
HAL Id: hal-00398602
https://hal.science/hal-00398602

Submitted on 25 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconfiguration of Distributed Information Fusion
System – A case study

Eric Benoit, Marc-Philippe Huget, Patrice Moreaux, Olivier Passalacqua

To cite this version:
Eric Benoit, Marc-Philippe Huget, Patrice Moreaux, Olivier Passalacqua. Reconfiguration of Dis-
tributed Information Fusion System – A case study. Workshop on Dependable Control of Discrete
Systems, Jun 2009, Bari, Italy. pp.309-314. �hal-00398602�

https://hal.science/hal-00398602
https://hal.archives-ouvertes.fr


Reconfiguration of a Distributed Information Fusion System

Éric Benoit, Marc-Philippe Huget,
Patrice Moreaux, Olivier Passalacqua

LISTIC, Polytech’Savoie,
Université de Savoie,

74944 Annecy le Vieux, France
(e-mail: firstname.lastname@univ-savoie.fr)

June 25, 2009

Abstract

Information Fusion Systems are now widely used in
different fusion contexts, like scientific processing,
sensor networks, video and image processing. One
of the current trends in this area is to cope with dis-
tributed systems. In this context, we have defined
and implemented a Dynamic Distributed Informa-
tion Fusion System runtime model. It allows us to
cope with dynamic execution supports while trying
to maintain the functionalities of a given Dynamic
Distributed Information Fusion System. The paper
presents our system, the reconfiguration problems we
are faced with and our solutions.

keywords Availability, Data fusion, Decision mak-
ing, Discrete-event dynamic systems, Performance
evaluation, Run-time systems.

1 Introduction

The aim of an Information Fusion System is to com-
pute results of higher quality (with respect to some
criteria to be defined) from information provided to
it either from the ”real world” (sensor networks)
or from computer sources (databases for instance).
Present IFS are frequently distributed since data
sources or/and computation resources power are ac-
tually distributed.

Computer based Information Fusion Systems are
widely diffused since a couple of decades (see for
instance [[MB97, KZK97]]). Although there are
already a lot of solutions to develop and to de-
ploy Distributed Information Fusion Systems (DIFS),
see [[HMM+07]] for a survey of solutions in the sen-
sor network area for instance, most of them are re-
stricted to specific application areas. Moreover, they
frequently assume that the execution support system
is fixed.

The goal of our project is to define a runtime

framework for Dynamic Distributed Information Fu-
sion System (DDIFS). This framework is based on a
model of the Fusion Process (FP) and on a model of
its derived run-time deployment. These two models
allow us to control the DDIFS:

• the system restores a correct state after a run-
time error;

• the system modifies itself when it detects that
a better configuration, in a sense to be detailed,
could be deployed.

These two adaptive behaviours explain why our sys-
tems are termed Controlled Dynamic Distributed In-
formation Fusion Systems (CDDIFS).

Fusion methods can be classified [[Sas02]] into
three groups, according to their domain: probabilis-
tic models such as Bayesian networks [[MDW06]],
approximation methods which update a model of
the environment and take decisions based on the
predicted next state (for example Kalman fil-
ters [[SL06]]) and interpolation methods such as
fuzzy logic approaches [[BGM03]] and neural net-
works [[PC03]].

In our context, an Information Fusion Process
(IFP) is defined as a discrete data-flow graph the
nodes of which are fusion functions and the edges
of which are links between function ports. Ports of a
fusion node are connected to input, output and pa-
rameters of the fusion function. A fusion function f

computes a tuple of output values Y = (y1, ..., yK)
from a tuple of input values X = (x1, ..., xI), for a
given vector θ = (θ1, ..., θJ ) of parameters:

(y1, ..., yK) = f(θ1,...,θJ)(x1, ..., xI).

Distinction between input and parameter values
comes from the fact that an input value is used for
only one computation of the outputs, while a param-
eter is a sustained value, used for each computation,
until it is modified. Our model is termed discrete

1



since the tuples are discrete data and each function
“consumes” one input tuple and produces one output
tuple.

Our approach terms Information Fusion System
(IFS) a hardware and software environment used
to implement an IFP. It includes all the compo-
nents needed to execute the fusion function imple-
mentations and to transfer information between the
functions. The distributed aspect comes from the
physical distribution of the run-time elements of the
IFS: sensors, devices, computers, smart-phones, etc.,
are actually usually distributed. We call execution
framework (EF) the computation environment where
implementations of fusion nodes run (see section 3).

Our model deals with dynamicity in the sense that
it copes with possible modifications of the IFS at
run-time. Modifications may be the update of a fu-
sion node implementation, the modification of net-
work connections between the EFs or the failure of a
part of the IFS. Note that however in this paper, it
is assumed that the IFP is fixed.

The paper is organised as follows. The next sec-
tion explains how we control the IFS. Section 3 de-
tails our current implementation, while in section 4,
we present the reconfiguration strategies we have de-
signed and their implementation. An application ex-
ample is detailed in section 5, and we indicate work
in progress in section 6.

2 Control of DDIFS

Figure 1 presents the two levels view architecture of
our proposal:

• the fusion graph, i.e. the fusion nodes (or fusion
functions) and the connections between their in-
put and output ports;

• the assignment of the fusion functions to the el-
ements of the fusion run-time system.

The run-time DDIFS is controlled for what concerns
error recovery and quality improvement.

Our system is developed in such a way that it
checks for the IFS consistency i.e. the availability
of the communication network between runtime sub-
systems and the availability of these sub-systems. To
this end, software sensors installed into the system
provide both quantitative and qualitative measure-
ments. The time interval between two executions of a
fusion function or the amount of data present in some
point of the system are such measurements. Thanks
to these software sensors, errors and failures are de-
tected and the system updates itself by changing its
configuration in order to correct them.

The quality improvement is based on a Gen-
eralized Stochastic Petri Net (GSPN) [[MBD98]]

Figure 2: Implementation details - Runtime frame-
works hierarchy.

model of the configuration. We build a GSPN of
the run-time system from which we derive a set
of performance/dependability steady-state rewards
(rn)1≤n≤N . These rewards (CPU utilisation, re-
sponse times, etc.) are computed from the Markov
chain underlying the GSPN, with a tool, like Great-
SPN [[CFGR95]] running on one of the host systems
of the IFS. Details of the performance analysis of our
system will be presented in a future paper. In short,
we build a total order between configurations based
on the rewards (rn).

3 Implementation

To take into account modern architectures, our model
distinguishes four hierarchical levels in an IFS (Fig-
ure 2). The lowest level is the physical machine level
such as a Personal Computer, a smart-phone, etc.
Each machine supports one or several host operat-
ing systems (as in virtualised systems). On top of
a given host, an EF defines the fundamental archi-
tectural element of our IFS, assuming that every EF
owns a unique (IP address, port number) pair. Each
EF hosts the two sub-systems of our solution: an ex-
ecution sub-system and a control sub-system.

The intend of our system is to take advantage of the
skills of both information fusion experts and devel-
opers. Thus while the (information fusion) designer
defines the data-flow graph that represents the fu-
sion process through a graphical interface, develop-
ers may implement the execution codes of the fusion
functions. In this way, the designer expresses specifi-
cations on the fusion process, and the developer only
writes the selected fusion method Both do not take
care about the deployment nor the modifications of
the run-time system.

An implementation of the FP, also termed as a con-
figuration, is defined by the choice of all the imple-

2



Figure 1: Information Fusion Process (IFP) - Information Fusion System (IFS) relationship

mentation elements translating the FP: fusion node
implementations (see below), assignment of the fu-
sion nodes to EF (a fusion node is assigned to one
EF), ports links mapping between fusion nodes. It
assumes that EFs are linked through an undirected
connected IP network (the execution graph) and that
all the connections between fusion node ports are
carried by this network (N). If the output yk of a
function f assigned to the EF e is the input xi of
f ′ assigned to e′, then the configuration defines the
path between e and e′ in N . This path may use in-
termediate EF only used to connect the source and
the destination EFs. As soon as a configuration is
defined, it is deployed by the control sub-systems of
the EFs.

An execution sub-system manages the execution
elements corresponding to fusion nodes. In con-
trast, a control sub-system manages the execution
sub-system: monitoring and analysis of the FP exe-
cution and reconfigurations of the IFS.

3.1 Fusion Node implementation

At the fusion process level, a fusion node consists
of three sets of ports (inputs, parameters, outputs)
and a mathematical description of the fusion func-
tion. Our model assumes that at least one imple-
mentation of each fusion function is available in the
system and that all the implementations are valid i.e.
they conform to their mathematical specification. To
manage the execution of a fusion node related tasks,
we introduce a fusion node container (Figure 3). It
controls the implementation of the fusion function,
termed the execution entity; it updates the value of
the control parameters, and it transfers the software
sensors values to the rest of the control system.

Figure 3: Implementation details - Fusion node im-
plementation.

3.2 Execution mechanism

Implementation of the input port discrete semantics
is based on queues storing discrete data, one queue
being bound to each input port of a fusion node.
Each computation of the fusion function un-queues
one data item of each queue and uses the latched val-
ues of the parameters. Moreover, according to the
Best effort policy defined in Section 4.3 the system
tries not to lose data when unreachable fusion nodes
are detected. Hence, the execution of the fusion func-
tion is started iff the following conditions are satis-
fied:

• no input queue is empty;

• the result of the computation may be sent to all
its consumers.

The first condition is required to provide a value of
each input port to the execution entity. The second
condition is a design decision: we do not start a com-
putation of the fusion function if we are not sure (to
the best of our knowledge!) that the results could be
processed by their receivers.

3



3.3 Implementation details

An implementation of our project is already deployed
in order to experiment our results and was used to
run a video conference smart-room[[WTS+08]].

The current version of our system is deployed over
OSGi [[OSG05]] platforms [[RAR07]] linked by stan-
dard networks (LAN, Wi-Fi, Bluetooth). EFs are im-
plemented as OSGi platforms and are linked together
by R-OSGi services. The sub-systems are presently
implemented as bundles, respectively for the control
and the execution sub-systems, installed and started
on each OSGi framework. Thanks to this structure
the control sub-system can easily manage the execu-
tion sub-system especially during transitions.

The execution entities (code of the fusion nodes)
defined by the configuration and the control elements
are then registered as services in the OSGi framework
and act together thought services discovery and re-
quests.

4 Reconfiguration of DDIFS

The reconfiguration process, that is to say, the up-
date of the implementation of the IFP on the IFS is
made up of three phases:

• setting of the reconfiguration strategy,

• selecting a new configuration,

• deploying and starting the new configuration.

4.1 Reconfiguration setup

The reconfiguration of the system is twofold: cor-
rection of a configuration in order to restore the fu-
sion process after an execution failure or an execution
error, or improvement of the current configuration.
The possible modification of a configuration relates
to fusion function implementations, function assign-
ments to EF or to input-output ports link mappings.

4.1.1 Configuration errors and failures

The system is said to be in a failure state [[ALRL04]]
when one of its outputs cannot produce a result. Such
a failure derives from an error. Our system tries to
avoid as much as possible system failures, by detect-
ing errors before they lead to failures. We detect two
kinds of error:

• Inter-execution framework errors: an EF disap-
pears or a communication channel is broken;

• Intra-execution framework errors: errors due to
fusion node interactions (i.e. deadlock) and in-
ternal fusion node errors (for instance arithmetic
overflow, time-out).

As mentioned in Section 2, software sensors, mostly
throwing a Java exception, are used to detect these
errors. Inter-execution framework errors are de-
tected through monitoring of the communication
links with programmed acknowledgments. Intra-
execution framework errors throw Java exceptions
caught by the control system of the execution frame-
work.

4.1.2 Configuration improvement

Even if there is no error, the control system tries to
improve the runtime system permanently. To this
end, firstly the control system periodically senses the
model parameters from the execution system and
computes the rewards associated to the model. If
a significant variation is stated between two or more
computations, the control system triggers a search for
a new, and hopefully “better”, configuration. Sec-
ondly, the control system also launches a new con-
figuration search when it detects a variation in the
available runtime environment, for example due to a
new available EF.

4.2 Selection of a new configuration

As soon as the need for a reconfiguration is launched,
the system has to search for a new configuration. The
search algorithm takes the description of the IFP and
the constraints between the fusion nodes and the EFs
as inputs. In fact, the selection of a new configuration
due to reconfiguration involves the same steps as the
initial configuration selection.

The search is based on a Constraint Program-
ming approach already proposed by several re-
searchers [[ZSB+08, AWHK07]] in the context of the
application component placement problem [[KIK03]].
The IFP provides a set of constraints such as the set
of fusion nodes, the required links between output
and input fusion nodes. The IFS constraints the pos-
sible configurations in several ways:

• each fusion function can be deployed on a subset
only of the EF;

• connections between EF are fixed and given
through an execution graph. We call ”channel”
a direct connection between two EF e and e′.

• for a given link l between yk and x′
i, we must

select a chain ((em, em+1))1≤m≤M of channels
in the execution graph such that e1 = e and
eM+1 = e′.

• a given EF must have enough memory resources
to be able to run the fusion functions assigned
to it.

4



Hence, for a given assignment of fusion nodes to EF
together with the paths in the execution graph de-
rived from links between fusion nodes, we are able
to express automatically a set of constraints on these
assignments.

There are in general several paths in the execu-
tion graph. For each path, we can define a ”cost”
based for instance on the number of its channels ,
i.e. its ”length”, an effective usage cost, etc. We as-
sume that all links from f to f ′ use the same path
in the execution graph. Although we have designed
our search in a generic cost way, in the present work
we have implemented only the ”length cost”. We
then fix the ”best” path as the shortest path (in
the cost meaning) in the execution graph between
the EF of the linked fusion nodes. These shortest
paths between EF are pre-computed for a given IFS
with the Floyd-Roy-Warshall algorithm (see for in-
stance [[CLRS01]] and they are used by the Con-
straint Satisfaction Problem (CSP) solver. The CSP
is now well defined and its variables are the assign-
ments of fusion functions to the EF.

We can also add an optimisation criterium to the
previous CSP to take into account the two antago-
nistic properties of a configuration:

• global maximal usage of the set of EFs: deploy
the fusion nodes on as much as possible EF;

• global “short” physical communication between
output and input fusion functions: deploy linked
fusion functions on ”neighbouring” EFs.

To do so, we define a generic cost function C of a
configuration: C = h(Cd, Cc) where Cd is a cost asso-
ciated to the assignment of the fusion functions, and
Cc is a cost associated to the mapping of the links
to the channel chains and h a composition function.
Note that Cd should be increasing with the “density”
of the fusion functions on the EF. For instance, Cd

could be:

Cd = max
e∈E

{n(e)} − min
e∈E

{n(e)}

with n(e) being the number of fusion functions as-
signed to the node e and E the set of EFs. For Cc we
can take a weighed (αu) sum of the number of used
channels:

Cc =
∑

u∈U

αun(u)

where n(u) is the number of links (between fusion
function ports) using the channel u and U is the set
of channels of the execution graph. Cc should also
be increasing with the “distribution” of the fusion
functions in the IFS.

Finally, we send the problem to a CSP - with
optimization- solver to get the configuration. We

used the Choco solver which is available at http://
www.emn.fr/x-info/choco-solver/doku.php. For
the moment, the solver is run on one of several EF
defined in a configuration file of the system.

4.2.1 Error recovery

In the case of an error recovery, the control system
selects as soon as possible a configuration compati-
ble with the available resources. Hence, the search
algorithm selects the first admissible configuration.
Searching for a better configuration is performed dur-
ing the next configuration improvement step.

4.2.2 Configuration improvement

In this case, the control system searches for another
“significantly better” configuration. To this end,
from the current configuration, it derives a model of
the configuration and computes its rewards as ex-
plained in Section 2. Then it throws a search for
a new configuration as a CSP with an optimisation
based on comparison of the rewards.

4.3 Transition between configurations

Independently from the reconfiguration strategy, the
system applies the new configuration NC from the
current configuration CC as follows. The system
updates the location of the fusion node implemen-
tations, in case of new function assignments, and/or
updates the execution entities, in case of implemen-
tation swaps. In both cases the system behaves ac-
cording to a best effort policy.

4.3.1 Best effort

The system tries to prevent loss of data-flow driven
information present in it and already partially pro-
cessed. To do so it is assumed that two different im-
plementations of the same fusion function have the
same semantics in the IFP. Thus, input data of a fu-
sion node may come from computations ran in any
configuration without invalidating the next produced
results.

Let e′ (in NC ) be an updated version of the EF e

(in CC ). If e′ can restore some data from the state
of e, for instance by swapping an implementation of
a fusion function, data waiting in the input queues
are processed by the new execution entities. Hence
there is no loss of data in this case.

On the contrary, partially processed data present
on e are lost in case of assignments of the fusion
functions of e to an EF different from e′. In such a
reconfiguration, the links between the functions are
mapped into new paths according to the new location

5



Figure 4: Passer-by example of reconfiguration - ar-
chitecture view.

Figure 5: Passer-by example of reconfiguration - pro-
cess view.

of the fusion node containers. Each fusion node con-
tainer, and therefore its data, is destroyed on e and
instantiated on new EFs with empty input queues.

The current transition mechanism can be extended
in order to cope special properties such as synchro-
nization. In such a case and only when partially
processed data are lost during the transition, some
remaining data present in other EFs may be out of
synchronization. To deal with this property, two ex-
tensions have to be added to our model: a label linked
to the data that identifies the synchronization cri-
terium, i.e. the time of sensors read, and a control
element that deletes a data which is out of synchro-
nization after a transition. Synchronization mecha-
nism is presently not implemented in our system but
is already defined in our model.

5 Application example

5.1 Passer-by example

In the passer-by example (Figures 4 and 5) the com-
puters respectively located in room1 and room2 dis-
play two videos. The first one is the original view
of the user’s head (taken from a smart-phone).The
second one is a filtered view of the original view, and
the selected filter is chosen by the user through a
touch-pad. In the first configuration (t1) the user is

in the room1 and his smart-phone produces a video
of his head. The video is processed by powerful com-
puters located in room3 and the two videos are both
displayed on the screen in room1. While the user is
moving between the two rooms, the system detects
that the connection with the smart-phone is lost and
tries to reconfigure itself. As soon as the communi-
cation is restored with the smart-phone, the second
configuration (t2) executes the same fusion process
but the last functions are assigned to the second com-
puter in room2.

6 Conclusion

In this paper, we have presented problems raised by
reconfiguration features of a runtime model for con-
trolled dynamic distributed information fusion sys-
tem (CDDIFS). Dynamicity comes from the chang-
ing runtime support of our systems. Reconfiguring a
CDDIFS system means either correcting it because
of an error or a failure, or else increasing its quality
of service. Our proposal is based on several func-
tional components: - monitoring of the networked
run-time system providing indication on the avail-
ability of the sub-systems and raw performance mea-
sures; - computation of a dependability model of the
configurations running the Distributed Information
Fusion System. - definition of a Constraint Satis-
faction Problem (CSP) modeling the placement of
the fusion functions onto the Execution Framework;
We take advantage of efficient solvers for both com-
putation of performance indices (rewards) based on
the dependability model and resolution of the CSP.
We are hence able to reconfigure in the “best way”
with respect to a given set of criteria, our CDDIFS.
Future work will deal first with full automation of
all the components of our framework and installation
of the system on top of other middleware systems
like networked J2EE servers. We are also testing our
framework with several kinds of Information Fusion
Processes such as scientific computation systems, en-
ergy control systems, mechatronic systems.

References

[ALRL04] A. Avizienis, J.-C. Laprie, B. Randell,
and C. Landwehr. Basic concepts and
taxonomy of dependable and secure com-
puting. IEEE Transactions on Depend-
able and Secure Computing, 1:11–33,
2004.

[AWHK07] J. Anke, B. Wolf, G. Hackenbroich, and
K. Kabitzsch. A planning method for
component placement in smart item en-
vironments using heuristic search. In

6



Springer Berlin / Heidelberg, editor,
7th IFIP WG 6.1 Int. Conf. Distributed
Applications and Interoperable Systems
(DAIS 2007), number 4531 in LNCS,
pages 309–322, Paphos, Cyprus, 2007.

[BGM03] I. Bloch, Th. Géraud, and H. Mâıtre.
Representation and fusion of heteroge-
neous fuzzy information in the 3D space
for model-based structural recognition -
Application to 3D brain imaging. In
Fuzzy Set and Possibility Theory-Based
Methods in Artificial Intelligence, vol-
ume 148, pages 141–175, August 2003.

[CFGR95] G. Chiola, G. Franceschinis, R. Gaeta,
and M. Ribaudo. GreatSPN 1.7: GRaph-
ical Editor and Analyser for Timed and
Stochastic Petri nets. Performance Eval-
uation, 24(1,2):47–68, 1995.

[CLRS01] T. Cormen, C. Leiserson, R. Rivest, and
C. Stein. Introduction to Algorithms.
The Mit Press, Cambridge, MA, USA,
2001.

[HMM+07] W. Horré, N. Matthys, S. Michiels,
W. Joosen, and P. Verbaeten. A sur-
vey of middleware for wireless sensor
networks. Technical report, Depart-
ment of Computer Science, K.U.Leuven,
Katholieke Universiteit Leuven, B-3001
Heverlee (Belgium), August 2007.

[KIK03] T. Kichkaylo, A. Ivan, and V. Karam-
cheti. Constrained component deploy-
ment in wide area networks using ai plan-
ning techniques. In Proc. of the 17th
IEEE Int. Parallel and Distributed Pro-
gramming Symposium (IPDPS 2003),
2003.

[KZK97] M. Kam, X. Zhu, and P. Kalata. Sen-
sor Fusion for Mobile Robot Navigation.
In Proceedings - IEEE, volume 85, pages
108–119. IEEE Institute of electrical and
electronics, 1997.

[MB97] H. Mâıtre and I. Bloch. Image Fusion.
In Information Fusion to Data Mining,
volume 41, pages 329–335, 1997.

[MBD98] M. Ajmone Marsan, A. Bobbio, and
S. Donatelli. Petri nets in performance
analysis: an introduction, pages 211–
256. 1998.

[MDW06] A. Makarenko and H. Durrant-Whyte.
Decentralized Bayesian algorithms for

active sensor networks. Information Fu-
sion, 7(4):418–433, December 2006.

[OSG05] OSGi-Alliance. OSGi service platform -
release 4: http://www.osgi.org, 2005.

[PC03] O. Parsons and G. A. Carpenter.
ARTMAP neural networks for informa-
tion fusion and data mining: map pro-
duction and target recognition method-
ologies. Neural networks, 16:1075–1089,
2003.

[RAR07] J. S. Rellermeyer, G. Alonso, and
T. Roscoe. R-OSGi: Distributed appli-
cations through software modularization.
In Proc. of the ACM/IFIP/USENIX
8th Int. Middleware Conf. (Middleware
2007), number 4834 in LNCS. Springer,
November 2007.

[Sas02] J. Z. Sasiadek. Sensor fusion. Annual
Reviews in Control, 26(2):203–228, 2002.

[SL06] S. Shu-Li. Multi-sensor optimal fusion
fixed-interval Kalman smoothers. Infor-
mation Fusion, August 2006.

[WTS+08] K. Wan, A. Todo, H. Sawada, O. Pas-
salacqua, É Benoit, M.-Ph. Huget, and
P. Moreaux. Video conference smart
room: an information fusion system
based on distributed sensors. In Proceed-
ings of Mecatronics2008, May 2008.

[ZSB+08] X. Zhu, C. Santos, D. Beyer, J. Ward,
and S. Singhal. Automated application
component placement in data centers us-
ing mathematical programming. Int. J.
Netw. Manag., 18(6):467–483, 2008.

7


