me(1+e7)? =5t +

r2

h
—16mm(1 + 57)2%;

for 2% (L3 (e, 0, X,7));

0 9 d
Iy (L3 (e,9,x,7)) ha = (3_X (A (E,@,X,T))]w) —r+

16m(m —¢
_'_7

)e </Or(1 ey ds) (1+e7)+

r2

h h
+16m(m — e)e(l +e7)* X2 — 16me(1 +e7)? 2 +

h
—167me(1 + 57’)2¥
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and, finally,
g (La G e = (5 (A x ) ha) o+
+A(e,0,x,7) d%hs +
+1(57T(7?72_6)5 </OT(1 +e7)hs (©* +ex?) ds) (1+eT)+
+M </OT(1 +e7)? (¢* +ex?) ds> hs +
+247(m — e)e(1 + ET)QM% —327me?(1 + 57’)%% +
—16mme(1+ ET)LTEXQ)I“L&

First of all, we remark that if ¢,hy € By, x,hs € B, and 7,hs € B;, then
Bsa (A(e,0,x,T)) h1, % (A(e,,x,7)) he and £ (A(e,¢,x,7)) h3 are bounded.
So, we have that

oL d C. " h h
ZBh < Oy|—7|+ =2 / lpha| ds | + Cs |90 AReALING 1X|
Op ar r2 \Jy r2

oL d C " h h
—3h2 S C5 —7| + —6 / |Xh2| ds + C7_|X 2_| + C8 |(P 2|
ax dr r2 0 r2
OLs d

= < el
o hs| < Cy e 7| 4+ Cho

dh3 —l—%/ ’cp —i—sxz]ds—i-c +

‘@2 T ey
T

PT —EX
+Cl3—|f§| + Cl47| - ‘

with C; positive constants. With exactly the same arguments used above, we
conclude that

> 9
/O 5 La e.p ) b dr < 00

/0 (%( (Ls (g,,X,7)) ha| dr < +00

>l 9
/ 9 Ly (e, . x7)) ha dr < 400
0 87_

if (,¢,x,7) € (—€1,€2) X By, X By X Br, and (hi, he, h3) € B, x By X B;.
Furthermore %—LJ, %—fo* and % are continuous; thus the proof for Ls.
We consider now L;; first, we have to prove that it is well defined in Y,. We

observe that

|L1 (57307X7T)| < Cl

1d © X
RN
Tdrsp‘—i—lrz‘—i— 2y
with Cy, Cy positive constants then, Ly (e, ¢, x,7) € L? (R?), thanks to conditions

(.19).

Now, we have to prove that L; (¢, p, x, 7) is C'; by classical arguments, it’s enough
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to show that for (hi, ho,hs) € B, x By X B;

0
% (Ll (57@7)(77—)) hl S Yg&u

0
a (Ll (€7¢3X7T)) h’2 S Ytpa

0
E (Ll (€7¢5X77-)) h3 S Yap-

By a straightforward computation, we find out

%hl _ L (8Ah1) ld o qppeld, M

%) 2 Do rdr rdr b2
0L 1 0A 1d ho ho
Ty = A2 (Lo, ) 2 Lt 2m — )2 o2
ox 279 ax 2 rdr(p—’—(m E)T+€(m E)TT’
OLi, 1 4, (0A 1d X
g hs = 2A 87_hg, Tdrcp—i—a(m 8)h3r’
and, using the positivity of A,

0L, 1d 1d hi

Thhl < o= Zpl+Co|=Lhy| + |2

Oy o= ! rdrg0+ 2y dr ol r2

8L1 1d h2

-_— < O3|== Cy|—

ax = 3 rdrgp +la r

OL 1d

“hy| < Cs |- +Co |X].

or rdr r

with C; positive constants. Then, we can conclude that

2
/]RS %(Lg(a,@,X,T))hl dx < +00

2

0
/RS a(Lg(a,gp,X,T))hg dx < +00

0 2
/3 E (L3 (57 907X77—)) hg| dxr < +oo
R

if (e,,x,7) € (—€1,€2) X By, X By X Br, and (hi, he, h3) € B, x By X B;.

Furthermore %—ﬁ}, %—Lxl and % are continuous; thus the proof for L; and with the
same arguments for Lo.

O

2.2. Branches generated by solutions of Choquard equation. In this sub-
section, we show that a solution ¢9 = (g0, x0,70) of (R.7) can generate a local
branch of solutions of (P.6).
First, we linearize the operator D on (¢, x, ) around (0, ¢g)
1dp— L 4omk
Dyr(0,00)(h, k1) = | 2Lk+ £ 40— by —peog

d 16 T
Wl"' T fo wohds

r2




PERTURBATION METHOD FOR EINSTEIN-DIRAC EQUATIONS 11

Now, if we prove that D, , - (0, ¢o) is an isomorphism, the implicit function theorem
can be applied and we can find solutions of @) near the ground state ¢g.

Lemma 2.3. We define the operator V : X, x Xy, — Y, x Y, by

1d 1 1
Vigy = [ 77 7z +2mex
¥ dr X 72X 7P
then V' is an isomorphism of X, x X, onto Y, X Y, .

This lemma is obvious if we remind that L?(R?, C*) can be written as the direct

sum of partial wave subspaces and that the Dirac operator leaves invariant all these
subspaces (see [ff]). So, thanks to lemma 2.3 of [B], we know that V' : H' (R3,C?) x
ot (R?’, (CQ) — L2 (R3, (CQ) x L? (R3, (CQ) defined by

— [ twoVu+2mv

Vi(u,v) = < —icVv +u >

is an isomorphism of H' (R?,C?) x H* (R?,C?) onto L? (R?, C?) x L? (R3,C?) and
then z is an isomorphism of each partial wave subspace. In particular, V coincide
with V' on the partial wave subspace X, x X,.

Lemma 2.4. We define the operator W : X, x X, x X; = Y, x Y, xY;, by

d h k
k+ 5 +2—me |,

d
el

1
Wk k)= | 14

then W is an isomorphism of X, x X, x X; onto Y, x Y, x Y,.

Proof. First we prove that W is one to one. We observe that W(h, k,1) = 0 if and
only if (h, k,1) satisfies

1dp— B omk =0
1dp+ kb _mey=0
dj _

41=0

in Y, x Yy x Y. In particular, we must have { = 0 and (h, k) solution of

that is equivalent to V'(h, k) = 0. So, thank to lemma 7 h=k=0and W is one
toone in Y, x Y, x Y.

Secondly, we have to prove that for f = (f1, f2, f3) € Y, x Yy, X Y, there exists
(h, k1) € X, x X, x X; such that W(h, k,l) = f. This means that the system
h— L +omb =f
k+ 5 +2-—m2=f

S 3
NS

Sl
Il
&
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has a solution in X, x X, x X, for all (f1, fo, f3) € Y, x Y, x Y. We observe
that Vf; € L'((0,00),dr) there exist I*(r) = — [ fsds such that -L1* = fs;
furthermore [* € X. So, we have to show that
o Lih—f+mb =

' Tkt A+ h = o mer

has a solution in X, x X, for all (f1, f2) € Y, x Y,.
Now, we remark that £2/* € L? (RB) and then, thanks to lemma E, () has a
solution in X, x X, for all (f1, f2) € Y, x Y,.

In conclusion W is an isomorphism of X, x X, x X, onto Y, x Y, x Y.
O

Finally, we observe that D, y (0, ¢o)(h, k,1) can be written as

(2.22) Dopr (0, ) (hy b 1) = W (I, b, 1) + S(h)
with
0
(2.23) S(h) = —mlm
L6mm 7 oo ds

Theorem 2.5. Let ¢y be the ground state solution of ), then there exists § > 0
and a function n € C((0,0), X, x X, x X;) such that n(0) = ¢o and D(e,n(e)) =0
for0<e<d.

Proof. Since D(0, ¢g) = 0 and D is continuously differentiable in a neighborhood of
(0, ¢0), to apply the implicit function theorem we have to prove that D, , (0, ¢o)
is an isomorphism of X, x X, x X onto Y, x ¥} x Y.

We observe that D, (0, ¢0)(h, k,1) = 0 if and only if (h, k,1) satisfies

Ah—2tomk=0

(2.24) L+ %+ h—mhrg—mepol =0
L4 L8 [Tpohds =0

that means
(2.25)

o0 2 o0
— b+ 2mh = 167m® ([ ety ds) h = 32mm® ([ 2ty ds) o = 0
dirh — %h +2mk =0

L= 16mm [)° sl ds

Now, if we write £(z) = % and we remind that po(|z|) = |z|ug(z) with ug

solution of (R.§), we have that (h, k,1) is a solution of (2.27) if

(69) - 0 ()
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satisfies
u, 2 £(y)u _
(225) | AETImE—dmT (feo S5 ) € — 8 ( f SR dy) o = 0
¢= =
and
(2.27) i) = 4m [ & W)uol) ;.

R T =y
It’s well known that the unique solution of the first equation of (R.2) in H}(R?) is
€ =0 (see [f] for more details) and that implies ¢ =1 = 0. So the unique solution
of (R.24) ish=k=1=0 and D, ,/(0, ¢o) is one to one in X, x X, x X.

Next, if we show that S(h) is a compact operator, we have that D, (0, ¢o) is a
one to one operator that can be written as a sum of an isomorphism and a compact
operator and then it’s an isomorphism.

First, we can easily see that T'(h) = Tiz ( for woh ds) is a compact operator from
X, on Y;; in particular, we use the fact that H} (R?) is compactly embedded in
L1 (R3), for 2 < ¢ < 6, to prove that for any bounded sequence {h,} C X, the
sequence {T'(hy)} C Y; contains a Cauchy subsequence.

Second, we have to show that the operator 27y from X, to L? (R?) is compact. If

{221 is a bounded sequence in H'(R?) then {Z=7y} is precompact on L7, (R?),

thanks to compact Sobolev embedding and, since 79(r) — 0 when r — 400, we can
conclude that {%Tg} is precompact on L?(R3).

So S(h) is a compact operator from X, on Y, x Yy x Y, and D,y -(0,¢0) is an
isomorphism of X, x X, x X, onto Y, x Y}, x Y;.

In conclusion, we can apply the implicit function theorem to find that there
exists § > 0 and a function n € C((0,6), X, x X, x X;) such that (0) = ¢o and
D(e,n(e)) =0for 0 <e < é.

O
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