Reconfiguration of a Distributed Information Fusion System

Éric Benoit, Marc-Philippe Huget, Patrice Moreaux, <u>Olivier Passalacqua</u>

LISTIC, Polytech'Savoie, Université de Savoie, France

Outline

1. Context

- Information Fusion and Information Fusion Systems
- 2. Example
 - System reconfiguration
- 3. Model
- 4. Framework architecture
- 5. Reconfiguration
 - Error detection and configuration improvement
- 6. Conclusion
 - Contributions and future work

Information Fusion

An Information Fusion Process (IFP)

is defined by:

- information sources
- a process

An Information Fusion System (IFS):

- executes an IFP,
- consists of hardware and software elements,
- is often distributed,
- is more and more dynamic:the resources.

Reconfiguration example

A video of the user's head is produced by his smart-phone.

A filter is applied on the video by computers in room 3.

The original and the filtered videos are initially displayed in room 1 and then in room 2.

Reconfiguration appends when the user moves from room1 to room 2.

Fusion process

The IFP is described by a discrete data-flow graph. Nodes are fusion elements (data sources, fusion nodes, data sinks).

Compatible with usual information fusion models.

Configuration of an IFS

Reconfiguration of a Distributed Information Fusion System // olivier.passalacqua@univ-savoie.fr

Two sub-systems

Runtime framework hierarchy

An execution node is a set of host systems. A host system is a set of execution frameworks.

Need for reconfiguration (1)

Configuration errors and failures:

- failure state
 - o the system cannot produce some of the results,

Two kinds of errors are detected:

- Inter-execution framework errors:
 - an execution framework "disappears",
- Intra-execution framework errors:
 - o deadlock on a resource,
 - time-out connection inside an execution element.

Error recovery strategy

 selection of the first configuration compatible with the available resources,

Need for reconfiguration (2)

Configuration improvement:

 even without any error, the control system tries to improve the runtime system permanently.

A formal model based on GSPN is built, at runtime, from the configuration of the system.

To improve the runtime system:

- the control system updates the model parameters,
- and computes its rewards.

Configuration improvement strategy

- a "significantly better" configuration is selected,
 - the comparison is based on reward values computed from the configuration model.

Transition between configurations (1)

Best effort policy:

• transition in the case of an implementation swap: results in queues are preserved.

myproject.MyFunction2

Transition between configurations (2)

Best effort policy:

 transition in the case of a new assignment: only updated execution elements are deleted.

Reconfiguration of a Distributed Information Fusion System // olivier.passalacqua@univ-savoie.fr

Contributions

Model

- Information Fusion Process description
- Configuration model
 - o fusion elements assignment
 - links assignment
- Runtime evaluation of the configuration
 Implementation
 - Reconfiguration mechanism
 - o error recovery
 - configuration improvement
 - Transition policy
 - o implementation swap
 - new assignment

Future work

Model

- Configuration search algorithm
 - definition of the characteristics of a configuration from its description,

Implementation

- Distributed configuration evaluation
- Extension of the framework architecture

Any questions?

Selection of a new configuration

Constraint programming approach

Constraints

- fusion functions are compatible with a subset of execution framework,
- connections between fusion functions are fixed,

Objectives

- global maximal usage of the set of the execution frameworks,
- global "short" physical communication between fusion functions.

The problem is finally sent to a CSP solver.