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ABSTRACT

In this paper, heterogeneous clutter models are introduced

to describe Polarimetric Synthetic Aperture Radar (PolSAR)

data. Based on the Spherically Invariant Random Vectors

(SIRV) estimation scheme, the scalar texture parameter and

the normalized covariance matrix are extracted. If the texture

parameter is modeled by a Fisher PDF, the observed target

scattering vector follows a KummerU PDF. Then, this PDF is

implemented in a hierarchical segmentation algorithm. Seg-

mentation results are shown on high resolution PolSAR data

at L and X band.

Index Terms— Fisher PDF, KummerU PDF, PolSAR

data, Segmentation, Spherically Invariant Random Vectors.

1. INTRODUCTION

PolSAR images are generally modeled by a zero mean mul-

tivariate circular Gaussian distribution. Landcover backscat-

ter characteristics are assumed homogeneous over the target

area. However, thinner spatial features can be observed from

the high resolution of newly available spaceborne and air-

borne SAR images. In this case, heterogeneous clutter mod-

els should be used because each resolution cell contains only

a small number of scatterers.

In this paper, we propose to apply the SIRV estimation

scheme in a hierarchical segmentation algorithm. This algo-

rithm is based on the maximization of the SIRV log-likelihood

function.

Here, we propose to use the Fisher Probability Density

Function (PDF) to model the estimated texture parameter. For

a Fisher distributed texture, we prove that the target scatter-

ing vector k follows a KummerU PDF and we implement this

PDF in a hierarchical segmentation algorithm. Segmentation

results are shown on high resolution PolSAR data over the

Oberpfaffenhofen (L-band, ESAR) and Toulouse (X-band,

RAMSES) test-sites.

2. SIRV MODEL

2.1. Definition

With the new generation of airborne and spaceborne SAR

sensors, the number of scatterers present in each resolution

cell decreases considerably, homogeneous hypothesis of the

PolSAR clutter can be reconsidered. Heterogeneous clutter

models have therefore recently been studied.

In 1973, Kung Yao has first introduced the use of SIRV

and their applications to estimation and detection in commu-

nication [1]. From a PolSAR point of view, the target vector

k is defined as the product of a square root of a positive ran-

dom variable τ (representing the texture) with an independent

complex Gaussian vector z with zero mean and covariance

matrix [M ] = E{zzH} (representing the speckle) :

k =
√

τ z (1)

where the superscript H denotes the complex conjugate trans-

position and E{·} the mathematical expectation.

For a given covariance matrix [M ], the ML estimator of

the texture parameter τ is given by :

τ̂i =
k

H
i [M ]−1

ki

p
. (2)

where p is the dimension of the target scattering vector k (p =
3 for the reciprocal case).

The ML estimator of the normalized covariance matrix

under the deterministic texture case is the solution of the fol-

lowing recursive equation :

[M̂ ]FP = f([M̂ ]FP ) =
p

N

N
∑

i=1

kik
H
i

kH
i [M̂ ]−1

FP ki

. (3)

Pascal et al. have established the existence and the unique-

ness, up to a scalar factor, of the Fixed Point estimator of the

normalized covariance matrix, as well as the convergence of

the recursive algorithm whatever the initialization [2] [3]. In



this paper, the trace of the covariance matrix is normalized to

p the dimension of target scattering vector.

It is important to notice that in the SIRV definition, the

PDF of the texture random variable is not explicitly specified.

As a consequence, SIRVs describe a whole class of stochastic

processes. This class includes the conventional clutter models

having Gaussian, K-distributed, Rayleigh or Weibull PDFs.

2.2. Texture modeling

2.2.1. Definition

The texture parameter τ is the random power of the clut-

ter, it characterizes the randomness induced by variations in

the radar backscattering over different polarization channels.

This texture parameter can be rewritten as the product of a

normalized texture parameter ξ with the mean backscattered

power µ by :

τ = µ ξ (4)

For a segment S containing N pixels, the normalized texture

parameter for pixel i is defined by :

ξi =
τi

µ
=

τi

1

N

N
∑

j=1

τj

=
k

H
i [M ]−1

ki

1

N

N
∑

j=1

kH
j [M ]−1kj

(5)

2.2.2. Beta Prime PDF

Let ξ be a positive random variable distributed according to a

Beta Prime distribution. Its PDF is defined by two parameters

L and M as :

BP [ξ|L,M] =
Γ(L + M)

Γ(L)Γ(M)

ξL−1

(1 + ξ)
L+M

(6)

If ξ follows a Beta Prime PDF with L and M parameters,

the texture parameter τ is Fisher distributed with m =
µL
M , L

and M parameters.

2.2.3. Fisher PDF

The Fisher PDF is the Pearson type VI distribution, it is

defined by three parameters as the Mellin convolution of a

Gamma PDF by an Inverse Gamma PDF by [4] :

F [τ |m,L,M] = G [m,L] ⋆̂ GI [1,M]

=
Γ(L + M)

Γ(L)Γ(M)

L
Mm

( Lτ

Mm

)L−1

(

1 +
Lτ

Mm

)L+M

(7)

Fig. 1. κ2/κ3 plan for an urban area over the Oberpfaffen-

hofen test-site (ESAR, L-band).

2.2.4. Parameter estimation

As the Fisher PDF is linked with second kind statistics, recent

works have proposed to estimate Fisher parameters with the

log-cumulants method. Nevertheless, they are not ML estima-

tors. By working on the normalized texture parameter ξ, ML

Beta Prime estimators can be computed numerically. Then,

according to relation shown in section 2.2.2, ML Fisher esti-

mators are obtained.

2.2.5. Benefit of Fisher PDF

An urban area (80 × 35 pixels) from the L-band ESAR data

over the Oberpfaffenhofen test-site has been extracted. Then,

the covariance matrix [M ]FP and the texture parameter τ are

estimated according to Eq.2 and Eq. 3. To see the benefit of

Fisher PDF to model PolSAR clutter, the κ2/κ3 plan has been

plotted on Fig. 1. It shows the evolution of the second log-

cumulant versus the third log-cumulant. In this plan, Gamma

and Inverse Gamma PDF are respectively represented by the

blue and red line. Fisher PDF cover all the space between the

blue and red line.

This example shows that Fisher PDF are well adapted to

model PolSAR clutter.

2.3. Target scattering PDF for a Fisher distributed clutter

For a Fisher distributed clutter, one can prove that the target

scattering vector PDF can be expressed with the density gen-

erator function hp

(

k
H [M ]

−1
k

)

by [5] :

pk(k|[M ],L,M, m) =
1

πp|[M ]|hp

(

k
H [M ]

−1
k

)

(8)

where the density generator function hp (·) is defined by [6] :

hp

“

k
H [M ]−1

k

”

=
Γ(L + M)

Γ(L)Γ(M)

„

L

Mm

«p

Γ(p + M)U (a; b; z)

(9)



with a = p + M, b = 1 + p −L and z =
L

Mm
k

H [M ]
−1

k.

| · | and U (·; ·; ·) denotes respectively the determinant op-

erator and the confluent hypergeometric function of the sec-

ond kind (KummerU).

In the following, this PDF is named the KummerU PDF.

2.4. Maximum Likelihood (ML) estimator

The exact ML estimator of the normalized covariance matrix

depends on the texture PDF, its expression is linked with the

density generator function by :

[M̂ML] =
1

N

N
∑

i=1

hp+1

(

k
H
i [M̂ML]

−1

ki

)

hp

(

kH
i [M̂ML]

−1

ki

) kik
H
i (10)

Chitour and Pascal have proved that Eq. 10 admits a

unique solution and that its corresponding iterative algorithm

converges to the Fixed Point solution for every admissible

initial condition [7].
For a Fisher distributed clutter, one can replace the density

generator function by its expression given in Eq. 9. It yields :

[M̂ML] =
p + M

N

„

L

Mm

«

×
N
X

i=1

U

„

p + 1 + M; 2 + p − L;
L

Mm
k

H
i [M̂ML]

−1

ki

«

U

„

p + M; 1 + p − L;
L

Mm
kH

i [M̂ML]
−1

ki

« kik
H
i

(11)

3. HIERARCHICAL SEGMENTATION

3.1. Principle

In this paper, the hierarchical segmentation algorithm pro-

posed by Beaulieu and Touzi [8] is adapted to the KummerU

distributed target scattering vector. The segmentation process

can be divided into three steps :

1. Definition of an initial partition.

2. For each 4-connex segments pair, the Stepwise Crite-

rion (SC) is computed. Then, the two segments which

minimize the criterion are found and merged.

3. Stop if the maximum number of merges is reached, oth-

erwise go to step 2.

3.2. Stepwise Criterion

The criterion used in the hierarchical algorithm is based on the

log-likelihood function. The hierarchical segmentation algo-

rithm merges the two adjacent segments Si and Sj which min-

imizes the loss of likelihood. The stepwise criterion (SCi,j)

can be expressed as [8]:

SCi,j = MLL(Si) + MLL(Sj) − MLL(Si ∪ Sj) (12)

where MLL(·) denotes the segment maximum log-likelihood

function.

For the KummerU PDF, the maximum log-likelihood

function for segment S is derived from Eq. 8. The log-

likelihood function can be rewritten as :

MLL(S) = − pN ln(π) − N ln
n

|[M̂ML]|
o

+ N ln

(

Γ(L̂ + M̂) Γ(p + M̂)

Γ(L̂) Γ(M̂)

)

+ pN ln

(

L̂

M̂m̂

)

+
X

Zk∈S

ln

(

U

 

p + M̂; 1 + p − L̂;
L̂

M̂m̂
k

H
i [M̂ML]

−1

ki

!)

(13)

where L̂, M̂ and m̂ are respectively the ML estimators of

the Fisher parameters L, M and m. [M̂ML] is the exact ML

estimator of [MML] for the segment S (Eq. 10).

3.3. Segmentation results

The hierarchical segmentation algorithm proposed by Beaulieu

and Touzi [8] has been implemented for the Gaussian and

KummerU criterion (Eq. 13) with high resolution airborne

SLC images.

3.3.1. On high resolution L-band data

In this part, a forested area (500×400 pixels) over the Oberp-

faffenhofen test-site (ESAR, L-band) has been segmented.

The initial partition is composed of 2000 segments where

each segment is a bloc of 10 × 10 pixels. Segmentation re-

sults with Gaussian and KummerU criterion are respectively

shown on Fig. 2(a) and Fig. 2(b).

For a fixed number of segments in the final partition, the

Gaussian criterion gives an over-segmented partition in tex-

tured scenes as forested areas. The use of a texture crite-

rion allows to accurately segment heterogeneous scenes as

forested areas.

3.3.2. On very high resolution X-band data

Fig. 3(a) and Fig. 3(b) show respectively segmentation re-

sults over the Toulouse test-site with the Gaussian and Kum-

merU criterion. This data-set has been acquired by the X-

band RAMSES sensor with a resolution of 0.57m. The seg-

mentation algorithm is initialized with a partition where each

segment is a bloc of 10 × 10 pixels.

This example shows that for high-resolution data, hetero-

geneous clutter models should be use to accurately segment

PolSAR data.

4. CONCLUSION

In this paper, authors have proposed to apply the SIRV esti-

mation scheme to derive the covariance matrix and the tex-



(a) (b)

Fig. 2. Segmentation results for the L-band ESAR data over

the Oberpfaffenhofen test-site (500 × 400 pixels). Partition

containing 30 segments over a colored composition of the tar-

get vector [k]1-[k]3-[k]2 : (a) Gaussian criterion, (b) Kum-

merU criterion

ture parameter. By rewriting the texture variable as the prod-

uct of a mean backscattered power µ with a normalized tex-

ture component ξ, the Beta Prime PDF has been introduced

to characterize the ξ variable. In this case, the texture pa-

rameter τ is Fisher distributed and the target scattering vector

follows a KummerU PDF. Then, this distribution has been

implemented in a ML hierarchical segmentation algorithm.

Segmentation results on high resolution PolSAR data have

shown that the SIRV estimation scheme combined with the

KummerU PDF provide the best performances compared to

the classical Gaussian hypothesis.
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espèce: applications des Logs-moments et des Logs-cumulants
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