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Cell centered Galerkin methods

Daniele A. Di Pietro

Institut Frangais du Pétrole, 1 & 4, avenue de Bois Préau, 92852 Rueil
Malmaison, France

Abstract

In this work we propose a new approach to obtain/analyze cell centered methods

yielding at the same time convergence rates and convergence to minimal regular-
ity solutions. The approach merges ideas from Finite Volume and Discontinuous
Galerkin methods and it provides a unified perspective.

Résumé

Dans cette note, on propose une nouvelle approche pour obtenir/analyser des mé-
thodes centrées aux mailles. L’analyse permet d’estimer & la fois le taux de conver-
gence des méthodes et de prouver leur convergence vers des solutions a régularité
minimale. Cette approche combine les avancées récentes dans les méthodes de Vo-
lumes Finis et de Galerkine discontinues.

1 Introduction

Dans cette note on propose une nouvelle approche pour obtenir et analyser
des méthodes centrées aux mailles pour un probléme de diffusion hétérogéne
et anisotrope. La méthode se compose de plusieurs étapes : (i) on définit un
interpolateur de trace consistant pour des fonctions suffisamment réguliéres ;
(ii) & partir des valeurs de trace, on reconstruit un gradient par maille qui
est aussi consistant ; (iii) le gradient est utilisé pour définir un sous-espace de
I'espace des fonctions affines par morceaux sur le maillage, qui est en suite
utilisé dans une formulation inspirée des méthodes de Galerkine discontinues.
Cette classe de méthodes bénéficie aussi bien des techniques d’analyse par
estimation d’erreurs propres a la communauté Eléments Finis que de celles
par compacité propres a la communauté Volumes Finis.
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2 The continuous setting

Let Q € R? be a bounded polygonal domain and let v € [L°°(2)]%¢ a symmetric
uniformly positive definite tensor field piecewise constant on a partition of €2,
say Pq, into bounded polygonal subdomains. For f € L*(Q), consider the
problem

—V-(WVu)=fin Q, u=0on 9. (1)

Letting a(u,v) % [, Vu-Vu, the weak formulation reads

Find u € Hy(Q) s.t. a(u,v) = / fu for all v € Hy(Q). (2)
Q

3 Discretization

Let H C R} be a countable set having 0 as an accumulation point and let
{71} nen define an admissible mesh family in the sense of [4] parametrized
by the meshsize h and compatible with P,. Let h € H be given. For each
K € Ty, let zr € T\ OT be such that T is star-shaped with respect to xr

(the cell center) and, for all face F € F,, set Zp & [rx/|F|. The set of faces
belonging to an element T € 7, will be denoted by F/, the set of boundary
faces by FP. For each internal face we select an arbitrary direction for the

normal ny = np r and denote by 7' the element out of which ng points. For

all T € T, F € F, set dpp < dist(vr, F) and let dp < Speqr dnp, TF

being the set of mesh element(s) sharing F'. In what follows we shall assume
that, for all F' € F},, dp is uniformly bounded by diam(F') both from above
and from below.

Let VIn & Reard(Tn)  yFn 4 Reard(Fh) We call a trace interpolator 1 a linear
bounded bijective operator from V7» to X C V/» such that, for all V» 3V =
{/UT}TETM = I(V) == {IF(V)}FG}—h with [F(V) =0if F € f‘}lz The leP(’thlty
requirement on the interpolation operator I can usually be reformulated in
terms of the inversibility of (local) matrices (cf., e.g., [1, §3.1]). Also, we denote

by IIyz, : W — V7r the operator that maps every element w € W onto

M7 (w) < {w(zr)}rer, . Let

W {we H(Q): vVw € H(div;Q) and w|y € H*(T) for all T € T, }.
The trace interpolators considered hereafter are assumed to fulfill the following

consistency requirement: For all w € W, there exists C,, € R} depending on
the mesh regularity parameters, on some bounded norm of w but not on the



meshsize h such that
VI € T, VF € FL,  |w(@r) — (ToIlyz, )(w)| < Cyuhdr p. (3)

Remark 1. The above property holds, e.g., for the trace values provided
by the L-interpolator analyzed in [1|. Other interpolators matching property
(3) (possibly with additional assumptions on v and/or on 7,) include the two-
point interpolator (for v-orthogonal meshes), the barycentric interpolator of [7|
(provided v is homogeneous), the O-interpolator of Aavatsmark and coworkers.
Hybrid /mixed Finite Volume (FV) methods resembling those discussed in [6]
and references therein can also be obtained using the procedure of §3. For such
methods, the interpolation procedure amounts to eliminating cell unknowns
in favour of face unknowns (such elimination need not be implemented).

The trace interpolator is the key ingredient to construct a constistent gradient
approximation. For all V € V7» | we let

o 1

S 2 FIUR(V) — er)

FeFrl

For k > 0, let P}’f denote the piecewise polynomial space of local degree k, i.e.
Pk g, € L2(Q); VT € Th, pulr € PE}. Consider the following approxima-
tion space:

def

Vi {vn € P13V e VI VT € T, vy (ar) = vr and Vol = Gr(V)}.

For every vy, € V},, there holds vp|r(z) = vr + Gp(V)-(z — o) for all T € 7,
and V the element of V7» associated to vj,. The space Vj, is thus a subspace
of P} with one single affine test function per element whose value at zr is
prescribed and whose slope depends on the values at neighbouring cell centers,
on the mesh and, possibly, on the problem data via the interpolator I.

Remark 2. Owing to the bijectivity of I, each set of cell center values V € V7»
defines a unique element of Vj,.

The space V}, is equipped with the following norm:

def 1
lonlle = 22 1Vonllizays + 20 = Ilollize),
TET, FeF, °F

where the jump operator [-] is defined as follows:

IIU ]] déf Uh‘Tl — Uh‘Tg for all F' € .7:}?1 ﬁ]:;?,
" unlr for all F € FI' N FL.

The above norm naturally extends to the space V(h) W + V. Thanks to
(3), the following remarkable approximation property holds:



Lemma 3 (Approximation estimate). For all w € W, there exists C,, € R}
depending on the mesh regularity parameters, on some bounded norm of w but
not on the meshsize h such that

e o
=y < G (@)

Proof. Let W def [Iy7, (w) and be wy, the unique element of Vj, associated
to W. Then, proceeding as in |2, Lemma 3.10] and using (3), one can prove
that [|[Vw — Viyws|[ip2@pe < Cwh. For the second term, observe that, for all
F € Fj, and for almost every x € F, [wy] = Jw, — w] and use a classical
trace inequality together with the local regularity of w to expand w|p, T € 7y,
around x7 to conclude. O

Consider the following bilinear form inspired from the SIPG discontinuous
Galerkin (dG) method of Arnold (see [3] for a review):

ap(up, vp) déf/ﬂl/vhuh-vhvh— > /F[{uvhuh}np[[vh]] + [un]{vVyor}np]

FeF,

+ Y o [ ],

FeF,

where V), denotes the broken gradient, n € R} and

(0p} def %(vh|T1 +vp|,) forall F e BN F2
" Up|T for all F € Ff NFp.

Remark 4. The bilinear form a; yields a globally conservative method, since
the characteristic function of € is in Vj,. Its implementation does not re-
quire cubatures. Indeed, the consistency and symmetry terms can be rewritten
as Yper, |[FHvViuptnplvn(Zr)] and Yper, |F{vVivy}nplus(Zr)] respec-
tively and the penalty term can be safely approximated using the middle point

rule by > pcz, Z'—?ﬂuh(fF)MUh(fF)]]

We consider the following approximation of (2):
Find u;, € V}, s.t. ah(uh,vh) = / fuy, for all v, € V. (5)
Q

Problem (5) has only one unknown per cell, as the elimination of face un-
knowns has been carried out in the interpolation process. Such an operation
can be performed in practice when, for a given V € Y7+ the dependence of
each Ir(V) on V is limited to a few cell values (which is the case, e.g., for
the L-interpolator). On the other hand, when each Ir(V) potentially depends
on all the values {vr}rer, (as it is the case for the interpolator obtained by
expressing face unknowns in terms of cell unknowns in the hybrid methods of
[6]), such an elimination need not be implemented in practice.



4 Main results and comments

Define, for allw € V (h), |lw|f; . dof [w|[+Creg, diam(T')?|w|32 ) and observe
that, owing to (4), inf,, cv, ||w — wp [ < Cyh.

Theorem 5 (Convergence to piecewise regular solutions). Let u solve (2) and
assume, moreover, that u € W. Denote by {up}ren the sequence of solutions
of (5) on the admissible mesh family {Ty}nen. Then, there exists Cy,, € R
depending on the mesh reqularity parameters, on some bounded norm of u and
on v but not on the meshsize h such that

|lu —up|ln < Cyuh. (6)

Proof. Upon choosing n large enough (see [3]), a;, is unconditionally uniformly
coercive and, for, all (w, vy) € W x Vy, ap(w,vy,) < Cllw||p«||vnlln with C € R
independent of the meshsize h. Finally, a; is consistent in the finite element
sense, i.e., ap(u,v,) = — [ Auwvy. The result follows. O

Remark 6. The dependence on v in estimate (6) can be removed proceeding
as in [5]. The estimate (6) is optimal for the ||-||;, norm. Under usual elliptic
regularity assumptions, the Aubin-Nitsche trick yields [|u —up| 120y < Cyuh?.

For all v, € V}, and for all F' € F},, let rr solve the following problem:
Find rp([on]) € [PP]? s.t. /Q’I“F([[Uh]])-Th = / [vn] {7} np for all 7, € [PP]?,
F

and set R([v,]) & Yrer, TF([vn]). Then, proceeding as in [4, Theorem 2.2]
one can prove that, for all sequences {v;}nen bounded in the ||-||;, norm,
(i) there is v € Hy(2) such that v, — vin L*(Q) and (ii) Vv, —R([vr]) weakly
converges to Vv in [L2(2)]%. Following the guidelines of [4, Theorem 3.1]| and
using a suitable test space (see, e.g., |1, Lemma 6| for the L-interpolator), one
can prove that

Theorem 7 (Convergence to solutions with minimal regularity). Let u solve
(2). Denote by {up}tnen the sequence of solutions of (5) on the admissible
mesh family {7, }her. Then, as h — 0, (i) up, — u in L*(Q), (i) Viu, — Vu
and Vyu, — R([us]) — Vu in [L2(Q)]* and (ii) Y per, d}1||ﬂuh]]]|%2(F) — 0.

Some comments are of order. The derivation of the method outlined in §3
remains valid taking inspiration from any alternative dG method for problem
(1); see, e.g., |3]. Moreover, provided suitable interpolation operators satisfying
estimates of the form (3) are found, the technique exemplified in §3 virtually
extends extended to any linear problem for which a dG method has been
devised (a brief literature review is provided in the introduction of [4]). At the



Table 1

Numerical example on a triangular mesh family.

h |u —upllp2() order [lu—wupl|p order
2.5000e-01 1.1864e-02 3.7139e-01
1.2500e-01 2.9512e-03 2.00 1.7427e-01 1.09
6.2500e-02 7.4631e-04 1.98 8.3669e-02 1.06
3.1250e-02 1.8824e-04 1.99 4.0943e-02 1.03
1.5625e-02 4.7304e-05 1.99 2.0241e-02 1.02

same time, the analysis techniques developped by Eymard, Gallouét, Herbin
in the context of FV methods and later extended to dG methods in [4]| also
apply, so that valuable tools for the analysis of nonlinear problems are also
available.
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