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On the time schedule of Brownian Flights

Athanasios BATAKIS and Michel ZINSMEISTER

June 24, 2009

Abstract: We are interested on the statistics of the duration of Brownian diffusions
started at distance ǫ from a given boundary and stopped when they hit back the
interface.

1 Introduction

The motivation of the following work has its origin in experimental physics. Some long

molecules are solvable in a liquid (for instance imogolite in water or DNA in lithium), the

molecules forming the liquid show an intermittent dynamics, alternating diffusion in the bulb

and adsorption on the long molecules.

NMR (nuclear magnetic resonance) apparatus, via relaxation methods, allows to measure

the statistics of the “flights” of liquid molecules in the bulk, ie. statistics of the diffusion

phase of the dynamics. More precisely, it allows to study the rare events, ie. statistics of

long flights.

In [GKL+06] a connection is established between the statistics of the long flight lengths

ans the geometry of the long molecules (more precisely their Minkowski dimension). This

connection has been made rigorous in [BLZ09]. These two papers concern almost exclusively

lengths. But the NMR relaxation allows only to measure time. Some heuristic link between

time and length was used in [GKL+06]. The aim of this paper is to make this heuristics

rigorous.

2 Setting and Preliminary Facts

Let Ω be a domain in R
d with compact boundary. For r > 0 consider the collection Sr of

Whitney cubes intersecting Γr, the r-level surface for the distance to the boundary Γr =

{x ∈ Ω ; dist(x, ∂Ω) = r} (to recall definition of Whitney cubes see Proposition 2.1 below).

Definition 2.1 Let Ω be a domain in R
d and fix ǫ > 0. We will call Brownian flight the

random process Ft, t ≥ 0 consisting of picking at random with uniform law one of the Sǫ
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dyadic Whitney cubes and then starting Brownian motion Bt at the center of the cube. We

note τΩ = inf{t ; Ft /∈ Ω} the lifetime of this process.

We can choose a different definition of the Brownian flights; namely we can choose the

starting point uniformly on Γr. The resulting process has exactly the same properties.

Under the ∆-regularity condition (1) reminded below we get

Theorem 2.2 There exists c > 0 such that

1

c

(

ǫ√
t

)dM +2−d

≤ P(τΩ > t)

and

P(τΩ > t) ≤ c

(

ǫ√
t

)dM+2−d ∣
∣

∣

∣

log

(

ǫ√
t

)∣

∣

∣

∣

d
2

,

for all 0 < ǫ < t.

where d is the dimension of R
d and dM the Minkowski dimension of ∂Ω.

Les us note βs = the total time Brownian flight spent in the Minkowski sausage {x ∈
Ω ; dist(x, ∂Ω) ≤ s} and δβs = βs − βs/2.

Let us recall the definition of a (dyadic) Whitney decomposition (cf. [Gra08], p. 463).

For a cube Q we note ℓ(Q) the side-length of Q and, for λ > 0, λQ the cube of the same

center and of λ times the side-length of Q.

Proposition 2.1 Given any non-empty open proper subset Ω of R
d, there exists a family of

closed dyadic cubes {Qj}j such that

• ⋃j Qj = Ω and the cubes Qj’s have disjoint interiors

•
√

dℓ(Qj) ≤ dist(Qj, ∂Ω) ≤ 4
√

dℓ(Qj)

• if Qj and Qk touch then ℓ(Qj) ≤ 4ℓ(Qk)

• for a given Whitney cube Qj there are at most 12d Whitney cubes Qk’s that touch Qj.

We note Qk = Q2k , the collection of Whitney cubes of size 2k. For k ≤ log2

(√
t
)

we

write δβ̃k for the total lifetime of Brownian flight Ft inside the union of all cubes of Qk.

Without loss of generality we can suppose ε, r both smaller than 1.

Remark that by definition of dyadic Whitney cubes there exist k∗ depending only on the

dimension of the space (in the remaining we take k∗ = [log2(8
√

d)] + 1) such that for all

k ∈ Z,

⋃

Q∈Qk

Q ⊂
⋃

k≤l≤k+k∗

⋃

Q∈S
2l

Q and
⋃

Q∈S
2k

Q ⊂
⋃

k−k∗≤l≤k

⋃

Q∈Ql

Q
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which implies that total lifetime of Brownian flight Ft inside
⋃

Q∈S
2k

Q is bounded above by

∑

k−k∗≤l≤k

δβ̃l and we can get a lower control by the same reasoning. This is implicitely used

in the proof of lemma 2.6.

If D is any open set, for a measurable F ⊂ ∂D and x ∈ D we note ω(x, F, D) the

harmonic measure of F at x inside D, i.e. probability that Brownian motion started at x

exits D through F .

We suppose that the domain Ω satisfies the ∆-regularity condition (see also [JW88],

[Anc86], [HKM93]): let x be any point of Ω whose distance to the boundary r is less than

1. Then

ω(x, ∂Ω, B(x, 2r) ∩ Ω) ≥ L, (1)

where L does not depend on x. In [BLZ09] we have proven the following.

Theorem 2.3 Choose Q at random with uniform law in Qε. The probability for a Brownian

motion started at any point x of Q to exit Ω at distance greater than r from the starting

point is comparable to
#Sr

#Sε

(r

ε

)n−2

.

In order to exhibit the ideas of the proof let us first state the following independent lemma

which is nevertheless of its own interest.

Lemma 2.4 Under the ∆-regularity hypothesis

1. The probability that BM touches more than N Whitney cubes of a given size decreases

as CpN , with 0 < p < 1, C a positive constant.

2. The probability that BM started at distance ǫ < r from the boundary exits Ω at distance

greater than R from the starting point without leaving the Minkowski sausage {x ∈
Ω ; dist(x, ∂Ω) ≤ r} is bounded above by cpR/r where c > 0 and 0 < p < 1 are

constants (depending only on the constant that appear in the ∆-regularity hypothesis

and on d)

The proof of the lemma relies on an annuli reasoning.

Proof We prove the first statement: the proof of the second is essentially the same. Le

(Bt)t>0 be Brownian motion started at any point x ∈ Ω and choose k ∈ Z. Choose any

Q ∈ Qk and let λQ be the cube of the same center but λ times the side-length ℓ(Q) of Q.

By the definition of Whitney cubes, there is a λ ≤ 8
√

d depending only on d such that

λ

2
ℓ(Q) ≤ dist(Q, ∂Ω) ≤ λ

2
ℓ(Q).
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Suppose that there exists t0 > 0 such that Bt0 ∈ Q. By the ∆-regularity condition (1),

the probability that there exists t1 > t0 with B[t0,t1] ⊂ Ω and Bt1 /∈ λQ is bounded above by

p < 1 depending only on L, λ:

P

(

∃t1 > t0 ; B[t0,t1] ⊂ Ω and Bt1 /∈ λQ
∣

∣

∣
∃t0 > 0 ; Bt0 ∈ Q

)

< p (2)

On the other hand, the number of Whitney cubes of Qk lying inside λQ is bounded by a

constant c1 = c1(d). The probability that there exists a Whitney cube Q1 ∈ Qk outside λQ

that is visited by Brownian motion is hence bounded above by p < 1.

We study probability that there exist Whitney cubes Q1, ..., Qm ∈ Qk such that Q1∩λQ =

Q2 ∩ λQ1 = ... = Qm ∩ λQm−1 = ∅ all visited by Brownian motion. It is sufficient to prove

that this probability decays exponentially.

By the strong Markov property the probability that there exists tm > tm−1 > ... > t0
such that Bt0 ∈ Q , Bt1 ∈ Q1 ... , Btm ∈ Qm is given by

P (∃ tm > tm−1 > ... > t0 ; and Q, ...Qm as above such that Btm ∈ Qm, ..., Bt0 ∈ Q)

= P
(

∃ tm > tm−1 ; Btm ∈ Qm|∃ tm−1 > ... > t0 Btm−1
∈ Qm−1, ..., Bt0 ∈ Q

)

·
P
(

∃ tm−1 > ... > t0 Btm−1
∈ Qm−1, ..., Bt0 ∈ Q

)

= P
(

∃ tm > tm−1 ; Btm ∈ Qm with Qm ∩ λQm−1 = ∅|∃ tm−1 ; Btm−1
∈ Qm−1

)

·
P
(

∃ tm−1 > ... > t0 Btm−1
∈ Qm−1, ..., Bt0 ∈ Q

)

Now, by (2),

P
(

∃ tm > tm−1 ; Btm ∈ Qm with Qm ∩ λQm−1 = ∅|∃ tm−1 ; Btm−1
∈ Qm−1

)

< p.

By induction we get that

P (∃ tm > tm−1 > ... > t0 ; and Q, ...Qm as above such that Btm ∈ Qm, ..., Bt0 ∈ Q) < pm

and hence the lemma. •

For a given dyadic Whitney cube Q we note Q̃ the union of Q with all Whitney cubes

Q′ verifying

Q′ ∩ λQ 6= ∅ and Q ∩ λQ′ 6= ∅.
We can easily check that there are less than (100

√
d)d such cubes Q′ of size at most ℓ(Q)/12

(the constants are not optimal). We say that the k-level layers are visited more than n times

if there exist t0 < s1 < t1 < ... < sn < tn satisfying

Btj ∈
⋃

Q∈S
2k

Q and Bsj
/∈
⋃

Q∈S
2k

Q̃,

for all j = 1, ..., n. For any k ∈ Z note

νk = sup{n ∈ N ; the k-level layers are visited more than n times}
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Lemma 2.5 There exists 0 < p < 1 and a positive constant C such that, given k ∈ Z, for

all n ∈ N

P(νk > n) ≤ pn
P (∃t0 > 0 and Q ∈ S2k ; Bt0 ∈ Q) .

Proof The arguments as similar as in lemma 2.4. We only need to prove that P(νk > 1) < p

and apply strong Markov property. We have

P(νk > 1) ≤ P



∃0 < t0 < s1 < t1 , Q ∈ S2k ; Bt0 ∈ Q , Bs1
/∈
⋃

Q∈S
2k

Q̃ , Bt1 ∈
⋃

Q∈S
2k

Q





= P



∃t1 > s1 > t0 ; Bs1
/∈
⋃

Q∈S
2k

Q̃ , Bt1 ∈
⋃

Q∈S
2k

Q
∣

∣

∣
∃t0 > 0 ; Bt0 ∈ Q ∈ S2k





× P (∃t0 > 0 and Q ∈ S2k ; Bt0 ∈ Q)

To abbreviate formulas we note Pc(.) = P (.|∃t0 > 0 ; Bt0 ∈ Q ∈ S2k). With this notation,

Pc



∃t1 > s1 > t0 ; Bs1
/∈
⋃

Q∈S
2k

Q̃ , Bt1 ∈
⋃

Q∈S
2k

Q)



 =

Pc



∃t1 > s1 ; Bt1 ∈
⋃

Q∈S
2k

Q
∣

∣

∣
A



Pc(A) + Pc



∃t1 > s1 ; Bt1 ∈
⋃

Q∈S
2k

Q
∣

∣

∣
B



Pc(B)

where

A =







∃s1 > t0 ; Bs1
/∈
⋃

Q∈S
2k

λQ







and

B =







∃s1 > t0 ; Bs1
∈ Q′ , λQ′ ∩

⋃

Q∈S
2k

Q = ∅ , Bs1
∈
⋃

Q∈S
2k

λQ







form a partition of the event
{

∃s1 > t0 ; Bs1
/∈ ⋃Q∈S

2k
Q̃
}

.

By (2), Pc(A) ≤ p. Similarly, by the strong Markov property of Brownian motion and

by (2),

Pc



∃t1 > s1 ; Bt1 ∈
⋃

Q∈S
2k

Q
∣

∣

∣B



 = P



∃t1 > s1 ; Bt1 ∈
⋃

Q∈S
2k

Q
∣

∣

∣Bs1
∈ Q′



 ≤ p.

We deduce that

Pc



∃t1 > s1 > t0 ; Bs1
/∈
⋃

Q∈S
2k

Q̃ , Bt1 ∈
⋃

Q∈S
2k

Q)



 ≤ Pc(A) + p(1 − Pc(A)) ≤ 2p − p2 < 1

and the lemma is proven. •
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We also derive the following

Lemma 2.6 There exists a constant C and 0 < p < 1 depending only on dimension and on

L such that for all t > 0, k ∈ Z and N ∈ N we have

P(δβ2k > t) ≤ CpN
P (∃t0 > 0 and Q ∈ S2k−k∗−2 ; Bt0 ∈ Q) +

P

(

∃Q ∈ Qk ∪ ... ∪Qk−k∗−2; ∃ 0 < s1 < s2 with B[s1,s2] ⊂ Q̃ and s2 − s1 > t/N
)

Proof Given t > 0, k ∈ Z, by lemma 2.5 we have for all N

P(δβ2k > t) ≤ P(δβ2k > t , νk + ... + νk−k∗−2 > N) + P(δβ2k > t , νk + ... + νk−k∗−2 ≤ N)

< (k∗ + 2)
(

p
1

k∗+2

)N

P (∃t0 > 0 and Q ∈ S2k−k∗−2 ; Bt0 ∈ Q)

+ P(δβ2k > t , νk + ... + νk−k∗−2 ≤ N).

Let us estimate this last term. It is clear that, for all k ∈ Z,

{x ∈ Ω ; 2k−1 ≤ dist(x, ∂Ω) ≤ 2k} ⊂
k
⋃

j=k−k∗−2

⋃

Q∈Qj

Q.

Therefore, using definition of νk we get

P(δβ2k > t , νk + ... + νk−k∗−2 ≤ N)

≤ P(∃l ≤ N , Q1, ..., Ql ∈
k
⋃

j=k−k∗−2

Qj ; Qs ∩ Q̃s−1 = ∅ , ∀s = 2, ..., l and

∃t1 < s1 ≤ t2 < s2 < ... ≤ tl < sl ; B[ti,si] ⊂ Q̃s ∀s = 1, ..., l and
l
∑

i=1

si − ti > t).

Since l ≤ N we get that P(δβ2k > t , νk + ... + νk−k∗−2 ≤ N) is bounded above by

P

(

∃Q ∈ Qk ∪ ... ∪ Qk−k∗−2; ∃ 0 < ti0 < si0 with B[ti0 ,si0
] ⊂ Q̃ and si0 − ti0 > t/N

)

,

which completes the proof. •

3 Upper bound estimates

We first establish the following lemma.

Lemma 3.1 Let Qk be a dyadic cube of size 2k and O a point of Qk. Consider Bt a Brownian

motion started at O and τQ̃k
the exit time of Bt from Q̃k. There exists a constant c > 0 such

that for any Borel set F ⊂ ∂Ω

P
(

τQ̃k
> t
)

≤ c

(

2k

√
t

)d
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Proof Recall that given a ball of radius r and Brownian motion started at the center of

the ball, the probability that the exit time of the process from the ball exceeds t is given by

the formula
(

∫

r√
t

0 e−
u2

2 du
)d

. This estimate, combined with the fact that the diameter of Q̃k

is bounded above by a constant times 2k, implies the statement. •

Let us prove the upper estimates of lifetime of Brownian flights in Theorem 2.2.

We clearly have

P(τΩ > t) ≤ P







log2(
√

t)
∑

k=−∞

δβ2k = τΩ > t






+ P






τΩ >

log2(
√

t)
∑

k=−∞

δβrk







The second term is equal to the probability that Brownian flight gets to distance >√
t from the surface before coming back to it. This probability is hence equivalent to

#S√
t

#Sε

(
√

t

ε

)n−2

.

Now the probability P

(

∑log2(
√

t)
k=−∞ δβ2k = τΩ > t

)

(namely that the Brownian flight did

not get at distance greater than
√

t but lived more than t time) is bounded by

k1
∑

j=k0

P
(

δβj > 2j−k1t
)

+ P (βk0
> t/2) ,

k1 and k0 being the integer parts of log2

(√
t
)

+ 2 and log2 (
√

ǫ) respectively.

Let us first deal with the sum. By lemmas 2.6, 3.1 and the strong Markov property

P
(

δβj > 2j−k1−1t
)

≤ cpN
P (∃t0 > 0 and Q ∈ S2j−k1−k∗−3 ; Bt0 ∈ Q) +

P

(

∃Q ∈ Qj−k1−1 ∪ ... ∪Qj−k1−k∗−3 ∃s1, s2 ∈ [0, τΩ) ; F[s1,s2] ⊂ Q̃ , s2 − s1 >
2j−k1−1t

N

)

≤ cpN + P(∃Q ∈ Qj−k1−1 ∪ ... ∪ Qj−k1−k∗−3 , ∃s1 > 0 ; Fs1
∈ Q) ×

P

(

∃s2 > s1 ; F[s1,s2] ⊂ Q̃ , s2 − s1 >
2j−k1−1t

N

∣

∣

∣
Fs1

∈ Q ∈ Qj−k1−1 ∪ ... ∪Qj−k1−k∗−3

)

≤ cpN + c





2j

√

2j−k1−1t
N





d
( ǫ

2j

)dM +2−d

,

where c is a constant depeding on the dimension d. We obtain

k1
∑

j=k0

P
(

δβj > 2j−k1−1t
)

≤
k1
∑

j=k0

c

(

2j

√

2j−k1−1t/N

)d
( ǫ

2j

)dM +2−d

+ cpN(k1 − k0)

≤ cN
d
2

(

ǫ√
t

)dM +2−d

+ cpN log

(

ǫ√
t

)
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The second term can be bounded in a similar way: consider dyadic cubes Cj of size

2k0+1 of disjoint interiors touching the boundary of Ω and covering the Minkowski sausage

{x ∈ Ω ; dist(x, ∂Ω) < 2k0} . Once more, using the same arguments as in lemma 2.4, one

can show that the probability that Brownian motion visits more that N such cubes decreases

exponentially. Therefore

P (βk0
> t/2) ≤ P

(

∃Cj∃s2 > s1 + t/2N s.t. F[s1,s2] ⊂ C̃j

)

+ cpN ≤ c

(

ǫ
√

t/2N

)d

+ cpN

To finish the proof we only need to optimize on N (N ≈ log
(

ǫ√
t

)

/ log p will do).

4 Lower Bound estimates

Following the same reasoning for k1 = [log2

√
t] + 1 we get

P(τΩ > t) ≥ P(∃s1 > 0 s.t. Fs1
∈
⋃

Q∈Qk1

Q and ∃s2 > s1 + t s.t. F[s1,s2] ∈
⋃

Q∈Qk1

2Q)

Using strong Markov property the this probability can be written as the product of P(∃s1 >

0 s.t. Fs1
∈ Qk1

) with P(∃s2 > s1 + t s.t. F[s1,s2] ∈
⋃

Q∈Qk1

2Q). The second one is greater

than the probability that Brownian motion exits a cube of size 2k1 at time greater that t and

the first one is simply the probability that Brownian flight got to Qk1
which is equivalent to

(

ǫ√
t

)dM +2−d

and the proof is complete.
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