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PERTURBATION METHOD FOR PARTICLELIKE SOLUTIONS

OF EINSTEIN-DIRAC EQUATIONS

SIMONA ROTA NODARI

Abstract. The aim of this work is to prove by a perturbation method the ex-
istence of solutions of the coupled Einstein-Dirac equations for a static, spheri-
cally symmetric system of two fermions in a singlet spinor state. We relate the
solutions of our equations to those of the nonlinear Choquard equation and
we show that the nondegenerate solution of Choquard’s equation generates
solutions for Einstein-Dirac equations.

1. Introduction

In this paper, we study the coupled Einstein-Dirac equations for a static, spher-
ically symmetric system of two fermions in a singlet spinor state. Our goal is to
prove by a perturbation method the existence of the solutions constructed, using
numerical methods, by F. Finster, J. Smoller and ST. Yau in [1]. To our knowledge,
what we find out is the first rigorous existence result for the solitonlike solutions of
the coupled Einstein-Dirac equations.

The Einstein-Dirac equations take the form

(D −m)ψ = 0(1.1)

Ri
j −

1

2
Rδi

j = −8πT i
j(1.2)

where D denotes the Dirac operator, ψ is the wave function of a fermion of mass
m, Ri

j is the Ricci curvature tensor, R indicates the scalar curvature and, finally,

T i
j is the energy-momentum tensor of the Dirac particle.

In [1], Finster, Smoller and Yau work with the Dirac operator into a static, spher-
ically symmetric space-time where the metric, in polar coordinates (t, r, ϑ, ϕ), is
given by

(1.3) gij = diag

(

1

T 2
,− 1

A
,−r2,−r2 sin2 ϑ

)

(1.4) gij = diag

(

T 2,−A,− 1

r2
,− 1

r2 sin2 ϑ

)

with A = A(r), T = T (r) positive functions; so, the Dirac operator can be written
as

(1.5) D = iγt∂t + γr

(

i∂r +
i

r

(

1 −A−1/2
)

− i

2

T ′

T

)

+ iγϑ∂ϑ + iγϕ∂ϕ
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with

γt = T γ̄0(1.6)

γr =
√
A
(

γ̄1 cosϑ+ γ̄2 sinϑ cosϕ+ γ̄3 sinϑ sinϕ
)

(1.7)

γϑ =
1

r

(

−γ̄1 sinϑ+ γ̄2 cosϑ cosϕ+ γ̄3 cosϑ sinϕ
)

(1.8)

γϕ =
1

r sinϑ

(

−γ̄2 sinϕ+ γ̄3 cosϕ
)

(1.9)

where γ̄i are the Dirac matrices in Minkowski space (see [1]).
Moreover, Finster, Smoller and Yau are looking for solutions taking the form

(1.10) ψ = e−iωtr−1T 1/2









Φ1

(

1
0

)

iΦ2σ
r

(

1
0

)









,

where σr =
(

σ̄1 cosϑ+ σ̄2 sinϑ cosϕ+ σ̄3 sinϑ sinϕ
)

is a linear combination of the

Pauli matrices σ̄i and Φ1(r), Φ2(r) are radial real functions; in this case the coupled
Einstein-Dirac equations can be written as

√
AΦ′

1 =
1

r
Φ1 − (ωT +m)Φ2(1.11)

√
AΦ′

2 = (ωT −m)Φ1 −
1

r
Φ2(1.12)

rA′ = 1 −A− 16πωT 2
(

Φ2
1 + Φ2

2

)

(1.13)

2rA
T ′

T
= A− 1 − 16πωT 2

(

Φ2
1 + Φ2

2

)

+ 32π
1

r
TΦ1Φ2 +

+16πmT
(

Φ2
1 − Φ2

2

)

(1.14)

with the normalization condition

(1.15)

∫ ∞

0

|Φ|2 T√
A
dr =

1

4π
.

In order that the metric be asymptotically Minkowskian, Finster, Smoller and Yau
assume that

lim
r→∞

T (r) = 1.

Finally, they also require that the solutions have finite (ADM) mass; namely

lim
r→∞

r

2
(1 −A(r)) <∞.

In this paper, we will prove the existence of solutions of (1.1-1.2) in the form
(1.10) by a perturbation method.
In particular, we follow the idea described by Ounaies in [5] (see also [8] for a
rigorous existence proof of nonlinear Dirac solitons based on Ounaies’ approach).
Ounaies, by a perturbation parameter, relates the solutions of a nonlinear Dirac
equation to those of nonlinear Schrödinger equation. Imitating the idea of Ounaies,
we relate the solutions of ours equations to those of nonlinear Choquard’s equation
(see [3], [4] for more details on Choquard’s equation) and we obtain the following
result.

Theorem 1.1. Given 0 < ω < m such that m−ω is sufficiently small, there exists
a non trivial solution of (1.11-1.14).
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In Section 2, we solve the Einstein-Dirac equations by means of the perturbation
method suggested by Ounaies; in particular in the first subsection we describe
a useful rescaling and some properties of the operators involved, whereas in the
second subsection we prove the existence of solutions generated by the solution of
the Choquard equation.

2. Perturbation method for Einstein-Dirac equations

First of all, we observe that writing T (r) = 1 + t(r) and using equation (1.13),
the coupled Einstein-Dirac equations become

√
AΦ′

1 =
1

r
Φ1 − (ω +m)Φ2 − ωtΦ2(2.1)

√
AΦ′

2 = (ω −m)Φ1 + ωtΦ1 −
1

r
Φ2(2.2)

2rAt′ = (A− 1)(1 + t) − 16πω(1 + t)3
(

Φ2
1 + Φ2

2

)

+

+32π
1

r
(1 + t)2Φ1Φ2 + 16πm(1 + t)2

(

Φ2
1 − Φ2

2

)

(2.3)

where

(2.4) A(r) = 1 − 16πω

r

∫ r

0

(1 + t(s))2
(

Φ1(s)
2 + Φ2(s)

2
)

ds := 1 − 16πω

r
Q(r).

Furthermore, because we want A(r) > 0, we have that the following condition must
be satisfied

(2.5) 0 ≤ Q(r)

r
<

1

16πω

for all r ∈ (0,∞).
Now, to find a solution of the equations (2.1-2.3), we exploit the idea used by

Ounaies in [5]. In particular, we proceed as follow: in a first step we use a rescaling
argument to transform (2.1-2.3) in a perturbed system of the form

(2.6)















√

A (ε, ϕ, χ, τ) d
drϕ− 1

rϕ+ 2mχ+K1 (ε, ϕ, χ, τ) = 0
√

A (ε, ϕ, χ, τ) d
drχ+ 1

rχ+ ϕ−mϕτ +K2 (ε, ϕ, χ, τ) = 0

A (ε, ϕ, χ, τ) d
dr τ + 8πm

r2

∫ r

0 ϕ
2 ds+K3 (ε, ϕ, χ, τ) = 0

where ϕ, χ, τ : (0,∞) → R.
Second, we relate the solutions of (2.6) to those of the nonlinear system

(2.7)



















− d2

dr2ϕ+ 2mϕ− 16πm3
(

∫∞

0
ϕ2

max(r,s) ds
)

ϕ = 0

χ(r) = 1
2m

(

1
rϕ− d

drϕ
)

τ(r) = 8πm
∫∞

0
ϕ2

max(r,s) ds.

We remark that ϕ is a solution of (2.7) if and only if u(x) = ϕ(|x|)
|x| solves the

nonlinear Choquard equation

(2.8) −△u+ 2mu− 4m3
(

∫

R3

|u(y)|2

|x−y| dy
)

u = 0 in H1
(

R
3
)

.

To prove this fact it’s enough to remind that for a radial function ρ,

△ρ =
1

r2
d

dr

(

r2
d

dr
ρ

)
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and

(| · | ⋆ ρ) (x) = 4π

(∫ ∞

0

s2ρ(s)

max(r, s)
ds

)

with r = |x|.
We observe also that if we write

(

u(x)
v(x)

)

= r−1









ϕ(r)

(

1
0

)

iχ(r)σr

(

1
0

)









with r = |x|, (ϕ, χ) is a solution of (2.7) if and only if (u(x), v(x)) solve

(2.9) −△u+ 2mu− 4m3
(

∫

R3

|u(y)|2

|x−y| dy
)

u = 0 v = −iσ̄∇u
2m

in R3 where σ̄∇ =
∑3

i=1 σ̄
i∂i.

It’s well known that Choquard’s equation (2.8) has a unique radial, positive solution
u0 with

∫

|u0|2 = N for some N > 0 given. Furthermore, u0 is infinitely differen-
tiable and goes to zero at infinity; more precisely there exist some positive constants
Cδ,η such that |Dη (u0)| ≤ Cδ,η exp(−δ|x|) for x ∈ R3. At last, u0 ∈ H1(R3) is a ra-
dial nondegenerate solution; by this we mean that the linearization of (2.8) around
u0 has a trivial nullspace in L2

r(R
3). In particular, the linear operator L given by

Lξ = −△ξ + 2mξ − 4m3

(

∫

R3

|u0(y)|2
|x− y| dy

)

ξ − 8m3

(∫

R3

ξ(y)u0(y)

|x− y| dy

)

u0

satisfies kerL = {0} when L is restricted to L2
r(R

3) (see [3], [4], [2] for more details).
The main idea is that the solutions of (2.6) are the zeros of a C1 operator D :

R×Xϕ×Xχ×Xτ → Yϕ ×Yχ×Yτ . If we denote by Dϕ,χ,τ(ε, ϕ, χ, τ) the derivative
of D(ε, ·, ·, ·), by (ϕ0, χ0, τ0) the ground state solution of (2.7) and we observe
that Dϕ,χ,τ (ε, ϕ0, χ0, τ0) is an isomorphism, the application of the implicit function
theorem (see [6]) yields the following result, which is equivalent to theorem 1.1.

Theorem 2.1. Let (ϕ0, χ0, τ0) be the ground state solution of (2.7), then there
exists δ > 0 and a function η ∈ C((0, δ), Xϕ×Xχ×Xτ ) such that η(0) = (ϕ0, χ0, τ0)
and (ε, η(ε)) is a solution of (2.6), for 0 ≤ ε < δ.

2.1. Rescaling. In this subsection we are going to introduce the new variable
(ϕ, χ, τ) such that Φ1(r) = αϕ(λr), Φ2(r) = βχ(λr) and t(r) = γτ(λr), where
Φ1,Φ2, t satisfy (2.1-2.3) and α, β, γ, λ > 0 are constants to be chosen later.

Using the explicit expressions of A, given in (2.4), we have

A(Φ1,Φ2, t) = 1 − 16πωα2

r

∫ r

0

(1 + γτ)2

(

ϕ2 +

(

β

α
χ

)2
)

ds

:= Aα,β,γ(ϕ, χ, τ)(2.10)

It’s now clear that if Φ1,Φ2, t satisfy (2.1-2.3), then ϕ, χ, τ satisfy the system

(2.11)















√

Aα,β,γ
αλ
β

d
drϕ− αλ

β
1
rϕ+ (m+ ω)χ+ ωγτχ = 0

√

Aα,β,γ
d
drχ+ 1

rχ+ α
βλ(m− ω)ϕ− αγ

βλωτϕ = 0

2Aα,β,γr
d
dr τ +Kα,β,γ = 0
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with

Kα,β,γ(ϕ, χ, τ) =
16πω

r

α2

γ

(

∫ r

0

(1 + γτ)2

(

ϕ2 +

(

β

α
χ

)2
)

ds

)

(1 + γτ) +

+16πω
α2

γ
(1 + γτ)3

(

ϕ2 +

(

β

α
χ

)2
)

− 32π
λαβ

γ

1

r
(1 + γτ)2ϕχ+

−16πm
α2

γ
(1 + γτ)2

(

ϕ2 −
(

β

α
χ

)2
)

.

By adding the conditions α
βλ(m−ω) = 1, αλ

β = 1, αγ
βλ = 1, α2

γ = 1 and m−ω ≥ 0,

we obtain α = (m− ω)1/2, λ = (m− ω)1/2, β = m− ω and γ = m− ω.
Denoting ε = m− ω, (2.11) is equivalent to

(2.12)















√

A (ε, ϕ, χ, τ) d
drϕ− 1

rϕ+ 2mχ+K1 (ε, ϕ, χ, τ) = 0
√

A (ε, ϕ, χ, τ) d
drχ+ 1

rχ+ ϕ−mϕτ +K2 (ε, ϕ, χ, τ) = 0

A (ε, ϕ, χ, τ) d
dr τ + 8πm

r2

∫ r

0 ϕ
2 ds+K3 (ε, ϕ, χ, τ) = 0

where A (ε, ϕ, χ, τ), K1 (ε, ϕ, χ, τ), K2 (ε, ϕ, χ, τ) and K3 (ε, ϕ, χ, τ) are defined by

A (ε, ϕ, χ, τ) = 1 − 16π(m− ε)ε

r

∫ r

0

(1 + ετ)2
(

ϕ2 + εχ2
)

ds;(2.13)

K1 (ε, ϕ, χ, τ) = −εχ+ ε(m− ε)τχ;(2.14)

K2 (ε, ϕ, χ, τ) = ετϕ;(2.15)

and

K3 (ε, ϕ, χ, τ) =
8πmε

r2

∫ r

0

χ2 ds+
16πmε

r2

∫ r

0

τ
(

ϕ2 + εχ2
)

ds+

+
8πmε2

r2

∫ r

0

τ2
(

ϕ2 + εχ2
)

ds+

−8πε

r2

(∫ r

0

(1 + ετ)2
(

ϕ2 + εχ2
)

ds

)

τ +

+
8π(m− ε)ε

r2

(∫ r

0

(1 + ετ)2
(

ϕ2 + εχ2
)

ds

)

τ +

+16πmε
χ2

r
+ 8πmε(3τ + 3ετ2 + ε2τ3)

(

ϕ2 + εχ2
)

r
+

−8πε(1 + ετ)3
(

ϕ2 + εχ2
)

r
− 16πε(1 + ετ)2

ϕχ

r2
+

−8πmε(2τ + ετ2)

(

ϕ2 − εχ2
)

r
.(2.16)

For ε = 0, (2.12) becomes

(2.17)















d
drϕ− 1

rϕ+ 2mχ = 0

d
drχ+ 1

rχ+ ϕ−mϕτ = 0

d
dr τ + 8πm

r2

∫ r

0 ϕ
2 ds = 0
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that is equivalent to

(2.18)



















− d2

dr2ϕ+ 2mϕ− 16πm3
(

∫∞

0
ϕ2

max(r,s) ds
)

ϕ = 0

χ(r) = 1
2m

(

1
rϕ− d

drϕ
)

τ(r) = 8πm
∫∞

0
ϕ2

max(r,s) ds.

Then, we denote by (ϕ0, χ0, τ0) a solution of (2.18); in particular

χ0(r) = − r

2m

d

dr

(ϕ0

r

)

τ0(r) = 8πm

∫ ∞

0

ϕ2
0

max(r, s)
ds.

Now, to obtain a solution of (2.12) from (ϕ0, χ0, τ0), we define the operators L1 :
R×Xϕ×Xχ×Xτ → Yϕ, L2 : R×Xϕ×Xχ×Xτ → Yχ, L3 : R×Xϕ×Xχ×Xτ → Yτ

and D : R ×Xϕ ×Xχ ×Xτ → Yϕ × Yχ × Yτ by

L1(ε, ϕ, χ, τ) =
√

A (ε, ϕ, χ, τ)
1

r

d

dr
ϕ− ϕ

r2
+ 2m

χ

r
+

1

r
K1 (ε, ϕ, χ, τ)

L2(ε, ϕ, χ, τ) =
√

A (ε, ϕ, χ, τ)
1

r

d

dr
χ+

χ

r2
+
ϕ

r
−m

ϕ

r
τ +

1

r
K2 (ε, ϕ, χ, τ)

L3(ε, ϕ, χ, τ) = A (ε, ϕ, χ, τ)
d

dr
τ +

8πm

r2

∫ r

0

ϕ2 ds+K3 (ε, ϕ, χ, τ)

and

D(ε, ϕ, χ, τ) = (L1(ε, ϕ, χ, τ), L2(ε, ϕ, χ, τ), L3(ε, ϕ, χ, τ))

where

Xϕ =

{

ϕ : (0,∞) → R

∣

∣

∣

∣

ϕ(|x|)
|x|

(

1
0

)

∈ H1
(

R
3,R2

)

}

Xχ =

{

χ : (0,∞) → R

∣

∣

∣

∣

χ(|x|)
|x| σr

(

1
0

)

∈ H1
(

R
3,C2

)

}

Xτ =

{

τ : (0,∞) → R

∣

∣

∣

∣

lim
r→∞

τ(r) → 0,
d

dr
τ ∈ L1((0,∞), dr)

}

Yϕ = Yχ = L2
(

R
3
)

Yτ = L1((0,∞), dr).

Furthermore we define the following norms:

‖ϕ‖Xϕ
=

∥

∥

∥

∥

ϕ(|x|)
|x|

∥

∥

∥

∥

H1(R3)

,

‖χ‖Xχ
=

∥

∥

∥

∥

χ(|x|)
|x| σr

(

1
0

)∥

∥

∥

∥

H1(R3)

,

‖τ‖Xτ
=

∥

∥

∥

∥

d

dr
τ

∥

∥

∥

∥

L1((0,∞),dr)

.

It’s well known that

H1
(

R3
)

→֒ Lq
(

R3
)

2 ≤ q ≤ 6

Xτ →֒ L∞ ((0,∞), dr) .



PERTURBATION METHOD FOR EINSTEIN-DIRAC EQUATIONS 7

Moreover, using Hardy’s inequality

∫

R3

|f |2
|x|2 dx ≤ 4

∫

R3

|∇f |2 dx,

we get the following properties:

(2.19)
ρ ∈ H1 ((0,∞), dr) →֒ L∞ ((0,∞), dr)

ρ
r ∈ L2 ((0,∞), dr) .

∀ρ ∈ Xϕ, ∀ρ ∈ Xχ.
Since the operator A(ε, ϕ, χ, τ) must be strictly positive, we consider Bϕ, Bχ,

Bτ , defined as the balls of the spaces Xϕ, Xχ, Xτ , and ε1, ε2, depending on m and
on the radius of Bϕ, Bχ, Bτ , such that

1 − 16π(m− ε)ε

r

∫ r

0

(1 + ετ)2
(

ϕ2 + εχ2
)

ds ≥ δ > 0

for all (ε, ϕ, χ, τ) ∈ (−ε1, ε2)×Bϕ ×Bχ ×Bτ . The existence of ε1, ε2 is assured by
the fact that ϕ, χ, τ are bounded; in particular, if ε ≥ 0,

1 − 16π(m− ε)ε

r

∫ r

0

(1 + ετ)2
(

ϕ2 + εχ2
)

ds ≥

≥ 1 − 20mε ‖ϕ‖2
Xϕ

− 8mε2
(

5 ‖τ‖Xτ
‖ϕ‖2

Xϕ
+ ‖χ‖2

Xχ

)

+

−4mε3 ‖τ‖Xτ

(

5 ‖τ‖Xτ
‖ϕ‖2

Xϕ
+ 4 ‖χ‖2

Xχ

)

− 8mε4 ‖τ‖2
Xτ

‖χ‖2
Xχ

,

then there exists ε2 > 0 such that A(ε, ϕ, χ, τ) > 0 for all ε ∈ [0, ε2). In the same
way, if ε < 0,

1 − 16π(m− ε)ε

r

∫ r

0

(1 + ετ)2
(

ϕ2 + εχ2
)

ds ≥

≥ 1 − 8mε2 ‖χ‖2
Xχ

− 8m|ε|3 ‖χ‖2
Xχ

(

1 + 2 ‖τ‖Xτ

)

+

−8mε4 ‖χ‖2
Xχ

‖τ‖Xτ

(

2 + 1 ‖τ‖Xτ

)

− 8m|ε|5 ‖τ‖2
Xτ

‖χ‖2
Xχ

,

then there exists ε1 > 0 such that A(ε, ϕ, χ, τ) > 0 for all ε ∈ (−ε1, 0).

Lemma 2.2. The operators L1, L2 ∈ C1 ((−ε1, ε2) ×Bϕ ×Bχ ×Bτ , Yϕ) and L3 ∈
C1 ((−ε1, ε2) ×Bϕ ×Bχ ×Bτ , Yτ ).

Before starting the proof of the lemma we observe that for a radial function ρ

such that ρ
r ∈ H1

r

(

R3
)

we have

(2.20) |ρ(r)| ≤ r1/2

∥

∥

∥

∥

d

dr

(

ρ(r)

r

)∥

∥

∥

∥

L2

rad

.

We remind that H1
r

(

R
3
)

=
{

u ∈ H1
(

R
3
)

| u is radial
}

.
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Proof. We begin with L3; first, we have to prove that it is well defined in Yτ =
L1((0,∞), dr). We remark that

|L3 (ε, ϕ, χ, τ)| ≤ C1

∣

∣

∣

∣

d

dr
τ

∣

∣

∣

∣

+
C2

r2

∫ r

0

∣

∣ϕ2 + εχ2
∣

∣ ds+
C3

r

∣

∣ϕ2 + εχ2
∣

∣+

+
C4

r2
|ϕχ| + C5

r

∣

∣ϕ2 − εχ2
∣

∣

where C1, C2, C3, C4, C5 are positive constants and, by definition, we have that
d
dr τ ∈ L1((0,∞), dr).
Next, we have

∫ ∞

0

1

r2

∫ r

0

∣

∣ϕ2 + εχ2
∣

∣ ds dr =

∫ ∞

0

∣

∣ϕ2 + εχ2
∣

∣

s
ds < +∞,

using Hölder’s inequality, then 1
r2

∫ r

0

∣

∣ϕ2 + εχ2
∣

∣ ds ∈ Yτ . In the same way, we can

conclude that 1
r

(

ϕ2 + εχ2
)

, 1
r

(

ϕ2 − εχ2
)

∈ Yτ .
Finally,

∫ ∞

0

|ϕ|
r

|χ|
r
dr ≤ C

∥

∥

∥

ϕ

r

∥

∥

∥

L2((0,∞))

∥

∥

∥

χ

r

∥

∥

∥

L2((0,∞))
< +∞

thanks to (2.19), then 1
r2ϕχ ∈ Yτ .

Now, we have to prove that L3 (ε, ϕ, χ, τ) is C1; by classical arguments, it’s enough
to show that for (h1, h2, h3) ∈ Bϕ ×Bχ ×Bτ

∂

∂ϕ
(L3 (ε, ϕ, χ, τ))h1 ∈ Yτ ,

∂

∂χ
(L3 (ε, ϕ, χ, τ))h2 ∈ Yτ ,

∂

∂τ
(L3 (ε, ϕ, χ, τ)) h3 ∈ Yτ .

We begin with ∂
∂ϕ (L3 (ε, ϕ, χ, τ)),

∂

∂ϕ
(L3 (ε, ϕ, χ, τ))h1 =

(

∂

∂ϕ
(A (ε, ϕ, χ, τ))h1

)

d

dr
τ +

+
16π(m− ε)

r2

(∫ r

0

(1 + ετ)2ϕh1 ds

)

(1 + ετ) +

+16π(m− ε)(1 + ετ)3
ϕh1

r
− 16πε(1 + ετ)2

h1χ

r2
+

−16πm(1 + ετ)2
ϕh1

r
;

for ∂
∂χ (L3 (ε, ϕ, χ, τ)),

∂

∂χ
(L3 (ε, ϕ, χ, τ))h2 =

(

∂

∂χ
(A (ε, ϕ, χ, τ))h2

)

d

dr
τ +

+
16π(m− ε)ε

r2

(∫ r

0

(1 + ετ)2χh2 ds

)

(1 + ετ) +

+16π(m− ε)ε(1 + ετ)3
χh2

r
− 16πε(1 + ετ)2

ϕh2

r2
+

−16πmε(1 + ετ)2
χh2

r
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and, finally,

∂

∂τ
(L3 (ε, ϕ, χ, τ)) h3 =

(

∂

∂τ
(A (ε, ϕ, χ, τ))h3

)

d

dr
τ +

+A (ε, ϕ, χ, τ)
d

dr
h3 +

+
16π(m− ε)ε

r2

(∫ r

0

(1 + ετ)h3

(

ϕ2 + εχ2
)

ds

)

(1 + ετ) +

+
8π(m− ε)ε

r2

(∫ r

0

(1 + ετ)2
(

ϕ2 + εχ2
)

ds

)

h3 +

+24π(m− ε)ε(1 + ετ)2
(

ϕ2 + εχ2
)

r
h3 − 32πε2(1 + ετ)

ϕχ

r2
h3 +

−16πmε(1 + ετ)

(

ϕ2 − εχ2
)

r
h3.

First of all, we remark that if ϕ, h1 ∈ Bϕ, χ, h2 ∈ Bχ and τ, h3 ∈ Bτ , then
∂

∂ϕ (A (ε, ϕ, χ, τ)) h1,
∂

∂χ (A (ε, ϕ, χ, τ))h2 and ∂
∂τ (A (ε, ϕ, χ, τ))h3 are bounded.

So, we have that
∣

∣

∣

∣

∂L3

∂ϕ
h1

∣

∣

∣

∣

≤ C1

∣

∣

∣

∣

d

dr
τ

∣

∣

∣

∣

+
C2

r2

(∫ r

0

|ϕh1| ds
)

+ C3
|ϕh1|
r

+ C4
|h1χ|
r2

∣

∣

∣

∣

∂L3

∂χ
h2

∣

∣

∣

∣

≤ C5

∣

∣

∣

∣

d

dr
τ

∣

∣

∣

∣

+
C6

r2

(∫ r

0

|χh2| ds
)

+ C7
|χh2|
r

+ C8
|ϕh2|
r2

∣

∣

∣

∣

∂L3

∂τ
h3

∣

∣

∣

∣

≤ C9

∣

∣

∣

∣

d

dr
τ

∣

∣

∣

∣

+ C10

∣

∣

∣

∣

d

dr
h3

∣

∣

∣

∣

+
C11

r2

∫ r

0

∣

∣ϕ2 + εχ2
∣

∣ ds+ C12

∣

∣ϕ2 + εχ2
∣

∣

r
+

+C13
|ϕχ|
r2

+ C14

∣

∣ϕ2 − εχ2
∣

∣

r

with Ci positive constants. With exactly the same arguments used above, we
conclude that

∫ ∞

0

∣

∣

∣

∣

∂

∂ϕ
(L3 (ε, ϕ, χ, τ))h1

∣

∣

∣

∣

dr < +∞
∫ ∞

0

∣

∣

∣

∣

∂

∂χ
(L3 (ε, ϕ, χ, τ))h2

∣

∣

∣

∣

dr < +∞
∫ ∞

0

∣

∣

∣

∣

∂

∂τ
(L3 (ε, ϕ, χ, τ))h3

∣

∣

∣

∣

dr < +∞

if (ε, ϕ, χ, τ) ∈ (−ε1, ε2) ×Bϕ ×Bχ ×Bτ , and (h1, h2, h3) ∈ Bϕ ×Bχ ×Bτ .

Furthermore ∂L3

∂ϕ ,
∂L3

∂χ and ∂L3

∂τ are continuous; thus the proof for L3.

We consider now L1; first, we have to prove that it is well defined in Yϕ. We
observe that

|L1 (ε, ϕ, χ, τ)| ≤ C1

∣

∣

∣

∣

1

r

d

dr
ϕ

∣

∣

∣

∣

+
∣

∣

∣

ϕ

r2

∣

∣

∣
+ C2

∣

∣

∣

χ

r

∣

∣

∣

with C1, C2 positive constants then, L1 (ε, ϕ, χ, τ) ∈ L2
(

R3
)

, thanks to conditions
(2.19).
Now, we have to prove that L1 (ε, ϕ, χ, τ) is C1; by classical arguments, it’s enough
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to show that for (h1, h2, h3) ∈ Bϕ ×Bχ ×Bτ

∂

∂ϕ
(L1 (ε, ϕ, χ, τ)) h1 ∈ Yϕ,

∂

∂χ
(L1 (ε, ϕ, χ, τ)) h2 ∈ Yϕ,

∂

∂τ
(L1 (ε, ϕ, χ, τ))h3 ∈ Yϕ.

By a straightforward computation, we find out

∂L1

∂ϕ
h1 =

1

2
A−1/2

(

∂A

∂ϕ
h1

)

1

r

d

dr
ϕ+A1/2 1

r

d

dr
h1 −

h1

r2
,

∂L1

∂χ
h2 =

1

2
A−1/2

(

∂A

∂χ
h2

)

1

r

d

dr
ϕ+ (2m− ε)

h2

r
+ ε(m− ε)τ

h2

r
,

∂L1

∂τ
h3 =

1

2
A−1/2

(

∂A

∂τ
h3

)

1

r

d

dr
ϕ+ ε(m− ε)h3

χ

r
;

and, using the positivity of A,
∣

∣

∣

∣

∂L1

∂ϕ
h1

∣

∣

∣

∣

≤ C1

∣

∣

∣

∣

1

r

d

dr
ϕ

∣

∣

∣

∣

+ C2

∣

∣

∣

∣

1

r

d

dr
h1

∣

∣

∣

∣

+

∣

∣

∣

∣

h1

r2

∣

∣

∣

∣

∣

∣

∣

∣

∂L1

∂χ
h2

∣

∣

∣

∣

≤ C3

∣

∣

∣

∣

1

r

d

dr
ϕ

∣

∣

∣

∣

+ C4

∣

∣

∣

∣

h2

r

∣

∣

∣

∣

∣

∣

∣

∣

∂L3

∂τ
h3

∣

∣

∣

∣

≤ C5

∣

∣

∣

∣

1

r

d

dr
ϕ

∣

∣

∣

∣

+ C6

∣

∣

∣

χ

r

∣

∣

∣ .

with Ci positive constants. Then, we can conclude that
∫

R3

∣

∣

∣

∣

∂

∂ϕ
(L3 (ε, ϕ, χ, τ))h1

∣

∣

∣

∣

2

dx < +∞
∫

R3

∣

∣

∣

∣

∂

∂χ
(L3 (ε, ϕ, χ, τ))h2

∣

∣

∣

∣

2

dx < +∞
∫

R3

∣

∣

∣

∣

∂

∂τ
(L3 (ε, ϕ, χ, τ))h3

∣

∣

∣

∣

2

dx < +∞

if (ε, ϕ, χ, τ) ∈ (−ε1, ε2) ×Bϕ ×Bχ ×Bτ , and (h1, h2, h3) ∈ Bϕ ×Bχ ×Bτ .

Furthermore ∂L1

∂ϕ ,
∂L1

∂χ and ∂L1

∂τ are continuous; thus the proof for L1 and with the

same arguments for L2.
�

2.2. Branches generated by solutions of Choquard equation. In this sub-
section, we show that a solution φ0 = (ϕ0, χ0, τ0) of (2.7) can generate a local
branch of solutions of (2.6).

First, we linearize the operator D on (ϕ, χ, τ) around (0, φ0)

Dϕ,χ,τ(0, φ0)(h, k, l) =









1
r

d
drh− h

r2 + 2mk
r

1
r

d
drk + k

r2 + h
r −mh

r τ0 −mϕ0

r l

d
dr l +

16πm
r2

∫ r

0 ϕ0h ds









.
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Now, if we prove thatDϕ,χ,τ (0, φ0) is an isomorphism, the implicit function theorem
can be applied and we can find solutions of (2.6) near the ground state φ0.

Lemma 2.3. We define the operator V : Xϕ ×Xχ → Yϕ × Yχ, by

V (ϕ, χ) =

(

1
r

d
drϕ− 1

r2ϕ+ 2m 1
rχ

1
r

d
drχ+ 1

r2χ+ 1
rϕ

)

,

then V is an isomorphism of Xϕ ×Xχ onto Yϕ × Yχ.

This lemma is obvious if we remind that L2(R3,C4) can be written as the direct
sum of partial wave subspaces and that the Dirac operator leaves invariant all these
subspaces (see [7]). So, thanks to lemma 2.3 of [5], we know that V : H1

(

R3,C2
)

×
H1
(

R3,C2
)

→ L2
(

R3,C2
)

× L2
(

R3,C2
)

defined by

V (u, v) =

(

iσ̄∇u+ 2mv
−iσ̄∇v + u

)

is an isomorphism of H1
(

R3,C2
)

×H1
(

R3,C2
)

onto L2
(

R3,C2
)

×L2
(

R3,C2
)

and

then V is an isomorphism of each partial wave subspace. In particular, V coincide
with V on the partial wave subspace Xϕ ×Xχ.

Lemma 2.4. We define the operator W : Xϕ ×Xχ ×Xτ → Yϕ × Yχ × Yτ , by

W (h, k, l) =









1
r

d
drh− h

r2 + 2mk
r

1
r

d
drk + k

r2 + h
r −mϕ0

r l

d
dr l









,

then W is an isomorphism of Xϕ ×Xχ ×Xτ onto Yϕ × Yχ × Yτ .

Proof. First we prove that W is one to one. We observe that W (h, k, l) = 0 if and
only if (h, k, l) satisfies















1
r

d
drh− h

r2 + 2mk
r = 0

1
r

d
drk + k

r2 + h
r −mϕ0

r l = 0

d
dr l = 0

in Yϕ × Yχ × Yτ . In particular, we must have l ≡ 0 and (h, k) solution of
{

1
r

d
drh− h

r2 + 2mk
r = 0

1
r

d
drk + k

r2 + h
r = 0

that is equivalent to V (h, k) = 0. So, thank to lemma 2.3, h ≡ k ≡ 0 and W is one
to one in Yϕ × Yχ × Yτ .

Secondly, we have to prove that for f = (f1, f2, f3) ∈ Yϕ × Yχ × Yτ , there exists
(h, k, l) ∈ Xϕ ×Xχ ×Xτ such that W (h, k, l) = f . This means that the system















1
r

d
drh− h

r2 + 2mk
r = f1

1
r

d
drk + k

r2 + h
r −mϕ0

r l = f2

d
dr l = f3
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has a solution in Xϕ × Xχ × Xτ for all (f1, f2, f3) ∈ Yϕ × Yχ × Yτ . We observe

that ∀f3 ∈ L1((0,∞), dr) there exist l∗(r) = −
∫∞

r
f3 ds such that d

dr l
∗ = f3;

furthermore l∗ ∈ Xτ . So, we have to show that

(2.21)

{

1
r

d
drh− h

r2 + 2mk
r = f1

1
r

d
drk + k

r2 + h
r = f2 +mϕ0

r l
∗

has a solution in Xϕ ×Xχ for all (f1, f2) ∈ Yϕ × Yχ.
Now, we remark that ϕ0

r l
∗ ∈ L2

(

R
3
)

and then, thanks to lemma 2.3, (2.21) has a
solution in Xϕ ×Xχ for all (f1, f2) ∈ Yϕ × Yχ.
In conclusion W is an isomorphism of Xϕ ×Xχ ×Xτ onto Yϕ × Yχ × Yτ .

�

Finally, we observe that Dϕ,χ,τ (0, φ0)(h, k, l) can be written as

(2.22) Dϕ,χ,τ (0, φ0)(h, k, l) = W (h, k, l) + S(h)

with

(2.23) S(h) =









0

−mh
r τ0

16πm
r2

∫ r

0 ϕ0h ds









.

Theorem 2.5. Let φ0 be the ground state solution of (2.7), then there exists δ > 0
and a function η ∈ C((0, δ), Xϕ ×Xχ ×Xτ ) such that η(0) = φ0 and D(ε, η(ε)) = 0
for 0 ≤ ε < δ.

Proof. Since D(0, φ0) = 0 and D is continuously differentiable in a neighborhood of
(0, φ0), to apply the implicit function theorem we have to prove that Dϕ,χ,τ (0, φ0)
is an isomorphism of Xϕ ×Xχ ×Xτ onto Yϕ × Yχ × Yτ .
We observe that Dϕ,χ,τ (0, φ0)(h, k, l) = 0 if and only if (h, k, l) satisfies

(2.24)















d
drh− h

r + 2mk = 0

d
drk + k

r + h−mhτ0 −mϕ0l = 0

d
dr l+

16πm
r2

∫ r

0 ϕ0h ds = 0

that means
(2.25)














− d2

dr2h+ 2mh− 16πm3
(

∫∞

0
ϕ2

0

max(r,s) ds
)

h− 32πm3
(

∫∞

0
ϕ0h

max(r,s) ds
)

ϕ0 = 0
d
drh− 1

rh+ 2mk = 0

l = 16πm
∫∞

0
ϕ0h

max(r,s) ds

Now, if we write ξ(x) = h(|x|)
|x| and we remind that ϕ0(|x|) = |x|u0(x) with u0

solution of (2.8), we have that (h, k, l) is a solution of (2.25) if

(

ξ(x)
ζ(x)

)

= r−1









h(r)

(

1
0

)

ik(r)σr

(

1
0

)








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satisfies

(2.26)

{

−△ξ + 2mξ − 4m3
(

∫

R3

|u0(y)|2

|x−y| dy
)

ξ − 8m3
(

∫

R3

ξ(y)u0(y)
|x−y| dy

)

u0 = 0

ζ = −iσ̄∇ξ
2m

and

(2.27) l(x) = 4m

∫

R3

ξ(y)u0(y)

|x− y| dy.

It’s well known that the unique solution of the first equation of (2.26) in H1
r (R3) is

ξ ≡ 0 (see [2] for more details) and that implies ζ ≡ l ≡ 0. So the unique solution
of (2.24) is h ≡ k ≡ l ≡ 0 and Dϕ,χ(0, φ0) is one to one in Xϕ ×Xχ ×Xτ .

Next, if we show that S(h) is a compact operator, we have that Dϕ,χ(0, φ0) is a
one to one operator that can be written as a sum of an isomorphism and a compact
operator and then it’s an isomorphism.
First, we can easily see that T (h) = 1

r2

(∫ r

0
ϕ0h ds

)

is a compact operator from

Xϕ on Yτ ; in particular, we use the fact that H1
r

(

R3
)

is compactly embedded in

Lq
(

R3
)

, for 2 < q < 6, to prove that for any bounded sequence {hn} ⊂ Xϕ, the
sequence {T (hn)} ⊂ Yτ contains a Cauchy subsequence.
Second, we have to show that the operator h

r τ0 from Xϕ to L2
(

R3
)

is compact. If
{

hn

r

}

is a bounded sequence in H1(R3) then
{

hn

r τ0
}

is precompact on L2
loc(R

3),
thanks to compact Sobolev embedding and, since τ0(r) → 0 when r → +∞, we can
conclude that

{

hn

r τ0
}

is precompact on L2(R3).
So S(h) is a compact operator from Xϕ on Yϕ × Yχ × Yτ and Dϕ,χ,τ(0, φ0) is an
isomorphism of Xϕ ×Xχ ×Xτ onto Yϕ × Yχ × Yτ .

In conclusion, we can apply the implicit function theorem to find that there
exists δ > 0 and a function η ∈ C((0, δ), Xϕ ×Xχ ×Xτ ) such that η(0) = φ0 and
D(ε, η(ε)) = 0 for 0 ≤ ε < δ.

�
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