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Abstract – Dynamic behavior of oscillating perforated gold 
plates under the effect of squeeze film damping is analyzed by 
means of experimental measurements and a compact model. 
Thin plates built with the surface micro-machining technique 
and gold electroplating were designed with many different 
geometrical dimensions for the plate and the holes; the number 
of holes is also variable. Altogether, samples with 28 square and 
6 rectangular plate topologies were fabricated and measured. 
The quality factors of the fundamental oscillation modes have 
been extracted from the measurements through the half-power 
method and compared with a compact model of perforated 
dampers. The comparison results show that the gas damping 
model alone is not sufficient in modeling the damping in gold 
structures. One of the reasons is that the material damping of 
gold  increases the measured damping coefficient. 

 

I.  INTRODUCTION 

Micro Electro Mechanical Systems (MEMS) are 
characterized by many different features and shapes and 
contain numerous oscillating elements and components. 
Although the structural parts greatly differ between 
applications, oscillating elements derived from the classical 
beam or plate shape are largely widespread. Perforations are 
used in micromechanical squeeze-film dampers for several 
reasons. Plate perforation is often necessary for sacrificial-
layer removal during building processes of MEMS devices, 
representing a technological constraint for the designer. The 
main purpose is to reduce the damping and spring forces of 
oscillating structures due to the gas flow in small air gaps 
inside and around the oscillating structure. The proper 
characterization of the gas flow is the goal of many 
experimental and theoretical studies.  

Experiments are needed to ensure that all necessary 
physical phenomena are taken into account in the 
characterization. The half-power method, one of the most 
popular methods, is used to extract the quality factor of the 
resonance. This method uses directly the specification of the 
quality factor: the resonance frequency and the -3dB 
frequencies are measured. Experimental strategies for the 
measurement of dynamic parameters of MEMS dampers and 
experimental validation of estimated results have been 
proposed in [1-3].  

The main difficulty in the modeling is the correct 
estimation of pressure distribution inside and below the holes  

in the air gap in order to evaluate the damping force acting on 
the movable 3D structure. Generally, the volume of fluid 
surrounding the plate should be considered in the analysis,  
making the 3D analysis very complicated. These are the 
reasons why reduced-dimension models have been 
developed. These models enable the simulation of 
complicated cases, as well as make the computation much 
faster. There are several works in the literature reporting 
dimension-reduction numerical models [4-6]; compact 
analytic models have been also presented in [7-9].  

It is well known that the material damping of silicon is 
very low and silicon MEMS resonators operating in vacuum 
are able to reach quality factors of tens of thousands. On the 
other hand, measurements have shown that even a thin gold 
layer in a silicon cantilever beam will considerably decrease 
the quality factor [10]. Thus, the quality factors of the gold 
structures are expected to be limited by the material damping.  

In our previous work [3], perforated silicon resonator 
structures were measured using the optical interferometric 
technique, and the damping coefficients were compared with 
those given by four different compact damping models. It 
turned out that all the models explained the measurements 
with reasonable accuracy. Also, the study showed that purely 
viscous models were sufficient (inertia and compressibility 
were negligible). 

This work is also focused in similar comparison, but the 
structures have been micro-machined of gold. Since the 
perforated plates are relatively thin (6.3μm thickness, while 
the thickness of the silicon structures was 15μm), it is also 
necessary to consider the bending of the plates and the 
contribution of the springs in the damping. Here, a single 
compact model is used since the previous work did not show 
large differences between the models. 

II.  TEST STRUCTURES 

Two topologies of specimens are considered in this work: 
square and rectangular. Both types were built at FBK 
(Trento, Italy) by means of the surface micro-machining 
technique and gold electroplating [11]. The first type of 
specimen is a square plate, which was designed according to 
the geometry presented in [1] and is shown in figure 1(a). 
The plate side dimension is variable, as is the holes' side and 
the number of holes. The nominal thickness of the plate hc is 
6.3μm and the air gap height h is 3.0μm. The average 
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measured dimensions of the supporting beams are LB = 
96.66μm (length), WB = 12.88μm (width) and 2.606μm 
(thickness) for square structures. Figure 1(b) shows the 
optical image of one of the dampers. 

 

(a)  (b)  
Fig. 1. First topology of specimens: suspended square plates with square 

holes; (a) drawing of shape characteristics and (b) optical image. 
 

The dimensions of the plates are given in table I, where 
nominal and measured dimensions of plates and holes are 
indicated; the total number of holes, M×M, is also reported. 
The dimensions indicated have been measured by the optical 
profilometer and they are affected by the sensitivity error 
given by the microscope resolution (0.6μm horizontal and 
0.1nm vertical). 

TABLE I 
NOMINAL AND MEASURED PLATE DIMENSIONS OF FIRST TYPE OF SPECIMENS 

(SQUARE PLATE) 
Plate side 

a [μm] 
Holes side 

s0 [μm] Topol. 
index 

nom. meas. nom. meas. 

Number 
of holes 
M x M 

Measured 
plate 

thickness 
hc [μm] 

1 55.91 7.20 7.20 6.297 
2 55.07 9.30 9.31 6.291 
3 55.70 10.70 10.70 6.302 
4 

55 

55.89 12.60 12.59 

4 

6.322 
5 76.25 7.20 7.18 6.311 
6 76.40 9.30 9.29 6.303 
7 76.47 10.70 10.68 6.311 
8 

76 

76.41 12.60 12.62 

9 

6.299 
9 96.45 7.20 7.21 6.309 

10 96.51 9.30 9.31 6.298 
11 96.33 10.70 10.68 6.307 
12 

96 

96.12 12.60 12.61 

16 

6.296 
13 115.47 7.20 7.21 6.304 
14 115.42 9.30 9.31 6.275 
15 115.39 10.70 10.71 6.298 
16 

115 

115.74 12.60 12.60 

25 

6.302 
17 137.14 7.20 7.21 6.307 
18 137.08 9.30 9.31 6.296 
19 137.13 10.70 10.68 6.332 
20 

137 

137.11 12.60 12.61 

36 

6.286 
21 157.31 7.20 7.18 6.303 
22 157.28 9.30 9.29 6.278 
23 157.63 10.70 10.69 6.285 
24 

157 

157.13 12.60 12.59 

49 

6.285 
25 185.96 7.20 7.19 6.312 
26 185.28 9.30 9.33 6.321 
27 185.97 10.70 10.70 6.287 
28 

185 

185.13 12.60 12.58 

64 

6.297 
  

The values of s1 and s2, indicated in figure 1(a), can be 
calculated with the following relations:  

01 1
s

M
as −
+

=  (1)

21
0

2
s

M
as −
+

=  (2)

The specimens of the second type of are characterized by  
different plate lengths and widths; these dampers were also 
built with the same process used for the first topology. The 
shape of this second group was presented by the authors in 
[12] when polysilicon plates were studied; the shape was 
preserved except for the plate thickness which is lower for 
new structures. Figure 2 shows a drawing of the device's 
shape and figure 3 illustrates the difference between one 
current (thin gold) specimen and one previous (thick silicon) 
specimen. 

 

 
Fig. 2. Second type of specimens: rectangular plates with square holes. 
 
The values of s1 and s2, indicated in figure 2, can be 

calculated with the same relations as eqs. (1) and (2) or with 
the following, written for the short side of the plate:  

01 1
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=  (3)
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s
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+

=  (4)

 

(a)  

(b)  
Fig. 3. Second topology of specimens: (a) measured gold plates and (b) 

previously studied polysilicon plates. 
 
Despite the similarities in structure shapes of the gold and 

the silicon sets, there are some differences in geometrical 
dimensions. These are caused by different dimensional 
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tolerances and design rules of the different building 
techniques used. The geometrical parameters of the gold 
specimens are listed in table II; the number of holes present 
on the longer (M) and shorter (N) side of the plate are 
indicated. The average measured dimensions of the 
supporting beams for rectangular gold structures are LB  = 
96.08μm (length), WB = 13.52μm (width) and 2.620μm 
(thickness). 

TABLE II 
NOMINAL AND MEASURED PLATE DIMENSIONS OF SECOND TYPE OF 

SPECIMENS (RECTANGULAR PLATE) 
Plate length 

a [μm] 
Plate width 

b [μm] 
Holes side 

s0 [μm] Topol. 
index nom. meas. nom. meas. nom. meas. 

Number 
of holes 
M x N 

Meas. plate
thickness 
hc [μm] 

29 376.13 96.66 7.20 7.21 18x4 6.298 
30 376.47 96.50 9.30 9.29 18x4 6.303 
31 376.81 96.63 10.70 10.69 18x4 6.257 
32 376.47 

99 

96.61 12.60 12.60 18x4 6.323 
33 376.44 158 156.94 7.20 7.21 18x7 6.302 
34 

376 

376.13 277 276.98 7.20 7.20 18x13 6.312 
  
 

III.  EXPERIMENTAL SETUP 

The experiments were performed with the optical 
interferometric microscope ZoomSurf3D, Fogale Nanotech 
[13]. The suspended plates were excited using a DC voltage 
generator and AC actuation. The frequency response function 
(FRF) of the device is measured by means of a sine sweep 
procedure in order to detect the structural resonance. The 
microscope can perform profile measurements from a 
minimum area of 100×100μm2 to a maximum of 2×2mm2. 
The actual setting provides a 20x objective magnification 
factor that reaches a 0.6μm and a 0.1nm lateral and vertical 
resolutions, respectively. A single measurement can detect a 
400μm maximum difference in height. Light radiation is 
emitted by a selectable source (continuous or stroboscopic, 
monochromatic or polychromatic), then exploited to optical 
interference phenomena generation and spatial reconstruction 
of specimen. The instrument is equipped with a 3-axis 
movable piezo-electrical stage and a voltage generator (0-
200V, up to 2MHz). 

IV.  TESTING PROCEDURE 

The half-power method has been used to extract damping 
and stiffness parameters of the vibrating system. The area 
considered for the measurement of the oscillation amplitude 
is situated in a square region at the center of the plate; the 
order of magnitude of the average oscillation amplitudes at 
resonance is 0.1μm. The experimental FRF is considered 
only in a small range around the resonance frequency, 
obtaining a relation between the amplitude of oscillation and 
the actuation frequency; this relation is composed of a series 
of discrete values which have been stored in correspondence 
to many frequency steps. This empirical curve is then 
interpolated by means of the polynomial function h(f), and 
the absolute maximum of the interpolated function is then 
calculated, corresponding to the maximum of FRF. The value 
of the FRF, which corresponds to the half-power level (3dB 
lower than the peak), is then calculated as 

[ ] [ ]
2

)(max)( 3dB-
fhfh =  (5)

and two half-power points are extracted at the frequencies f I 
and f II , respectively: 

[ ] ( )Ifhfh =3dB-)(  (6)

[ ] ( )IIfhfh =3dB-)(  (7)
The half-power bandwidth is then given by  

n
III fffΔf ζ2- ==  (8)

The resonance frequency of the system fn is measured 
experimentally, allowing the use of equation (8) for the 
extraction of the damping ratio ζ. The damping (cm) and 
spring (km) coefficients can be calculated using equations (9) 
and (10) below by means of the modal mass mm. The exact 
value of the modal mass involved in the resonance mode 
studied can be estimated using a finite element method 
(FEM) numerical model. 

( )nmm fmc π2ζ2=  (9)

( )22 nmm fmk π=  (10)

V.  MODELING 
A characterization of the flow problem is needed before 

any model calculations of estimated damping coefficients and 
quality factors. The following issues should be considered: 
flow patterns, gas rarefaction, and contribution of 
compressibility and inertia. 

The flow pattern study can be performed by comparing the 
damping in two cases: the closed holes case and the closed 
borders case. If the study shows that one flow pattern 
dominates, the second pattern can be neglected from the 
analysis. The flow pattern can be characterized simply with 
the perforation ratio, which is the ratio between the 
perforated area and the area of the rigid, unperforated plate. 
Here, the perforation ratios vary a lot, indicating that the 
simpler "closed borders" case is not sufficient.  

The gas rarefaction becomes very important if the flow 
channels are narrow. The channel dimensions and 
atmospheric air pressure conditions indicate that the flow is 
in the slip flow regime, and simple flow rate coefficients are 
valid for the estimation of the contribution of the rarefied gas 
effects. For minimum gap height and hole dimension, the 
flow rate coefficients are Qch = 1 + 6Kch = 1.13 and Qtb = 1 + 
4Ktb  = 1.07, where Kch = λ/h and Ktb = λ/r = λ/(7.2µm/2), 
respectively. The mean free path of air in atmospheric 
pressure, λ = 65nm, is used here. The rarefied gas effects will 
decrease the damping coefficient by about 10%. 

The compressibility changes the quality factor of the 
resonators in two ways. First, the damping coefficient c is a 
frequency dependent function of viscous and compressible 
gas forces. Second, the compressibility of the gas introduces 
spring forces, in addition to the mechanical spring forces due 
to the resonator supports and bending of the plate. According 
to the mass-spring system model, the quality factor is Q = 
(keme)1/2/c, where ke is the effective spring coefficient 
containing the mechanical and gas spring components, and me 
is the effective mass. The contribution of the compressibility 
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to the damping coefficient c can be estimated with the 
squeeze number 

2
0

212
hp
L ωμσ =  (11)

where µ is the viscosity coefficient of air (18.5·10-6 Ns/m2), L 
is the characteristic length of the structure and p0 is the static 
pressure. In perforated structures the characteristic dimension 
is the smallest dimension, in practice, the interspace (e.g., s1 
in figs. 1(a) and 2). If σ << 1, the compressibility need not to 
be considered in the analysis. In the measured structures, the 
largest characteristic length that gives the largest squeeze 
number of 0.0078 at frequency 60kHz, is L = 10μm. 

The inertia of the gas is dependent on the characteristic 
radius r of the perforation and the density ρ of the gas. The 
measure for the inertia effect in channel flows is the 
Reynolds number Re = ρr2ω/µ. Here, the characteristic radius 
of the largest aperture (12.6 µm/2) gives Re = 1.0 at 60kHz. 

It is evident that the "viscous" low-frequency model is 
applicable also here. From our previous work [3], we select 
here model M3 [9]. Model equations are presented in the 
appendix, with the damping coefficient c in Eq (A1). The 
contribution of the gas damping of the springs is also 
included with an approximate equation. The lengths of the 
springs are much larger than their widths, justifying the use 
of a 1-dimensional damping model. For translational motion 
and without the border and rarefaction effects the damping 
coefficient is 33

b / hWLc b μ=  for each spring. Considering 
four springs, non-translational motion, border elongations, 
and slip conditions, the estimated damping coefficient due to 
the springs is 

)61(

)3.1(
2
4

ch
3

3
bb

b Kh

hWL
c

+

+
=

μ . (12)

VI.  RESULTS 

Some experimental FRF are presented in figure 4 as an 
example. Measured values of resonance frequency, half-
power bandwidth, damping coefficients and quality factors 
are listed in tables III and IV for the two topologies of test 
structures, respectively. The ratio between modal mass and 
total mass is also indicated for each specimen. The modal 
mass has been calculated with FEM analysis (figure 5). 
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Fig. 4. Experimental FRF for square dampers with 55μm nominal plate side  

and various holes sides (indicated above each curve). 

 

 
Fig. 5. FEM modal deformed shape of one gold damper (topology index 5). 

 

TABLE III 
EXPERIMENTAL RESULTS OF FIRST DAMPERS TOPOLOGY (SQUARE) 

Topol. 
index 

Resonance 
frequency 
fn [kHz] 

Half-power 
bandwidth 
Δf [kHz] 

Mass 
ratio 

Damping 
coefficient 

cm [Ns10-6/m]
Q-factor

1 71.04 0.7389 0.8515 2.341 96.14 
2 74.54 0.7143 0.8456 2.124 104.35 
3 76.67 0.4998 0.8402 1.492 153.40 
4 79.21 0.3984 0.8301 1.168 198.82 
5 58.16 0.6172 0.8939 3.143 94.23 
6 59.65 0.6103 0.8893 2.970 97.74 
7 61.57 0.5264 0.8831 2.483 116.96 
8 63.58 0.3888 0.8764 1.702 163.52 
9 47.78 0.8296 0.9229 6.218 57.59 

10 48.76 0.6486 0.9180 4.588 75.18 
11 50.69 0.5260 0.9129 3.542 96.37 
12 54.06 0.5487 0.9044 3.374 98.52 
13 41.27 0.8823 0.9403 9.030 46.77 
14 42.28 0.6353 0.9362 6.043 71.27 
15 43.80 0.5170 0.9326 5.155 84.72 
16 45.66 0.5607 0.9269 4.606 81.43 
17 34.17 0.7733 0.9561 10.796 44.19 
18 35.03 0.5770 0.9527 7.478 60.71 
19 36.61 0.5239 0.9501 6.433 69.88 
20 39.72 0.5541 0.9423 6.087 71.68 
21 29.82 0.8886 0.9660 15.966 33.56 
22 29.86 0.6305 0.9636 10.450 47.36 
23 31.00 0.5939 0.9604 9.292 52.20 
24 33.60 0.5833 0.9536 8.108 57.60 
25 22.04 0.7785 0.9773 19.334 28.31 
26 25.36 0.5913 0.9729 13.611 42.89 
27 26.28 0.5592 0.9709 12.163 47.00 
28 28.13 0.5584 0.9660 10.843 50.38 

  
TABLE IV 

EXPERIMENTAL RESULTS OF SECOND DAMPERS TOPOLOGY (RECTANGULAR) 

Topol.
index 

Resonance 
frequency 
fn [kHz] 

Half-power 
bandwidth 
Δf [kHz] 

Mass  
ratio 

Damping  
coefficient 

cm [Ns10-6/m]
Q-factor

29 20.25 1.1278 0.9578 28.678 17.95 
30 20.70 0.8652 0.9514 20.023 23.92 
31 20.98 0.5022 0.9438 10.949 41.78 
32 21.92 0.3847 0.9342 7.507 56.98 
33 17.00 1.2793 0.9763 52.135 13.29 
34 13.61 2.3788 0.9870 169.515 5.72 

  
 
Figure 6 compares the measured resonant frequencies for 

the square dampers with those predicted with the FEM 
simulation. As the figure shows, FEM results are very close 
to measured values.  
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Fig. 6. Experimental (continuous) and numerical (dashed) resonance 

frequencies of square dampers with different holes sides. 
 
Figure 7 shows the measured damping coefficients together 

with the results of the gas-damping model (thick black line) 
for all dampers as a function of the topology index given in 
tables I and II. Figure 8 shows the relative errors of the 
simulated damping coefficients.  

 
Fig. 7. Experimental damping coefficient (□) and results of the compact 
model (thick black line) of all measured dampers (square plates 1-28 cm, 

rectangular plates 29-34 cm/10). The thin blue line illustrates the effect of an 
additional loss mechanism with a constant quality factor of 250. 

 

 
Fig. 8. Relative errors of damping coefficients predicted by the model 

compared to the measured values and results of the compact model (thick 
black line). The thin blue line illustrates the relative error in case of 

additional losses (Qmat = 250). 
 
The damping coefficients given by the model are 

systematically lower than the measured values (except 

measurement 25). For each geometry, when the holes become 
larger, the drop of the damping coefficients predicted by the 
model are larger with respect to the values measured. This 
indicates that some other phenomenon is limiting the high Q-
values. This is illustrated in Fig. 7 with the thin blue line: an 
arbitrary additional loss mechanism of a quality factor of Qmat 
= 250 has been included in the damping model. The loss 
mechanism could be due to the material damping of gold. In 
spite of additional losses, the drop of the damping coefficient 
as a function of the hole size is significant. This is probably 
due to a constant Qmat, that does not take into account 
increased losses due to the less stiff plate (additional material 
losses) when the holes are large (the relative bending of the 
plate is 12.6% for 12.6μm holes and 5.5% for 7.2μm holes). 

 

VII.  CONCLUSIONS 

Measured damping coefficients of resonating gold 
structures could not be explained with a gas damping model 
alone. It is evident that the material losses of gold contribute 
here, making the measured damping coefficients larger than 
the predicted ones. To be able to extract the material damping 
coefficients, measurements in vacuum should be performed. 
We were not able to study the contribution of the springs to 
the damping force, nor the change in the mass ratio due to the 
mass of the springs. 

Since the quality factors are relatively low for small holes, 
the damping forces may change the mode shapes from the 
ones that have been analyzed here. Moreover, for small holes 
the "the closed holes" flow pattern is strong. In this case the 
damping pressure concentrates in the centre of the plate and 
reduces the bending of the plate. 
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Appendix: Damping model 
A model for a circular perforation cell is derived in [9], 

and the damping coefficient of a rectangular perforated plate 
is given in the paper.  
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Fig. 9. a) Structure of a perforation cell with a circular hole and b) the 
lumped flow resistances. 

 
The damping coefficient c is 
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The flow resistance of a single perforation cell is 
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where the equivalent radii of the circular perforation cell and 
the hole are 
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where the functions are 
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The flow rate coefficients and Knudsen numbers for the 
air gap and the holes are 
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