
HAL Id: hal-00398830
https://hal.science/hal-00398830v1

Submitted on 25 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An extensible framework for fast prototyping of
multiprocessor dataflow applications

Jonathan Piat, Mickaël Raulet, Maxime Pelcat, Pengcheng Mu, Olivier
Déforges

To cite this version:
Jonathan Piat, Mickaël Raulet, Maxime Pelcat, Pengcheng Mu, Olivier Déforges. An extensible
framework for fast prototyping of multiprocessor dataflow applications. Design and Test Workshop,
2008. IDT 2008. 3rd International, 2008, Tunisia. pp.215–220, �10.1109/IDT.2008.4802500�. �hal-
00398830�

https://hal.science/hal-00398830v1
https://hal.archives-ouvertes.fr


AN EXTENSIBLE FRAMEWORK FOR FAST
PROTOTYPING OF MULTIPROCESSOR

DATAFLOW APPLICATIONS
Jonathan Piat, Mickaël Raulet, Maxime Pelcat, Pengcheng Mu, Olivier Déforges

IETR/INSA, UMR CNRS 6164
Image and Remote Sensing laboratory

F-35043 Rennes, France
firstname.lastname@insa-rennes.fr

Abstract—As the number of cores continues to grow in
both digital signal and general purpose processors, tools which
perform automatic scheduling from model-based designs are
of increasing interest. CAL is a new actor/dataflow oriented
language that aims at helping the programmer to express the
concurrency and parallelism that are very important aspects
of embedded system design as we enter in the multicore era.
The design framework is composed by the OpenDF simulation
platform, by Cal2C and CAL2HDL code generators and by a
multiprocessor scheduling tool called PREESM. Yet in this paper,
a subset of CAL is used to describe the application such that
the application is SDF. This SDF graph is one starting point
of the workflow of PREESM (composed of several plug-ins)
to be prototyped/distributed/scheduled over an IP-XACT multi-
processor platform description. The PREESM automatic schedul-
ing consists in statically distributing the tasks that constitute an
application between available cores in a multi-core architecture
in order to minimize the final latency. This problem has been
proven to be NP-complete. An IDCT 2D example will be used
as test case of the full framework.

I. INTRODUCTION

As applications such as video coding/decoding or digital
communications with advanced features (MIMO, Beamform-
ing, Equalization, etc...) are becoming more complex, the need
for computational power is rapidly increasing. In order to
satisfy software requirements, the use of parallel architecture
is a common answer. To reduce the software development
effort for such architectures, it is necessary to provide the
programmer with efficient tools capable of automatically
solving communications and software partitioning/scheduling
concerns.

A methodology called Algorithm-Architecture Matching
(AAM) guides the software designer through a design and
development process, from application specification to code
generation. This methodology uses a graph based representa-
tion of the application, following the Synchronous Data Flow
graph (SDF) semantic, which is well-suited for signal-oriented
applications and is supported by several graph transformations
and scheduling methods. This graph is transformed using
typical SDF transformation methods and partitioned on a given
multiprocessor architecture. A schedule of the partitioned
graph for each processor of the architecture is generated.

In order to be able to generate a multi-processor implemen-
tation from a CAL network we have chosen to restrict the
CAL expressiveness in order to get a statically schedulable
CAL that can be transformed and processed using the AAM
methodology in PREESM tool.

Section II presents the dataflow networks concepts fol-
lowed by the CAL actor language in section III. Section
IV will explain the CAL supporting tools. Then we will
explain the synchronous dataflow graph in section V that our
proposed framework takes as an input (section VI). Section
VII describes the different plug-in component used by the
framework. In section VIII IDCT study case is taken as an
example for the proposed method followed by the conclusion
IX.

II. DATAFLOW NETWORKS

A dataflow program is defined as a directed graph, where
the nodes represent computational units and the arcs represent
the flow of data. The lucidness of dataflow graphs can be
deceptive. To be able to reason about the effect of the
computations performed, the dataflow graph has to be put
in the context of a computation model, which defines the
semantics of the communication between the nodes. There
exists a variety of such models, which makes different trade-
offs between expressiveness and analyzability. Of particular
interest are Kahn process networks [1], and synchronous
dataflow networks [2]. The latter is more constrained and
allows for more compile-time analysis for calculation of static
schedules with bounded memory. It has been shown that
dataflow models offer a representation that can effectively
support the tasks of parallelization [2] -thus providing a
practical means of supporting multiprocessor systems. A re-
stricted form of dataflow, known as synchronous dataflow, can
be synthesized particularly efficiently, since the computations
can be scheduled statically. More general forms of dataflow
programs are usually scheduled dynamically, which induces a
run-time overhead.

The fundamental entity of this model is an actor [3], also
called dataflow actor with firing. Dataflow graphs, called net-
works, are created by means of connecting the input and output



ports of the actors. Ports are also provided by networks, which
means that networks can nested in a hierarchical fashion. Data
is produced and consumed as tokens, which could correspond
to samples or have a more complex structure. This model has
the following properties:

• Strong encapsulation:
Every actor completely encapsulates its own state to-
gether with the code that operates on it. No two actors
ever share state, which means that an actor cannot directly
read or modify another actor’s state variables. The only
way actors can interact is through streams, directed
connections they use to communicate data tokens.

• Explicit concurrency:
A system of actors connected by streams is explicitly con-
current, since every single actor operates independently
from other actors in the system, subject to dependencies
established by the streams mediating their interactions.

• Asynchrony untimedness:
The description of the actors as well as their interaction
does not contain specific real-time constraints (although,
of course, implementations may).

III. THE CAL ACTOR LANGUAGE

CAL [4] is a domain-specific language that provides useful
abstractions for dataflow programming with actors. CAL has
been used in a wide variety of applications and has been
compiled to hardware and software implementations [5], [6],
and work on mixed HW/SW implementations is under way.

CAL is particularly well suited for describing signal pro-
cessing systems which are intrinsically data-driven. It is not
by chance that CAL language has been chosen by the ISO/IEC
standardization organization in the new MPEG standard called
”Reconfigurable Video Coding (RVC)” (ISO/IEC 23001-4 and
23002-4). RVC is a framework allowing users to define a
multitude of different codecs, by combining together actors
(called coding tools in RVC) from the MPEG standard library
written in CAL, that contains video technology from all
existing MPEG video past standards (i.e. MPEG-2, MPEG-
4, etc. ) . The reader can refer to [7] for more information
about RVC. CAL is used to provide the reference software for
all coding tools of the entire library. The essential elements
of the RVC framework, besides the tool library, include a
Decoder Description expressed in an XML dialect, which
describes the architecture of the decoder by specifying the
connections between the different actors, a Bitstream Schema
which describes the structure, the organization of the data in
the bitstream and implicitly defines the parser needed for the
specific decoder reconfiguration.

IV. CAL SUPPORT TOOLS

CAL is supported by a portable interpreter infrastructure
that can simulate a hierarchical network of actors. This in-
terpreter was first used in the Moses project. Moses features
a graphical network editor, and allows the user to monitor
actors execution (actor state and token values). The project

being no longer maintained, it has been superseded by the
Open Dataflow environment (OpenDF for short). Contrarily to
Moses, this project does not yet provide a network graphical
editor.

OpenDF is also a compilation framework. Today there exists
a backend for generation of HDL(VHDL/Verilog) [5], and
another backend for that generates C for integration with the
SystemC tool chain [6]. A third backend targeting ARM11
and embedded C is under development [8] as part of the EU
project ACTORS . It is also possible to simulate CAL models
in the Ptolemy II environment.

V. SYNCHRONOUS DATA FLOW GRAPH

A. Principles

A Synchronous Data Flow graph is a finite directed,
weighted graph G =< V, E, d, t, p, c > where :

• V is the vertex set of nodes which computes an input
data stream and outputs its results.

• E ⊆ V × V is the edge set, representing channels which
carry data streams.

• d : E → N ∪ {0} is a function with d(e) the number of
initial tokens on an edge e.

• t : V → N is a function with t(v) representing the
execution time of node v.

• p : E → N is a function with p(e) representing the
number of data tokens produced at e’s source to be carried
by e.

• c : E → N is a function with c(e) representing the
number of data tokens consumed from e by e’s sink node.

The topology matrix is the matrix of size dEe × dV e, in
which each row corresponds to an edge e in the graph and
each column corresponds to a node v. Each coefficient (i, j) of
the matrix is positive and equal to N if N tokens are produced
by the jth node on the ith edge. (i, j) coefficients are negative
and equal to N if N tokens are consumed by the jth node on
the ith edge.

It was proved in [9] that a statical schedule for Graph G can
be computed only if its topology matrix’s rank is one less than
the number of nodes in G. This necessary condition means
that there is a Basic Repetition Vector (BRV) q of size dV e
in which each coefficient is the repetition factor for the jth

vertex of the graph. In the example described in the Figure 1
the given SDF graph is schedulable as the matrix’s rank is 3
and the number of vertices 4. SDF graph representation allows
use of hierarchy, meaning that for v = G, a vertex may be
described as a graph. A vertex with no hierarchy is called an
actor.

B. Statically Schedulable CAL

In order to have a CAL description which is statically
schedulable, user must respect restrictive programming rules.
Those rules ensure that every action of single actor consume
and produce the same amount of tokens on all the actor
interfaces. This rule ensures that producing and consuming



op1
3

3
op2

2 2

op3

2 2

op4
4

4

(
3 −2 0 0
3 0 −2 0
0 2 0 −4
0 0 2 −4

)
Fig. 1. SDF and topology matrix

rates of actors are known at analysis time. This allows per-
forming balance equation. Thus, actor firing pattern can be
extracted and SDF graph can easily be extracted from the
network and CAL actors. The structured of the SDF graph
is extracted from the XML description of the network (XDF)
and the patterns from CAL actors give the token production
and consumption rates necessary for the SDF graph. The SDF
graph is the skeleton that will give us the multi-processor
schedule automatically computed by PREESM. An actor is
composed of actions that fulfill the skeleton and are compiled
by the code generators (Cal2C, Cal2HDL and Cal2ARM)
dependent of the targeted processor.

O penD F sim ulation

C al 2  
C  

X D F  S D F

C A L acto rsN etw ork  (X D F)

C a l 2  
A R M  

P R EE S M

U ser 
de fined

IP -X A C T m ultip rocessor p la tfo rm

C A LX D F

S D F

C V H D L A R M

S chedule  1 ..n

C a l 2  
H D L 

O penD F sim ulation

C al 2  
C  

X D F  S D F

C A L acto rsN etw ork  (X D F)

C a l 2  
A R M  

P R EE S M

U ser 
de fined

IP -X A C T m ultip rocessor p la tfo rm

C A LX D F

S D F

C V H D L A R M

S chedule  1 ..n

C a l 2  
H D L 

Fig. 2. Workflow from static schedulable CAL

C. PREESM WORKFLOW

VI. PROPOSED FRAMEWORK

A. Framework overview

The proposed framework goes from graph specification
using a graph Editor (Graphiti ) to code generation using
PREESM and a library of proposed plug-in. The Graphiti
graph editor allows the user to design application graph using
a Synchronous Data Flow (SDF) semantic and/or the CAL
network semantic (XDF) (Figure 2). The design can be hierar-
chical when a vertex in the graph has a graph representation for
its behaviour, or atomic when the vertex behaviour is described
using programming language as C or CAL. Graphiti can also
edit architectures described using IP-XACT language, an IEEE
standard from the SPIRIT consortium.

Synchronous Data Flow graphs can then be processed
using the PREESM Eclipse plug-in which computes different

transformation on the graph and then can match the graph
with a given hardware architecture using different mapping
algorithms. At the end of the process, the so mapped appli-
cation is translated into C code, which can be compiled and
executed on the hardware target.

code

S cenario  ed ito r

G an tt chart

g raph transfo rm a tions

S D F  D A G

S chedule r

C ode genera tion

A lgorithm ed ito rA rch itec tu re  ed ito r

D A G  +  im p lem enta tion
in fo rm ation

IP -X A C T

code

S cenario  ed ito r

G an tt chart

g raph transfo rm a tions

S D F  D A G

S chedule r

C ode genera tion

A lgorithm ed ito rA rch itec tu re  ed ito r

S D F

D A G

D A G  +  im p lem enta tion
in fo rm ation

S cenarioIP -X A C T

S D F

Fig. 3. From SDF and IP-XACT descriptions to code

All the transformation, mapping, code generation algorithms
are designed as PREESM plug-ins, which allow user to ex-
tend the transformation, mapping, code generation algorithms
library. The process, which goes from graph transformation to
code generation, is driven by a Workflow graph (also edited
in Graphiti) that specifies the order in which the PREESM
plug-ins are to be executed and all the data exchange between
the plug-ins (Figure 3).

A PREESM workflow is designed as a directed graph with
input nodes that are the application graph, the architecture
graph, and a scenario. The application graph is the SDF graph
designed in Graphiti that describes the application behavior.
This graph can be transformed using the transformation plug-
in that are designed to take a SDF graph as an input and output
a transformed SDF graph. SDF graph can also be mapped
using the mapping plug-in that takes as input the architecture,
the SDF graph and the scenario.

The architecture is an undirected graph in which each node
represents an operator or a communication media. Operators
can be connected together through communication medium
using their available interfaces. The scenario specifies for
SDF graph nodes, the execution time on different kinds of
operators that could be instantiated in the architecture graph.
The mapping plug-in outputs a Directed Acyclic Graph (DAG)
in which nodes have a property that gives the operator in which
its computation must be implemented.

This DAG also has send and receive nodes that represent



a transfer between two different operators and for which the
communication medium to use is specified.

In order to view the DAG/SDF graph at different steps of the
workflow user can place exporter plug-in instance that output
the graph in a file in a given format. DAG can then be used to
generate code using the code generation plug-in that takes a
DAG an input and outputs a set of files (one for each operator)
to be compiled for running on a target.

VII. EXISTING PLUG-INS
A. Graph Transformation

Graph transformation plug-in provides algorithms for par-
allelism extraction in the graph and complexity minimizing.

• Hierarchy Flattening:
A representation of the application using different grain
levels (hierarchical representation) may simplify the
user’s view and allow analysis of the application at differ-
ent levels. Certain analyses and transformations need to
have a fine grain representation of the algorithm in order
to extract parallelism or optimize memory. The extraction
of the finest grain representation from a hierarchical
graph is performed by flattening the hierarchy. After the
flattening operation, the graph is composed of actors
performing the same algorithm as the hierarchical SDF
graph.

• Homogeneous SDF graph:
Another common operation computed on SDF graphs
is repetition flattening. Repetition flattening is used to
extract the HSDF (Homogeneous SDF) representation
of the graph in which producing and consuming rates
are the same on each edge (Figure 4). This operation
creates copies of each vertex to satisfy the repetition
pattern of vertices at the top hierarchy level and then links
dependencies between vertices. If there is no delay on the
edge, the first consumer vertex consumes the first token
produced. If there are N delays on the edge, the N delays
are consumed by the N first copies of the vertex after
which the vertices then consume the produced tokens.

• Internalization:
Internalization defined in [10] is a process that tends
to minimize the application complexity by clustering
vertices of the graph. The clustering is done by analyzing
the critical path of the SDF graph to determine which
vertices can be computed in another cluster considering
a cost function.

• Loop Pipelining: The loop pipelining process as de-
scribed in [11] tries to extract a pipeline from the potential
loops of the graph. It then constructs a cluster around
the pipelines stages. The algorithm tends to reduce the
complexity of the applications graph and to maximize
the loops iteration domain.

B. Mapper Scheduler
Scheduling algorithms have been the subject of intense

study for the past few years. In his PhD thesis [12], Y. K.

op1
3

op2
1

op1
1

1

1

op2
1

op2

1

op2

1

Fig. 4. SDF to HSDF

Kwok presents high-performance algorithms focusing on their
complexity and on the analysis capacity to achieve the smallest
latency. The model he used to represent the architecture
behavior is a basic one: the architecture is homogeneous
and communications have a given fixed cost for the transfer
between cores. In [13], O. Sinnen analyses the models that
could be used to accurately simulate implementation during
scheduling. He introduces the idea of routes and edge schedul-
ing to model realistic systems.

Task S chedulin g

Arch itec ture  
B enchm ark 

C om pu ter (AB C )Task schedu le

IP -X AC T  +  S cen ario

num ber o f cores

E dge S chedulin g

T im e K eeper

R outer

E dge
schedule

Task S chedulin g

Arch itec ture  
B enchm ark 

C om pu ter (AB C )Task schedu le

cost

D AG IP -X AC T  +  S cen ario

num ber o f cores

E dge S chedulin g

T im e K eeper

R outer
Task schedu le

E dge
schedule

Fig. 5. Scheduler module structure

The PREESM scheduler is divided in three sub-modules
which share minimal interfaces: the task scheduling, the edge
scheduling and the Architecture Benchmark Computer (ABC)
sub-modules (Figure 5). The task scheduling sub-module de-
termines a scheduling solution of the application tasks mapped
onto the architecture cores and then questions the ABC sub-
module to evaluate the cost of the proposed solution. The
advantage of this approach is that any task scheduling heuristic
may be combined with any ABC model, leading to many
different scheduling possibilities.

The interface offered by the ABC to the task scheduling
sub-module is minimal: it gives this sub-module the number
of available cores, receives an implementation description and
returns costs (infinite if the implementation is impossible).
The time keeper calculates and stores timings (such as ASAP,
ALAP and so on [12]) for the tasks when necessary for
the ABC. This interface contains four methods which return



costs: getTimeCost(task), getTimeCost(transfer), getTime-
Cost(core), and getCost(implementation).

O n ly la tenc y-driven

L ist 
S chedu lin gF AS TG enetic

a lgorithm s

AC C U R AT E

F AS T

heuris tics AB C

im p lem en tation

cost

D AG IP -X AC T

S chedu ler

O n ly la tenc y-driven

L ist 
S chedu lin gF AS TG enetic

a lgorithm s

AC C U R AT E

F AS T

heuris tics AB C

im p lem en tation

cost

D AG IP -X AC T

S chedu ler

L ist 
S chedu lin gF AS TG enetic

a lgorithm s

AC C U R AT E

F AS T

heuris tics AB C

im p lem en tation

cost

D AG IP -X AC T

S chedu ler

Latency/cadence/memory driven

Fig. 6. Switchable scheduling algorithms

The ABC needs to schedule the edges in order to calculate
the implementation cost. However, it is not designed to make
any implementation choice, thus delegates this task to the edge
scheduling sub-module. The router in the edge scheduling
sub-module finds potential routes between the available cores.
The choice of module structure (Figure 6) was motivated
by the behavioral commonality of the majority of scheduling
algorithms.

Three algorithms are currently coded; all of which are
defined in [12]:

• A list-scheduling algorithm schedules the tasks in the
order of a list constructed by calculating a critical path.
Once a mapping choice has been made, it will never be
modified. This algorithm is quite fast but has limitations
due to this last property. List scheduling is used as a
starting point for other refinement algorithms.

• The FAST algorithm is a refinement of the list schedul-
ing solution using probabilistic hops. It can run until
stopped by the user and keeps the best latency found.
The algorithm is multi-threaded to exploit the multi-core
parallelism of a computer.

• A genetic algorithm is coded as a refinement of the FAST
algorithm. The n best solutions of FAST are used as the
base population for the genetic algorithm. Again, the user
is free to stop the processing at any time. This algorithm
is also multi-threaded. The scheduler generates a graph
in DAG format in which vertices are mapped to cores in
the architecture and edges correspond to routes mapped
on the available media.

C. Code generator

The code generation uses the Algorithm Architecture
Matching methodology (AAM, former AAA [14]). It scans
the scheduler output DAG graph and generates a source file

for each core in the architecture. In this code, a computa-
tion thread calls the functions corresponding to the vertices
in the DAG while a communication thread handles inter-
core communication. The two threads are synchronized with
semaphores. The current code generator generates C code for
the tri-core TMS320TCI6487 [15] from Texas Instruments.
More details on the code generation for this platform and the
thread synchronization are given in [16].

VIII. CASE STUDY

ReadBlock
blockIn blockOut

blockTrans

IDCT1D
rowIn rowOut

Transpose
blockIn blockOut

Clip
blocks out

signed

64 64

64 64

64

128

8 8

1

block

signed

out64

64

64

1

Fig. 7. SDF representation extracted from the CAL network

In order to show the interest of the framework we are going
to study an application example starting from a CAL descrip-
tion to automatically generate a bi-processor implementation.
The chosen application is the IDCT2D, which is largely used
in image/video decoding. The implementation is based on a
recursive representation using only four operations (Figure 7):

• ReadBlock : read a block for the first iteration of the
graph, transmit the block for the second iteration. thia
actor acts as a multiplexer.

• IDCT1D : performs an IDCT on a row of 8 pixels

• Transpose : transposes the block matrix

• Clip: saturate the values to be either stored as 9 bit signed
integer or as a 8 bit unsigned integer.

The IDCT2D is then place in a testbed (Figure 8) which
generates two blocks on the IDCT2D input and groups the
two outputs.

Trigger
blockOut

IDCT2D
block out128 64

signed signed2 1

Group
groupIn64 128

Fig. 8. IDCT2D testbed

This testbed is processed following a PREESM workflow
(Figure 9) which performs graph transformation (HSDF, Hier-
archy Flattening), and then maps the graph on an architecture
composed of two Texas Instrument C64x communicating using
EDMA channels. The outputs of the mapping are then used
to generate C64x C code for each of the processor, and the
Gantt chart of the mapping is displayed.



HSDF
SDF SDF

architecture

scenario

algorithm

Hierarchy
Flattening

SDF SDF

Mapper

SDF DAG

architecture

scenario

Code
Generation

DAG

GANTT

DAG

architecture

scenario

SDF

Fig. 9. PREESM Workflow

From the mapping result, each IDCT2D is performed in par-
allel on a different processor and then results are grouped on
a single processor through an EDMA transfer. Benchmarking
the result leads to the following performance (Figure 10).

Architecture Clock cycles
2 C64x + EDMA 5840
C64x 9904

Fig. 10. Performance evaluation for the IDCT2D

Considering those results, the performance gain is 42 %.
This benchmark does not take into account the EDMA setup
time, which decreases the performance, for small amount of
data. To minimize the overhead we consider using clustering
algorithm that maximize the throughput by grouping buffers.

IX. CONCLUSION

Using CAL as an input for the framework leads to a
decent implementation with C code generation that can target
embedded systems. Using CAL2HDL instead of CAL2C to
generate some regions of an application (some part of the
network) leads to the same kind of result with the ability to
target programmable logic [5]. While the PREESM software
will evolve, we will be able to use other optimizations in the
graph transformations and scheduling that might lead to better
implementation either for C generation or HDL generation.
The next step in our development is to fully support CAL by
extracting SDF region from the network [17] to be processed
by the framework. Other improvements could be programming
other code generation plug-ins to target other processors such
as ARM11, MicroBlaze and PowerPC.

REFERENCES

[1] G. Kahn, “The semantics of a simple language for parallel pro-
gramming,” in Information Processing ’74: Proceedings of the IFIP
Congress, J. L. Rosenfeld, Ed., pp. 471–475. North-Holland, New York,
NY, 1974.

[2] Edward Ashford Lee and David G. Messerschmitt, “Static scheduling
of synchronous data flow programs for digital signal processing,” IEEE
Trans. Comput., vol. 36, no. 1, pp. 24–35, 1987.

[3] Carl Hewitt, “Viewing control structures as patterns of passing mes-
sages.,” Artif. Intell., vol. 8, no. 3, pp. 323–364, 1977.

[4] J. Eker and J. W. Janneck, “Cal language report specification of the
cal actor language,” Tech. Rep. UCB/ERL M03/48, EECS Department,
University of California, Berkeley, 2003.

[5] Jorn W. Janneck, Ian D. Miller, David B. Parlour, Ghislain Roquier,
Matthieu Wipliez, and Mickael Raulet, “Synthesizing hardware from
dataflow programs: An mpeg-4 simple profile decoder case study,” in
Signal Processing Systems, 2008. SiPS 2008. IEEE Workshop on, 2008,
pp. 287–292.

[6] Ghislain Roquier, Matthieu Wipliez, Mickael Raulet, Jorn W. Janneck,
Ian D. Miller, and David B. Parlour, “Automatic software synthesis of
dataflow program: An mpeg-4 simple profile decoder case study,” in
Signal Processing Systems, 2008. SiPS 2008. IEEE Workshop on, 2008,
pp. 281–286.

[7] Christophe Lucarz, Marco Mattavelli, Joseph Thomas-Kerr, and Jorn
Janneck, “Reconfigurable media coding: A new specification model for
multimedia coders,” in Signal Processing Systems, 2007 IEEE Workshop
on, 2007, pp. 481–486.

[8] Carl von Platen and Johan Eker, “Efficient realization of a cal video
decoder on a mobile terminal (position paper),” in Signal Processing
Systems, 2008. SiPS 2008. IEEE Workshop on, 2008, pp. 176–181.

[9] E.A Lee and D.G Messerschmitt, “Synchronous data flow,” Proceedings
of the IEEE, vol. 75, no. 9, pp. 1235–1245, sept 1987.

[10] V. Sarkar, Partitioning and scheduling parallel programs for execution
on multiprocessors, Ph.D. thesis, Stanford, CA, USA, 1987.

[11] Liang fang Chao, Andrea Lapaugh, and Edwin Hsing mean Sha,
“Rotation scheduling: A loop pipelining algorithm,” in Proc. 30th
ACM/IEEE Design Automation Conference, 1993, pp. 566–572.

[12] Yu-Kwong Kwok, High-performance algorithms of compile-time
scheduling of parallel processors, Ph.D. thesis, 1997, Adviser-Ishfaq
Ahmad.

[13] O. Sinnen, Task Scheduling for Parallel Systems, May 2007.
[14] T. Grandpierre and Y. Sorel, “From algorithm and architecture spec-

ification to automatic generation of distributed real-time executives: a
seamless flow of graphs transformations,” in Proceedings of First ACM
and IEEE International Conference on Formal Methods and Models for
Codesign, MEMOCODE’03, Mont Saint-Michel, France, June 2003.

[15] Texas Instrument, “Tms320tci6487 dsp platform (sprt405),” Tech. Rep.
[16] “Optimization of auto-matically generated multi-core code for the lte

rach-pd algorithm,” November 2008.
[17] Chia-Jui Hsu, Ming-Yung Ko, and Shuvra S. Bhattacharyya, “Software

synthesis from the dataflow interchange format,” in SCOPES ’05:
Proceedings of the 2005 workshop on Software and compilers for
embedded systems, New York, NY, USA, 2005, pp. 37–49, ACM.


