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An elliptic problem with a lower order term

having singular behaviour

Daniela Giachetti∗ and François Murat†

Abstract

We prove the existence of distributional solutions to an elliptic problem
with a lower order term which depends on the solution u in a singular
way and on its gradient Du with quadratic growth. The prototype of the
problem under consideration is

8

<

:

−∆u + λu = ±
|Du|2

|u|k
+ f in Ω,

u = 0 on ∂Ω,

where λ > 0, k > 0, f(x) ∈ L∞(Ω), f(x) ≥ 0 (and so u ≥ 0). If 0 < k < 1,
we prove the existence of a solution for both the “+” and the “−” signs,
while if k ≥ 1, we prove the existence of a solution for the “+” sign only.

1 Introduction

Second order quasilinear elliptic problems involving a first order term b(x, u,Du)
depending on the solution u and on its gradient Du with a quadratic growth
with respect to Du have been studied by many authors. Let us just quote [5],
[6], [7], [8], [9], [10], [11] and [15] and references therein.

The first order term b(x, u,Du) appears in a natural way when one considers
the Euler equations of functionals of the type

1

2

∫

Ω

a(x, u)|Du|2 −

∫

Ω

fu , (1.1)

which are perturbations of the classical energy functional

1

2

∫

Ω

|Du|2 −

∫

Ω

fu ,

∗Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università di
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since the Euler equation of (1.1) reads as

−div (a(x, u)Du) +
1

2

∂a

∂u
(x, u)|Du|2 = f in Ω.

More in general, the literature deals with the case where b(x, s, ξ) is a Carathéo-
dory function, which implies, in particular, that b(x, s, ξ) is continuous in the
s variable.

In contrast, in the present paper, we want to study the case where b(x, s, ξ)
is singular in s = 0. In particular, since we are interested in homogeneous
Dirichlet problems in a bounded open set Ω of R

N , the function b(x, u,Du) is
singular at each point of the boundary of Ω.

As far as we know, the only results in this case have been obtained in [1],
[2], [3] and [4]. In the first paper, the authors consider the equation

{

−∆u+ g(u)|Du|2 = f(x) in Ω,

u = 0 on ∂Ω,
(1.2)

with g ≥ 0, lim sups→0 sg(s) < +∞ and a datum f which is supposed to satisfy

f ∈ L∞(Ω), inf{f(x) : x ∈ ω} > 0 ∀ ω ⋐ Ω.

In [3], a slight variation on the hypothesis g ≥ 0 is considered. In [2] existence
and nonexistence results are given for the previous problem. In [4], the datum
f is assumed to belong to Lq(Ω) with q > N

2 and to satisfy f ≥ 0: existence
results of strictly positive solutions are then proved for

{

−α∆u+ 1
uk |Du|

2 = f(x) in Ω,

u = 0 on ∂Ω,

with α > 0 and 0 < k < 1 or α > 1 and k = 1.
The problem that we consider in the present paper is

{

−div(a(x, u,Du)) + λu = b(x, u,Du) + f(x) in Ω,

u = 0 on ∂Ω,
(1.3)

where the principal part −div(a(x, u,Du)) of the equation is a Leray-Lions
operator acting on H1

0 (Ω) and where λ > 0. The datum f is supposed to satisfy

f ∈ L∞(Ω), f(x) ≥ 0,

so that, in view the assumptions made on the term b(x, u,Du), it results that
u ≥ 0. As for the nonlinear term b(x, u,Du), we will assume that

|b(x, s, ξ)| ≤
C2

|s|k
|ξ|2;
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if 0 < k < 1, this will be the sole assumption on b, and in particular no sign
condition will be imposed to b. We make a more restrictive assumption if k ≥ 1,
assuming in this case that

C1

|s|k
|ξ|2 ≤ b(x, s, ξ) ≤

C2

|s|k
|ξ|2. (1.4)

In both cases, we will prove the existence of a problem (1.2), namely of a
function u which satisfies

u ∈ H1
loc(Ω) ∩ L∞(Ω) , u ≥ 0 ,

|Du|2

uk
χu>0 ∈ L1(Ω),

∫

Ω

a(x, u,Du)DΦ + λ

∫

Ω

uΦ =

∫

Ω

fΦ +

∫

Ω

b(x, u,Du)χu>0Φ ∀ Φ ∈ C∞
c (Ω) .

Moreover, when 0 < k < 1, the function u satisfies u ∈ H1
0 (Ω) (and not only

u ∈ H1
loc(Ω)), and satisfies the boundary condition u = 0 in the usual weak

sense, while in the case k ≥ 1, the function u satisfies ψ(u) ∈ H1
0 (Ω), where

ψ(s) =

∫ s

0

eγ(σ)dσ, γ(s) ∼ −
1

sk−1
when k > 1,

which also expresses the homogeneous Dirichlet boundary condition, but not in
the usual weak sense.

The fact that nonlinear functions of u appear in the formulation of the
solution of the problem is not really surprising. It is indeed well known that,
in this kind of problems, functions which are related to the behaviour of the
nonlinearity b(x, s, ξ) in the s variable play an essential role. In particular test
functions of the type eγ(u)ϕ(u) (with ϕ a convenient function) are used to get
a priori estimates.

Let us emphasize that there is therefore an important difference between the
case 0 < k < 1 and the case k ≥ 1. In particular, the stronger hypothesis (1.4)
made in the case k ≥ 1 is probably a crucial and not only a technical hypothesis.
Indeed it has recently been proved in [2] that there is no solution u ∈ H1

0 (Ω) of
(1.2) in the case g(u) = 1

uk and k ≥ 2, see Remark 2.6 below.
To conclude this introduction, let us note that, as far as we know, the case

where the datum f (and therefore the solution u) takes both positive and neg-
ative values is an open problem. Also, as far as we know, the problem with f

positive but where the singularity in u takes place in a point m > 0 (and is
therefore of the type 1

|s−m|k
and no more of the type 1

|s|k
) is an open problem,

which seems to exhibit difficulties similar to the previous one.
The plan of the present paper as follows: In Section 2 we give the precise

hypotheses and statements of our results. In Section 3 we define the approxi-
mating problems. In Section 4 we prove Theorem 2.2 (case 0 < k < 1), while
in Section 5 we prove Theorem 2.3 (case k ≥ 1). Let us explicitly note that the
first two steps are the same in the proofs of Theorems 2.2 and 2.3.
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2 Hypotheses and results

In the present paper we consider the problem
{

−div(a(x, u,Du)) + λu = b(x, u,Du) + f(x) in Ω,

u = 0 on ∂Ω,
(2.1)

where Ω is an open bounded set of R
N , where

λ > 0, (2.2)

f(x) ∈ L∞(Ω), f(x) ≥ 0, (2.3)

where the function
a(x, s, ξ) : Ω × R × R

N → R
N

is a Carathéodory function which satisfies for some α > 0

a(x, s, ξ)ξ ≥ α|ξ|2, (2.4)

|a(x, s, ξ)| ≤ ν|ξ|, (2.5)

(a(x, s, ξ)) − a(x, s, η))(ξ − η) > 0, ∀ ξ 6= η, (2.6)

a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ R
N ,

and where the function

b(x, s, ξ) : Ω × (R − {0})× R
N → R

is a Carathéodory function on Ω× (R − {0})×R
N , i.e. a function which is, for

every (s, ξ) ∈ (R−{0})×R
N , a measurable function x ∈ Ω → b(x, s, ξ) ∈ R and

which is, for almost every x ∈ Ω, a continuous function (s, ξ) ∈ (R−{0})×R
N →

→ b(x, s, ξ) ∈ R for almost every x ∈ Ω (see Remark 2.7 below concerning the
definition of b(x, s, ξ) when s = 0).

As far as the behaviour of b(x, s, ξ) near s = 0 (for x and ξ fixed) is concerned,
it is worth to distinguish two cases, the case 0 < k < 1 and the case k ≥ 1, that
present different features and that will be treated separately.

We will suppose either that






0 < k < 1,

|b(x, s, ξ)| ≤
C2

|s|k
|ξ|2, a.e. x ∈ Ω, ∀ s 6= 0, ∀ξ ∈ R

N ,
(2.7)

or that for some C1 > 0,






k ≥ 1,
C1

|s|k
|ξ|2 ≤ b(x, s, ξ) ≤

C2

|s|k
|ξ|2, a.e. x ∈ Ω, ∀ s 6= 0, ∀ξ ∈ R

N .
(2.8)

Note that (2.8) is much more restrictive than (2.7), since (2.8) is a growth
condition for b(x, s, ξ) both from above and from below, while (2.7) is only a
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growth condition from above. In particular, when (2.7) holds true, b(x, s, ξ)
is not assumed to have a specified sign, while b(x, s, ξ) has in particular to be
strictly positive (for ξ 6= 0) when (2.8) holds true.

Let M > 0 and β : (0,M ] → R be defined by

M =
‖f‖∞
λ

, β(s) =
1

sk
. (2.9)

In the case where 0 < k < 1, the function β belongs to L1(0,M), while in the
case where k ≥ 1, the function β is not integrable in 0.

Let us introduce the following function γ(s), defined for s ∈ (0,M ], which is
a primitive function of the function C2

α
β(s), defined by

γ(s) =



































C2

α

∫ s

0

1

σk
dσ =

C2

α

s1−k

1 − k
, if 0 < k < 1,

C2

α

∫ s

M

1

σ
dσ =

C2

α
log
( s

M

)

, if k = 1,

C2

α

∫ s

M

1

σk
dσ =

C2

α

1

k − 1

(

1

Mk−1
−

1

sk−1

)

, if k > 1 .

(2.10)

Let us finally define, for s ∈ [0,M ], the function ψ by

ψ(s) =

∫ s

0

eγ(σ)dσ, (2.11)

and, for m > 0 and s ∈ R, the function Sm by

Sm(s) =

{

m if s ≤ m,

s if s ≥ m.
(2.12)

Remark 2.1 Let us point out that, in the case where 0 < k < 1 (i.e. when (2.7)
holds), γ(s) is an increasing, non negative bounded function on [0,M ], while in
the case where k ≥ 1 (i.e. when (2.8) holds), γ(s) is an increasing, non positive
function on (0,M ] with lims→0+ γ(s) = −∞.

In both cases eγ(s) is a bounded function on [0,M ] and, therefore, the func-
tion ψ(s) is well defined by (2.11).

Our results are the following:

Theorem 2.2 Suppose that (2.2)-(2.7) hold true. Then there exists at least a

function u such that

u ∈ H1
0 (Ω) ∩ L∞(Ω), u ≥ 0, (2.13)

ψ(u) ∈ H1
0 (Ω),

|Du|2

uk
χu>0 ∈ L1(Ω), (2.14)

∫

Ω

a(x, u,Du)DΦ+λ

∫

Ω

uΦ=

∫

Ω

b(x, u,Du)χu>0Φ+

∫

Ω

fΦ, ∀Φ∈C∞
c (Ω). (2.15)
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Theorem 2.3 Suppose that (2.2)-(2.6) and (2.8) hold true. Then there exists

at least a function u such that

u ∈ H1
loc(Ω) ∩ L∞(Ω), u ≥ 0, (2.16)







ψ(u) ∈ H1
0 (Ω), Sm(u) ∈ H1(Ω), ∀m > 0,

|Du|2

uk
χu>0 ∈ L1

loc(Ω),
(2.17)

∫

Ω

a(x, u,Du)DΦ+λ

∫

Ω

uΦ=

∫

Ω

b(x, u,Du)χu>0Φ+

∫

Ω

fΦ, ∀Φ∈C∞
c (Ω). (2.18)

Remark 2.4 When u ≥ 0 and Sm(u) ∈ H1
loc(Ω) for every m > 0, the assertion

|Du|2

uk χu>0 is equivalent to the assertion |D(u1− k

2 )| ∈ L2
loc(Ω) for every k 6= 2,

and to |D log u| ∈ L2
loc(Ω) for k = 2.

Remark 2.5

Remark 2.6 Let us observe that in Theorem 2.2, where (2.7) is assumed to
hold true, we can consider a general term b(x, u,Du) without any sign condition,
while hypothesis (2.8), assumed in Theorem 2.3, obliges b(x, s, ξ) to be strictly
positive.

It is likely that the more restrictive condition (2.8) is necessary in order to
have the existence of a solution of (2.18) if k ≥ 2 . Indeed, it has been proved
in [2] that for λ > 0, f strictly positive on every compactly embedded subset of
Ω and k ≥ 2, there is no solution of the problem







u ∈ H1
0 (Ω), u ≥ 0,

−∆u+
1

uk
|Du|2 = f(x) in D′(Ω).

Remark 2.7 The first terms of the right-hand sides of equations (2.15) and
(2.18) involve the function b(x, u,Du)χu>0, which can also be written as
b̃(x, u,Du), where b̃(x, s, ξ) is the function defined on Ω × R × R

N (and no
more on Ω × (R − {0})× R

N ) by

b̃(x, s, ξ) =

{

b(x, s, ξ) if s 6= 0,

0 if s = 0 .

Note that b̃ is not a Carathéodory function since it is not continuous at the point
s = 0. Nevertheless, for u and v measurable functions with values in R and R

N ,
the function x ∈ Ω → b̃(x, u(x), v(x)) is measurable1 under the assumption
made on b(x, s, ξ) that b is a Carathéodory function on Ω × (R − {0}) × R

N .

1Consider indeed a sequence (un, vn) of step functions which converge almost everywhere
on Ω to (u, v) and which satisfy un(x) 6= 0 for every x and every n (it is always possible to build
such a sequence un from a given sequence of step functions ûn by defining the functions un

defined by un(x) = ûn(x) if ûn(x) 6= 0, un(x) = 1

n
if ûn(x) = 0). Then b̃(x, un(x), vn(x)) is a

measurable function and b̃(x, un(x), vn(x))χu>0 converges a.e. to b̃(x, u, v), which is therefore
a measurable function.
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We could therefore have replaced the first terms of the right-hand sides of
(2.15) and (2.18) by

∫

Ω

b̃(x, u,Du)Φ,

but we chose not to do so, in order to emphasize the fact that b̃ is not a
Carathéodory function.

On the other hand, in the case where hypothesis (2.8) holds, it is natural to

consider the function ˜̃
b(x, s, ξ) defined by

˜̃
b(x, s, ξ) =











b(x, s, ξ) if s 6= 0,

0 if s = 0, ξ = 0,

+∞ if s = 0, ξ 6= 0,

since the function ˜̃
b is continuous for every s ≥ 0 and every ξ ∈ R

N , except in
the point s = 0 and ξ = 0. With this definition, we have

˜̃
b(x, s, ξ) = b̃(x, s, ξ) + (+∞)χ{s=0}∩{ξ 6=0} .

But for u ∈ H1
loc(Ω), we have

˜̃
b(x, u,Du) = b̃(x, u,Du) a.e. in Ω,

since, when u ∈ H1
loc(Ω), one has Du = 0 almost everywhere on the set where

u = 0.
Therefore, since Theorem 2.3 asserts that u ∈ H1

loc(Ω), we could also have

replaced the integral
∫

Ω b(x, u,Du)ξu>0φ by the integral
∫

Ω
˜̃
b(x, u,Du)φ in the

first term of the right-hand side of (2.18).

3 Approximating problems

In order to prove Theorem 2.2 and 2.3, we introduce in this Section a sequence
of approximating problems.

For n ∈ N, we consider the problems

{

un ∈ H1
0 (Ω) ∩ L∞(Ω),

−div(a(x, un, Dun)) + λun = bn(x, un, Dun) + f(x) in D′(Ω),
(3.1)

where, for almost every x× Ω, for every s ∈ R and every ξ ∈ R
N , the function

bn : Ω × R × R
N → R is defined by

bn(x, s, ξ) =











b(x, s, ξ) if s >
1

n
,

b

(

x,
1

n
, ξ

)

if s ≤
1

n
.
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We also define, for s ∈ R,

βn(s) =











β(s) if s ≥
1

n
,

β

(

1

n

)

if s ≤
1

n
,

γn(s) =



















C2

α

∫ s

0

βn(σ)dσ if 0 < k < 1,

C2

α

∫ s

M

βn(σ)dσ if k ≥ 1,

(3.2)

ψn(s) =

∫ s

0

eγn(σ)dσ . (3.3)

In contrast with the function b, which is defined on Ω × (R − {0}) × R
N , the

function bn is a Carathéodory function defined on Ω × R × R
N and we have

|bn(x, s, ξ)| ≤ C2βn(s)|ξ|2, a.e. x ∈ Ω, ∀ (s, ξ) ∈ R × R
N , (3.4)

which implies in particular that

|bn(x, s, ξ)| ≤ C2β

(

1

n

)

|ξ|2, a.e. x ∈ Ω, ∀ (s, ξ) ∈ R × R
N . (3.5)

For n fixed, the function bn is now a classical Carathéodory function with
quadratic growth with respect to ξ, and since f ∈ L∞(Ω), it is well known
that problem (3.1) has at least one solution un (see e.g. [6]).

Moreover, since f ≥ 0, this solution satisfies un ≥ 0 a.e. in Ω. Indeed,
denoting for every s ∈ R

(s)+ = max{s, 0}, (s)− = max{−s, 0},

the result un ≥ 0 is easily obtained, in the case where b(x, s, ξ) ≥ 0 (which
implies bn(x, s, ξ) ≥ 0), by using −(un)− as test function in (3.1); in the
general case, the result un ≥ 0 is proved by using in (3.1) the test function
−(un)−e

−knun , with αkn ≥ C2β( 1
n
), since

kn a(x, un, Dun)Dune
−knun(un)− + bn(x, unDun)e−knun(un)− ≥ 0.

This proves the existence of a function un such that
{

un ∈ H1
0 (Ω) ∩ L∞(Ω), un ≥ 0,

−div(a(x, un, Dun)) + λun = bn(x, un, Dun) + f(x) in D′(Ω).
(3.6)

4 Proof of Theorem 2.2

We begin by proving Theorem 2.2 and divide the proof in several steps.
Let us explicitly note that the first two steps of the proof of Theorem 2.3

will be identical to the first two steps of the present proof.
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Step 1 Uniform estimate of (un)n∈N in L∞(Ω).
Let us use as test function in (3.1) the function vn = eγn(un)(un − M)+

which belongs to H1
0 (Ω) ∩ L∞(Ω) since un belongs to H1

0 (Ω) ∩ L∞(Ω), where
M is defined by (2.9). Using (2.4), (3.2) and (3.4) we get

α

∫

Ω

|D(un −M)+|
2eγn(un)+

+ C2

∫

Ω

|Dun|
2βn(un)eγn(un)(un −M)+ +

∫

Ω

λune
γn(un)(un −M)+ ≤

≤ C2

∫

Ω

βn(un)|Dun|
2eγn(un)(un −M)+ +

∫

Ω

feγn(un)(un −M)+ .

We simplify the two terms which are equal, forget the first (non negative)
term in the left-hand side and add to both sides −λM

∫

Ω e
γn(un)(un −M)+,

getting

λ

∫

Ω

(un −M)2+e
γn(un) ≤

∫

Ω

(f − λM)eγn(un)(un −M)+ ≤ 0,

which implies un ≤M . Therefore we have

0 ≤ un ≤M ∀n ∈ N . (4.1)

Step 2 Uniform estimate of (ψ(un))n∈N in H1
0 (Ω).

Let us take as test function in (3.1) the function vn = ψ(un)eγn(un) which
belongs to H1

0 (Ω). Using (2.4), (3.3) and (3.4), we get

α

∫

Ω

|Dun|
2e2γn(un)+C2

∫

Ω

|Dun|
2eγn(un)βn(un)ψn(un)+λ

∫

Ω

unψn(un)eγn(un)≤

≤ C2

∫

Ω

βn(un)|Dun|
2eγn(un)ψn(un) +

∫

Ω

feγn(un)ψ(un) .

Recalling that, by Step 1, feγn(un)ψn(un) is uniformly bounded in n, we get

α

∫

Ω

|Dψn(un)|2 = α

∫

Ω

|Dun|
2e2γn(un) ≤ cst ∀n ∈ N . (4.2)

Note that, in these first two steps, only the growth condition of hypothesis
(2.7) (and never the growth condition from below of hypothesis (2.8)) is used.
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Step 3 Uniform estimate of (un)n∈N inH1
0 (Ω), of (a(x, un, Dun))n∈N in L2(Ω)N

and of (bn(x, un, Dun))n∈N in L1(Ω).
In this step we use for the first time the fact that k < 1.
Since here 0 < k < 1, the functions γ and γn defined by (2.10) and (3.2) are

non negative. Therefore γn(un) ≥ 0 and (4.2) implies that
∫

Ω

|Dun|
2 ≤ cst ∀n ∈ N, (4.3)

and from (2.5) and (4.3) it follows that
∫

Ω

|a(x, un, Dun)|2 ≤ ν2

∫

Ω

|Dun|
2 ≤ cst ∀n ∈ N . (4.4)

We then use as test function in (3.1) the function vn = eγn(un) − 1 which
belongs to H1

0 (Ω). Since γn(un) ≥ 0, we have vn ≥ 0, and using (3.4) we get

C2

α

∫

Ω

a(x, un, Dun)Dun βn(un) eγn(un) + λ

∫

Ω

un(eγn(un) − 1) ≤

≤ C2

∫

Ω

βn(un)|Dun|
2(eγn(un) − 1) +

∫

Ω

f(eγn(un) − 1) .

Using (2.4), simplifying the two terms which are equal, then using the fact
the last term of the left-hand side is non negative, and the fact that eγn(un) is
uniformly bounded in n, we get

C2

∫

Ω

βn(un)|Dun|
2 ≤ cst ∀n ∈ N, (4.5)

which by (3.4) gives
∫

Ω

|bn(x, un, Dun)| ≤ cst ∀n ∈ N. (4.6)

Step 4 Weak convergence of (un)n∈N in H1
0 (Ω) and strong convergence of

(DSm(un))n∈N in (L2(Ω))N for any fixed m > 0.
By estimate (4.3), we deduce that, up to a subsequence, there exists a func-

tion u ∈ H1
0 (Ω) ∩ L∞(Ω) such that

un ⇀ u weakly inH1
0 (Ω) , un → u a.e. in Ω .

Therefore, for every m > 0,

Sm(un) ⇀ Sm(u) weakly in H1
0 (Ω), Sm(un) → Sm(u) a.e. in Ω

where Sm is defined by (2.12).
We want now to prove that

lim
n→+∞

∫

Ω

|D(Sm(un) − Sm(u))|2 = 0 ∀m > 0. (4.7)
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We first use as test function in (3.1) the function

vn = Φ((Sm(un) − Sm(u))+)eγn(un)−γn(Sm(un)),

where Φ(s) = eµs − 1, for some µ ≥ 2β(m). Using (3.2) and (3.4), we get
∫

Ω

a(x,un,Dun)D(Sm(un)−Sm(u))+Φ′((Sm(un)−Sm(u))+)eγn(un)−γn(Sm(un))+

+
C2

α

∫

Ω

a(x, un, Dun)DunΦ((Sm(un) − Sm(u))+)βn(un)eγn(un)−γn(Sm(un))+

−
C2

α

∫

Ω

a(x,un,Dun)DSm(un)Φ((Sm(un)−Sm(u))+)βn(Sm(un))eγn(un)−γn(Sm(un))+

+ λ

∫

Ω

unΦ((Sm(un) − Sm(u))+)eγn(un)−γn(Sm(un)) ≤

≤ C2

∫

Ω

βn(un)|Dun|
2Φ((Sm(un) − Sm(u))+)eγn(un)−γn(Sm(un))+

+

∫

Ω

fΦ((Sm(un) − Sm(u))+e
γn(un)−γn(Sm(un)).

Using (2.4), then simplifying the two terms which are equal and forgetting the
last term of the left-hand side, which is non negative, we get
∫

Ω

a(x,un,Dun)D(Sm(un)−Sm(u))+Φ′((Sm(un)−Sm(u))+)eγn(un)−γn(Sm(un))−

−
C2

α

∫

Ω

a(x,un,Dun)D(Sm(un))Φ((Sm(un)−Sm(u))+)βn(Sm(un))eγn(un)−γn(Sm(un))≤

≤

∫

Ω

fΦ((Sm(un) − Sm(u))+)eγn(un)−γn(Sm(un)) .

Due to (4.1) and to the almost everywhere convergence of (un)n∈N to u, we have
∫

Ω

fΦ((Sm(un) − Sm(u))+)eγn(un)−γn(Sm(un)) = ω(n),

where here and in the sequel ω(n) is a sequence of real numbers for which
limn→+∞ ω(n) = 0. Therefore

∫

Ω

a( )D( )+Φ′(( )+)eγn(un)−γn(Sm(un))+

−
C2

α

∫

Ω

a( )DSm(un)Φ(( )+)βn(Sm(un))eγn(un)−γn(Sm(un)) =

= I + II = ω(n) .

(4.8)

Let us split the term I as

I =

∫

un≤m

+

∫

un≥m

= I1 + I2 . (4.9)
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Now

I1 = 0

I2 =

∫

un≥m

[a(x,un,Dun)−a(x,un,DSm(u))]D(un−Sm(u))+Φ′((un−Sm(u))+)+

+

∫

un≥m

a(x, un, DSm(u))D(un − Sm(u))+Φ′((un − Sm(u))+) .

The last term goes to zero as n → +∞ by the fact that DSm(un) ⇀ DSm(u)
weakly in (L2(Ω))N while

a(x, un, DSm(u))Φ′((un − Sm(u))+)χun≥mχu>m → 0 strongly in (L2(Ω))N .

Therefore, by (4.8), we have
∫

un≥m

[a(x,un,Dun)−a(x,un,DSm(u))]D(un−Sm(u))+Φ′((un−Sm(u))+)+II=

= H + II = ω(n)
(4.10)

where we have defined

H=

∫

un≥m

[a(x,un,Dun) − a(x,un,DSm(u))]D(un−Sm(u))+Φ′((un−Sm(u))+).

(4.11)
We now estimate term II in (4.10)

II = −
C2

α

∫

un≥m

a(x, un, Dun)DunΦ((un − Sm(u))+)βn(un) =

= −
C2

α

∫

un≥m

[a(x, un, Dun) − a(x, un, DSm(u))]

[1ex] D(un − Sm(u))Φ((un − Sm(u))+)βn(un)+

[1ex] −
C2

α

∫

un≥m

a(x, un, DSm(u))D(un − Sm(u))Φ((un − Sm(u))+)βn(un) =

= −
C2

α

∫

un≥m

a(x, un, Dun)DSm(u)Φ((un − Sm(u))+)βn(un) =

= I1 + II2 + II3 .

(4.12)
We have

II1 ≥ −c̃(m)

∫

un≥m

[ ]D(un − Sm(u))Φ((un − Sm(u))+) ≥ −
1

2
H (4.13)
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where H is defined in (4.11) and

c̃(m) = max
s∈[m,k]

βn(s) .

Here we used the fact that we can choose λ sufficiently large that

c̃(m)Φ(s) ≤
1

2
Φ′(s) .

Moreover it is easy to check that

II2 = ω(n) (4.14)

|II3| ≤ c(m)

(
∫

Ω

Φ2((Sm(un) − Sm(u))+)|DSm(u)|2
)

1
2

= ω(n) (4.15)

(here we used estimate (4.4)).
By (4.10)-(4.15), by the fact that Φ′(s) ≥ 1 ∀s ≥ 0 and by [?], we have

lim
n→+∞

∫

Ω

|D(Sm(un) − Sm(u))+|
2 = 0 ∀m > 0 .

In a similar way, using as test function in (3.1)

v = Φ(−(Sm(un) − Sm(u))−)eγn(Sm(un))−γn(un)

we get

lim
n→+∞

∫

Ω

|D(Sm(un) − Sm(u))−|
2 = 0 ∀m > 0

which concludes the proof of Step 4.

Step 5 In this step we prove that for every C ⋐ Ω, we have

lim
m→0

∫

C∩{un≤m}

|bn(x, un, Dun)| = 0 uniformlyin n. (4.16)

Let us take as test function in (3.1)

vn = −(eγn(m)−γn(un) − 1)+ϕ
2 ϕ ∈ C∞

c (Ω) .

By (2.4)

− 2

∫

Ω

a(x, un, Dun)Dϕ (eγn(m)−γn(un) − 1)+ϕ+

+ C2

∫

{un≤m}

|Dun|
2ϕ2eγn(m)−γn(un)βn(un)−λ

∫

{un≤m}

un(eγn(m)−γn(un) − 1)ϕ2≤

≤

∫

{un≤m}

|bn(x, un, Dun)|(eγn(m)−γn(un)−1)ϕ2

where we used the fact that f(x) ≥ 0 and the test function is non positive.
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Using (2.7), cancelling similar terms, we have, by Holder inequality, observ-
ing that in this case γn(m) ≤ γ(m):

∫

{un≤m}

|bn(x, un, Dun)|ϕ2 ≤ λ

∫

{un≤m}

une
γ(m)ϕ2+

+ c

(

∫

{un≤m}

|a(x, un, Dun)|2ϕ2

)
1
2 (∫

Ω

|Dϕ|2ϕ2

)
1
2

= A+B .

(4.17)

We have
A ≤ cst m (4.18)

we are going to prove that we have also

B ≤ cst m. (4.19)

Indeed, to see the last inequality, it is sufficient to take −(un − m)−ϕ
2, ϕ ∈

C∞
c (Ω), as test function in (3.1):

∫

{un≤m}

a(x, un, Dun)Dunϕ
2−2

∫

{un≤m}

a(x, un, Dun)Dϕ (un−m)−ϕ ≤

≤ λ

∫

un≤m

un(m− un)ϕ2 +

∫

{un≤m}

|b(x, un, Dun)|(m− un)ϕ2+

+

∫

{un≤m}

f(un −m)ϕ2 .

(4.20)

The last integral is non positive, while the second one at the right-hand side is
bounded as

∫

{un≤m}

|b( )|(m− un)ϕ2 ≤ cst m,

taking into account (4.5).
The same holds true for the first integral in (4.20) by Step 1. Let us finally

estimate:
∫

{un≤m}

|a(x, un, Dun)| |ϕ| |Dϕ|(m− un) ≤

≤ m

(
∫

Ω

|Dϕ|2
)

1
2
(
∫

Ω

|a(x, un, Dun)|2ϕ2

)
1
2

≤

≤ cstm

by (4.4).
Therefore, by (4.20),

∫

{un≤m}
|Dun|

2ϕ2 ≤ cstm ∀n ∈ N which implies, by

(2.5)
∫

{un≤m}

|a(x, un, Dun)|2ϕ2 ≤ cstm ∀ n ∈ N (4.21)

and, consequently, also (4.19).
Therefore (4.17) and (4.19) imply (4.16), taking ϕ ≡ 1 on the compact set C.
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Step 6 Equintegrability of the sequence (bn(x, un, Dun))n∈N on C ⋐ Ω.
In this step we are going to prove that for any fixed C ⋐ Ω

∀ ε > 0, ∃ δε > 0 : ∀E ⊆ C, |E| < δε sup
n

∫

E

|bn(x, un, Dun)| < ε . (4.22)

Indeed
∫

E

|bn(x, un, Dun)| =

∫

E∩{un≤m}

|bn(x, un, Dun)|+

+

∫

E∩{un≥m}

|bn(x, un, Dun)| = I1 + I2 .

By (4.16) in Step 5, we have limm→0 I1 = 0 uniformly in n, so that

∀ ε > 0 ∃m0 : ∀m ≤ m0 I1 <
ε

2
∀n ∈ N .

Therefore, for such an m, due to the strong convergence of |DSm(un)| in L2(Ω)
(see Step 4), we can choose |E| so small that

I2 ≤ C2β(m)

∫

E

|DSm(un)|2 <
ε

2
∀n ∈ N .

Step 7 Passage to the limit.
By (4.22), taking into account the a.e. convergence of (Dun)n∈N and of

(un)n∈N (up to a subsequence), we have, for any compact set C ⋐ Ω

bn(x, un, Dun) → b(x, u,Du) strongly inL1(C ∩ {u > 0}) .

It remains to prove that

bn(x, un, Dun) → 0 strongly inL1(C ∩ {u = 0}) .

To this aim, for any ε > 0, we have
∫

C∩{u=0}

|bn(x, un, Dun)| =

=

∫

Cε∩{u=0}

|bn(x, un, Dun)| +

∫

(C−Cε)∩{u=0}

|bn(x, un, Dun)| = J1 + J2

where Cε is a subset of C (existing by Severivi-Egoroff theorem) such that
|Cε| < δε and in C − Cε the sequence (un)n∈N converges uniformly. Here δε is
the number defined in (4.22), and, in fact, by this condition it follows

J1 <
ε

2
∀n ∈ N,

while, for m sufficiently small, m = m(ε), by (4.16), we get

J2 ≤

∫

C∩{un≤m}

|bn(x, un, Dun)| <
ε

2
∀n ≥ n0(m(ε)) = n0(ε) .
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So that we proved

lim
n→+∞

bn(x, un, Dun) = 0 strongly inL1(C ∩ {u = 0}),

and we can pass to the limit in the term
∫

Ω bn(x, un, Dun)ϕ in the weak formu-
lation for (3.1).

As far as the term
∫

Ω
an(x, un, Dun)Dϕ, we can use (4.21) and Step 4 and

repeat exactly the same arguments used for the term bn(x, un, Dun), getting

an(x, un, Dun) → a(x, u,Du) strongly inL1(C ∩ {u > 0}),
an(x, un, Dun) → 0 strongly inL1(C ∩ {u = 0}) .

Therefore we obtained a distributional solution u for (2.1), in the sense that
(2.15) holds true.

5 Proof of Theorem 2.3

As observed at the beginning of Section 4, the first two steps of the proof of
Theorem 2.2 remain valid here, since these steps only the fact that |b(x, S, ξ)| ≤
C2

|sk|
|ξ|2. Let us emphasize that the main difference in the proof below consists

in the fact that we cannot achieve global estimates on the main terms, but only
local ones.

Step 3 Uniform L1
loc-estimate on (bn(x, un, Dun))n∈N.

Let η(x) ∈ C∞
c (Ω).

We use v = (eγn(un)−1)η2 ∈ H1
0 (Ω) as test function in (3.1). Let us explicitly

point out that we need to use a cut-off function η2(x), since, in this case, by
the definition (2.10) of γn(s), eγn(un) − 1 does not vanish on ∂Ω. Note also that
v ≤ 0.

C2

∫

Ω

η2|Dun|
2eγn(un)βn(un) ≤

≤ ν

∫

Ω

(1 − eγn(un))2|η| |Dη| |Dun| + λ

∫

Ω

un(1 − eγn(un))η2+

+

∫

Ω

bn(x, un, Dun)(eγn(un) − 1)η2 +

∫

Ω

f(eγn(un) − 1)η2 ≤

≤ 2ν

∫

Ω

|η| |Dη| |Dun| + λ

∫

Ω

unη
2+

+ C2

∫

Ω

βn(un)|Dun|
2eγn(un)η2 −

∫

Ω

bn(x, un, Dun)η2 .

(5.23)

This follows by the fact that
∫

Ω
f(eγn(un) − 1)η2 ≤ 0 since γn(un) ≤ 0.

We absorb the term C2

∫

Ω βn(un)|Dun|
2eγn(un)η2 by the term at the left-

hand side of (5.23).
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Moreover, for any ε > 0, there exists C(ε) such that

2ν

∫

Ω

|η| |Dη| |Dun| ≤ C(ε)

∫

Ω

|Dη|2+

+ ε

∫

Ω

η2|Dun|
2 ≤ C(ε)

∫

Ω

|Dη|2 + εMk

∫

Ω

η2βn(un)|Dun|
2 .

We have also, by Step 1,

λ

∫

Ω

unη
2 ≤ cst ∀n ∈ N .

Using the last two estimates in (5.23), recalling (2.8) and taking ε = C1

2Mk , we
get

∫

Ω

βn(un)|Dun|
2η2(x) ≤ cst ∀n ∈ N (5.24)

which, by (2.8) and the fact that βn(un) ≥ C > 0, gives also, for η ∈ C∞
c (Ω)

∫

Ω

bn(x, un, Dun)η2(x) ≤ cst ∀n ∈ N (5.25)

∫

Ω

|Dun|
2η2(x) ≤ cst ∀n ∈ N . (5.26)

Step 4 Weak convergence of (un)n∈N in H1
loc(Ω) and strong convergence of

(DSm(un))n∈N in (L2
loc(Ω))N for any m > 0.

By the previous steps we deduce that there exists u ∈ H1
loc(Ω)∩L∞(Ω) such

that, up to a subsequence,

un ⇀ u in H1
loc(Ω)

un → u a.e. in Ω .

Moreover, with minor modifications, we can prove, as in Step 4 of Theorem 2.2,
that

lim
n→+∞

∫

Ω

|D(Sm(un) − Sm(u))|2η2 = 0 ∀ η ∈ C∞
c (Ω) .

To prove this, it is sufficient to take the same test functions used in Theorem 2.2,
multiplied by a cut-off function η2 ∈ C∞

c (Ω) and use the local estimates available
from the previous Step 3 (estimates (5.25), (5.26)).

Step 5 For any compact set C ⋐ Ω:

lim
m→0

∫

C∩{un≤m}

bn(x, un, Dun) = 0 uniformly in n .

Note that we cannot use the same arguments of Step 5 in Theorem 2.2 since
now we do not have γ(s) ≥ 0 and bounded. We choose as test function in (3.1)

v = −(eγn(un)−γn(m) − 1)−ϕ
2 ∈ H1

0 (Ω), ϕ ∈ C∞
c (Ω) .
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By (2.4), noticing that v ≤ 0:

− 2

∫

Ω

a(x, un, Dun)ϕDϕ(eγn(un)−γn(m) − 1)−+

+ C2

∫

{un≤m}

|Dun|
2ϕ2eγn(un)−γn(m)βn(un) ≤

≤ λ

∫

{un≤m}

un(eγn(un)−γn(m) − 1)−ϕ
2+

−

∫

Ω

bn(x, un, Dun)(eγn(un)−γn(m) − 1)−ϕ
2 .

We use condition (2.8) to cancel similar terms and note that (eγn(un)−γn(m) −
1)− ≤ 1, so that, by Holder inequality, we get

∫

{un≤m}

bn(x, un, Dun)ϕ2 ≤ λ

∫

{un≤m}

unϕ
2+

+ 2

(

∫

{un≤m}

|an(x, un, Dun)|2ϕ2

)
1
2 (∫

Ω

ϕ2|Dϕ|2
)

1
2

≤ cstm.

The last inequality follows by (4.21) which still holds true.
This concludes Step 5.
The next Step 6 and Step 7 can be achieved in the same way of the corre-

sponding ones in Theorem 2.2, which concludes the proof.
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