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Abstract

Particle filter methods based on color distribution can be used to track non-rigid
moving objects in color videos. They are robust in case of noise or partial occlu-
sions. However, using particle filters on color videos is sensitive to changes in the
lighting conditions of the scene. The use of thermal infrared image sequences
can help the tracking process, as thermal infrared imagery is not sensitive to
lighting conditions. This paper presents a particle filter based method for object
tracking using automatic cooperation between the color and the infrared modal-
ities. As the infrared and the visible image sequences are acquired with different
cameras, a pre-step is spatio-temporal registration. After spatio-temporal reg-
istration, the proposed method is able to continuously track the target despite
difficult conditions appearing in one of the modality. Our cooperative tracking
method is successfully applied on several experimental datasets. Different test
sequences are presented, including tracking in the visible video with the help
of the infrared modality, or tracking in the infrared with the help of the visible
modality. Comments and future prospects raised by this method are finally
described.
keywords: tracking, particle filtering, thermal infrared, color distribution, im-
age sequences
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Introduction

Object tracking is a very intense research area in computer vision due to the
wide range of concerned domains. In surveillance applications, tracking people
is required to distinguish normal behaviors from suspicious ones[9] . In traffic
surveillance, it allows to evaluate traffic density and car speed in order to detect
accidents[8] . Tracking is used in motion analysis to help reeducation of disabled
people or for the training of professional athletes. In mobile robot applications,
tracking is needed to handle occlusions and disappeared objects [5] .
Many techniques have already been proposed, and can be divided in two groups[7] .
On the one hand, bottom-up approaches consist in partitioning the image in con-
sistent regions. These regions are then matched based on a similarity measure.
On the other hand, top-down techniques generate hypotheses representing hypo-
thetical target states and check them using measurement extracted from images.
Mean Shift, Bayesian filters like Kalman and particle filters belong to these tech-
niques. Kalman filter propagates and updates the mean and the covariance of
the posterior distribution in linear and Gaussian estimation problems. However,
in real world applications characterized by strong clutter, the posterior is multi-
modal and can be approached by particle filter. Particle filter methods based on
color distribution have been proven to be to very efficient for tracking non-rigid
moving objects in color videos (see Nummiaro et al.[7] ; Bichot et al.[2]). They
are indeed robust in case of noise or partial occlusions. However, most of track-
ing methods are sensitive to changes in the lighting conditions of the scene (for
instance a person crossing a shadowed area). When available, thermal infrared
cameras can help the tracking process in case of difficult lighting conditions.
Thermal infrared imagery is indeed nearly invariant to illumination changes.
The main contribution of this paper is to jointly use color and thermal infrared
modalities during tracking. Our cooperation method is based on particle filter-
ing, running in a cooperative way on both visible and infrared sequences: if a
difficulty arises in one of the modality, our algorithm tries to track in the second
one, till it is again able to track in the first modality.
In section of this paper, particle filtering is presented in the general case. As the
infrared and the visible image sequences are acquired with different cameras, a
spatio-temporal registration is performed as a pre-step. The application of par-
ticle filtering for color and thermal infrared images is exposed, and a method for
cooperative tracking between this two modalities is presented (section ). The
algorithm is then successfully applied on several experimental datasets. Differ-
ent test sequences are presented, including tracking in the visible video with
the help of the infrared modality, or tracking in the infrared with the help of
the visible modality (section ). Comments and future prospects raised by this
method are finally described (section ).
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Particle Filtering

Introduction

Particle filtering is very successful for non-linear and non-Gaussian estimation of
target state at time t, denoted by Xt, conditionally to measurements Z1:t from
first time to time t. This technique is used to implement a recursive Bayesian
filter and is reliable in cases of clutter and during occlusions. The key idea is
to represent a required posterior density function by a set of random samples{

s
(n)
t , n = 1 . . . N

}
with associated weights

{
π

(n)
t , n = 1 . . . N

}
and to compute

estimates based on these samples and weights thanks to

p(Xt|Z1:t) =
N∑

n=1

π
(n)
t δ(x− s

(n)
t ) (1)

s
(n)
t is a hypothetical state of target and π

(n)
t is proportional to the probabil-

ity of the state s
(n)
t . The set of samples is propagated through time in two

steps. Firstly, samples are selected proportionally to their weights: samples
with high weights are duplicated, whereas those with low weights are elimi-
nated (resampling step). Sample are then propagated and weighted according
to an importance density that describes regions of interest in the state space.

As the number of samples becomes very large, this characterization becomes
an equivalent representation of the usual functional description of the poste-
rior probability density function p(Xt|Z1:t) (i. e. pdf) and the particle filter
approaches the optimal Bayesian estimate.

There are many particle filtering methods which differ on the resampling
technique and the choice of the importance function. Reviews are proposed in
Arulampalam et al. work [1] and in Hue thesis[3]. In the next section, we focus
on the specific filter called Condensation [4] in which the importance density
is the dynamic model.

The Condensation algorithm

In the Condensation [4] method, a particle s
(n)
t−1 is drawn randomly from

p(Xt−1|Z1:t−1) by choosing it, with probability π
(n)
t−1, from the set of N samples

at time t− 1. Next draw s
(n)
t randomly from p(Xt|Xt−1 = s

(n)
t−1), one time-step

of the dynamical model, starting from xt−1 = s
(n)
t−1. A value s

(n)
t chosen in

this way is a fair sample from p(Xt|Z1:t−1). It can then be retained as a pair
(s(n)

t , π
(n)
t ) for the N -set at time t, where π

(n)
t = p(Zt|Xt = s

(n)
t ).

The flow chart and the algorithm of this method are respectively given in figure
1 and algorithm 1.
In practice, random variables can be generated efficiently, using binary search, if
we store cumulative probabilities c

(n)
t−1 as shown in algorithm 1 instead of storing

probabilities π
(n)
t−1.
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Figure 1: A time step in the Condensation algorithm as described in Mac-
Cormick and Isard work [6].

Using visual and thermal infrared modalities for
tracking

Spatio-temporal registration

Video registration is a necessary pre-step for being able to integrate data ob-
tained from different cameras. Spatial registration is the process of transforming
the different datasets into one coordinate system. Temporal registration con-
temporizes corresponding events. In our case, a thermal infrared and a color
camera are recording the scene where the target moves. Both cameras are lo-
cated during experiments as closed to each other as possible, which enables to
approximate the distortion between the two images by an affine transforma-
tion. We have chosen to first register temporally the image sequences, and then
spatially.

Temporal registration

The two videos have to be temporally synchronized to permit to switch at precise
moments between the visible and IR (infrared) modalities. Video sequences are
arranged in order to have the same frequency (frame per second - fps). One keeps
every nth frame from the video with the highest fps, where n is the ratio between
frequencies. In order to find the beginning and the end of each sequence, the
essential task is to identify a frame with corresponding events in both sequences.
Another possibility for synchronization is to use a digital timer visible in both
sequences.

Spatial registration

Because of the acquisition conditions, affine transformation is a reasonable as-
sumption for the registration precision we need for tracking. An affine trans-
formation is a superposition of elementar linear transformations (translation,
rotation and scaling), and can be expressed by only one transformation matrix.

The affine transformation from a point X to a point X′ is given by:

X′ = MX (2)
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Algorithm 1: The Condensation algorithm

Input:
{

(s(n)
t−1, π

(n)
t−1), n = 1...N

}
the particle set s

(n)
t−1 at previous time

step and their associated weights π
(n)
t−1

N : total number of particles
Output:

{
(s(n)

t , π
(n)
t ), n = 1...N

}
the particle set at current time step t

• Resampling
Generate a random number r ∈ [0, 1], uniformly distributed.

Find, by binary subdivision on m, the smallest m for which c
(m)
t−1 ≥ r.

• Prediction
Draw a random variable s

(n)
t from the dynamical density

p(Xt|Xt−1 = s
(m)
t−1).

• Correction
Update weights π

(n)
t ∝ p(Zt|Xt = s

(n)
t ) and normalise so that∑N

n=1 πn
t = 1

Store together samples with cumulative probabilities as
(s(n)

t , π
(n)
t , c

(n)
t ) where

c
(0)
t = 0,

c
(n)
t = c

(n−1)
t + π

(n)
t (n = 1, . . . , N)

• Estimate target state using the mean : E[Xt] =
∑N

n=1 π
(n)
t s

(n)
t

where the affine transformation matrix M is

M =




m11 m12 m13

m21 m22 m23

0 0 1


 .

and the point coordinates are considered as vectors extended by the normalizing
constant 1 (a point X with coordinates Xx and Xy is represented by the triplet
X = (Xx, Xy, 1)T ).
There are six unknown parameters in matrix M , so three control points in both
images are needed to determine the image transformation. Using this control
points, the coefficients mij are obtained by inverting matrix M and solving this
linear system.
For applying this affine transformation to the image to be registered, a new
image with required size is created. Then for each pixel in the new image we
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compute the corresponding coordinates in the original image using the inverse
transform M−1. In most cases, these coordinates are not integers, so values
of pixels in the new image are obtained by linear interpolation of neighboring
pixels in the original image.

Applying particle filtering on color and thermal imagery

In order to apply the particle filter on our visible and infrared image sequences,
we have to define the state space, the dynamical and the observation models.

State space

State space represents a set of all unknown information characterizing a tracked
object in time t. In our case, we have defined the state space as an upright
rectangular region with half width and length Hx and Hy. State vector is then:

Xt = {xt, yt,Hxt
,Hyt

}, (3)

where xt and yt are the coordinates of the center of the rectangle, Hxt and Hyt

are the half width and length of the rectangle.

Dynamical model

The dynamical model describes the evolution of the process. It relies on po-
sitions and velocities estimated in the previous frames. Velocity is updated
according to the difference of mean target position in the last frame and the
frame before last as follows:

ẋt = x̄t−1 − x̄t−2, (4)
ẏt = ȳt−1 − ȳt−2, (5)

where x̄ and ȳ is the mean value of the x and y coordinate respectively. The
new length and width of the rectangle are either the same as previous, or ±10%
chosen randomly with normal distribution. Finally, the model is given by

xt = xt−1 + ẋt−1 + σωt, (6)
yt = yt−1 + ẏt−1 + σωt, (7)

Hxt =
{

Hxt−1

Hxt−1 ±10%Hxt−1

, (8)

Hyt =
{

Hyt−1

Hyt−1 ±10%Hyt−1

, (9)

where σ is the standard deviation of dynamical noise and ω is unit zero-mean
Gaussian noise.
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Observation models

We want to apply the particle filter on two modalities (visible and thermal
infrared), thus we need two different observation models. Color distributions
are used as target models in the color video sequences and thermal distribution
in infrared sequences. Color and temperature histograms are chosen because
they achieve robustness against non-rigidity, rotation and partial occlusions.

Observation model for color image
Real world color video sequences are characterized by strong lighting changes.
Hence, in many applications, tracking uses rgb normalized space to reduce the
effect of these changes. We have chosen the observation model similar to the
work of Nummiaro et al.[7] . The distributions are determined inside an upright
rectangular region with half length and width Hx and Hy. To increase the
reliability of the distribution when boundary pixels belong to the background
or get occluded, smaller weights are assigned to the pixels that are further away
from the region center.

Observation model for thermal infrared image
An infrared camera measures and images the emitted infrared radiation from
an object. If properly calibrated, a thermal infrared camera can give a mea-
surement of the temperature of the object, as radiation is a function of object
surface temperature.
On infrared images, our observation model is computed using temperature his-
togram instead of color histogram.

Weighting of the samples

To weight the samples at the correction step of the Condensation method, we
compare target color distribution model q with the distributions p

s
(n)
t

evaluated

on the rectangular regions defined by hypothesis s
(n)
t (called candidate distri-

bution). The comparison is performed using the Bhattacharyya distance D(.).
The weight is expressed by

π
(n)
t ∝ 1√

2πσ
exp

(
−

D2(p
s
(n)
t

, q)

2σ2

)
(10)

where σ represents variance of measurement noise.
During filtering, samples with a high weight may be chosen several times,

leading to identical copies, which are diffused by dynamical noise, while others
with relatively low weights may not be chosen at all.

Finally, the mean state of the object is estimated at time t by

E[Xt] =
N∑

n=1

π
(n)
t s

(n)
t (11)
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Proposed method for cooperative tracking using visual and
IR information

We will assume that during the whole sequence, the object is trackable in at least
one modality. The goal of the proposed method is to continuously track the tar-
get despite difficult conditions appearing temporally in one of the modality (like
change of lighting, occlusion in one modality. . . ). Suppose we want to track an
object in a color video: if the target is being lost, we then switch to the infrared
sequence, where tracking is supposed possible. We use the Bhattacharyya dis-
tance of color distributions as a measure of similarity between candidates and
a reference model. When the target disappears, the color distribution changes
and the Bhattacharyya distance between the reference model and the estimated
position histograms increases. If the distance exceeds a given threshold, the tar-
get is considered to be lost. We then begin to track the object in the IR video.
Starting position for tracking is set to previous correctly estimated position in
color video that is, thanks to video registration, at the same coordinate system
as IR video. Tracking in IR video is then performed while tracking in the visible
is periodically tested. If the Bhattacharyya distance is less than the threshold,
the algorithm stops tracking in IR and continues only in visible video. The
diagram of this method is shown on figure 2. The same principle also stands
when infrared video is the first modality and color video the second.

Figure 2: State diagram of the cooperative tracking method: tracking starts
in the modality 1. After every processed frame, the Bhattacharyya distance
dist is evaluated. If it is greater than the threshold T relative to modality 1,
then tracking continues for x frames in modality 2. Both videos are processed
(modalities 1 + 2 ) for a maximum of y frames. During this trial period, the
Bhattacharyya distance is again computed in modality 1. If above the threshold
T, then the tracking comes back to modality 1, otherwise it returns to modality
2.
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Experiments

Tracking in the IR modality when target is lost in the vis-
ible one

Introduction

The following experiment illustrates how thermal infrared sequences can be
used when tracking is temporally lost in the visible modality. Our thermal
infrared camera is a ThermoVision A40M - Researcher. This camera delivers
high-resolution images (320 x 240 pixels) at a refresh rate of 50/60 Hz. It gives
measurement in the spectral range from 7.5 to 13 µm. This wavelength range
includes the thermal radiation of objects around the human body temperature
(≈ 310K).
The aim of the described experiment was to track a coffee cup filled with hot
water. Temperature of water was around 330K, thus distinguishable in the IR.
The cameras were located at about 4 meter far from the assumed target trajec-
tory, with a mutual distance of about 20 centimeters. IR video was recorded at
a frequency of 60 fps and with a resolution of 320×240 pixels. Visible video was
recorded at a frequency of 30 fps and with a resolution of 640× 480 pixels. The
experiment was the following: at the beginning, lamps were switched on and
created almost constant lighting. Under these conditions, tracking in the visible
video with particle filtering was possible. After some time, lamps were switched
off. The partially obscured room was then too dark to keep on tracking in the
visible video. After a few seconds, the lamps were switched on again.

Description of the different steps

Spatio-temporal registration

For temporal synchronization, every second frame was discarded from the IR
video to align fps rates of both videos. A frame with a rapid movement of a
chair hit by the the person handling the cup was picked as a reference event in
both sequences.
For spatial registration, two of the control points were chosen on the target tra-
jectory and one on an object in the motion plane. The spatial image registration
of the visible video on the IR video is shown on Figure 3.

Tracking in the visible modality

When the target is tracked only in the visible video, it is lost after switching
the lights off (Fig. 4). Because of the weak illumination, the target is indeed
not distinguishable from its environment and too far from its original model.
The change in the lighting conditions can be observed on the Bhattacharyya
distance graph (Fig. 5): it generates a rapid growth of the Bhattacharyya dis-
tance. After relighting, the distance falls again below the empirically defined
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Figure 3: Spatial registration of the visible video (left) on the IR video (right).
The red rectangle is the field of view common to both sequences.

threshold. Particle filter seeks neighboring areas and searches for color distri-
bution as similar as possible to the target model. After switch off and on the
lights, the estimation of target position diverges from the real target position
and does not recover: it stabilizes on a poster in the background.

Tracking using both modalities

As described in the previous section, tracking only in the visible modality fails.
Our cooperative tracking algorithm is then applied on both modalities (Fig. 6).
The tracking starts in the visible video, as for the previous example. After reach-
ing the Bhattacharyya distance threshold when the lights are off, it switches to
IR video, where the target can be followed.The algorithm periodically tries to
track in the visible for several frames, but as the room is still in the dark, the
Bhattacharyya distance remains too high. One recalls that, for each try in the
visible sequence, the tracking is launched from the last estimated position of the
IR sequence. After relighting, the Bhattacharyya distance in color video falls
below the defined threshold. In the next trial stage, the program switches back
to visible video and continues tracking. The same process happens a second
time when lights are again switched off and on (see figure 5).

Comments

This experiment has shown the relevance of the proposed cooperative method.
Tracking in the visible modality can not be performed under difficult conditions,
as colors are not sufficiently distinguishable after switching the lights off (even
while normalized color space is used). Cooperative tracking with infrared video
allows to follow the target during the whole record. The use of the infrared
modality enables to overcome temporary occlusion (created by the lighting con-
ditions). The tracking is performed in the visible modality once the reference
model is again valid.

10



frame 80 frame 100

frame 200 frame 310

Figure 4: The “coffee cup” sequence: tracking in the visible video. The esti-
mated position is displayed with a red cross and a green rectangle. Till frame
87 it is possible to track easily because lights are switched on. In frame 100
and 200, the estimated position has definitely left the coffee cup and follows
the head of the person. In frame 310, lamps are relighted but the particle filter
is not able to relocate the correct position, and stabilizes on a poster in the
background.

The next experiment illustrates conversely how visible modality can over-
come occlusions appearing when the tracking is performed in the IR modality.
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Figure 5: The “coffee cup” sequence: Bhattacharyya distance graph. In frame
87, the lights are switched off and the Bhattacharyya distance grows rapidly. In
frame 240, lamps are relighted but the particle filter has already lost the target.
Afterwards lights are again switched off in frame 428 and on in frame 574.

frame 80 frame 100

frame 200 frame 310

Figure 6: The “coffee cup” sequence: cooperative tracking using visible and IR
video. Frames in grayscale (100 and 200) originate from the IR video while
frames 80 and 310 originate from the visible camera. IR video assumes tracking
after switching off the lights and continues until lights are switched on. Then
the visible video assumes tracking again.
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Tracking in the visible modality when target is lost in the
IR one

Some materials do not transmit electromagnetic waves in particular wavelength
regions. Our thermal infrared camera gives measures in the wavelength range
from 7.5 to 13 µm. Glass is opaque in this part of the electromagnetic spectrum.
Given that, it is not possible to see and track objects behind windows, glasses,
windscreens etc.

Here, we are testing the opposite case compared to the previous experiment:
tracking in the infrared video till the target is lost. As mentioned, target motion
behind an IR obstacle - here, a window - makes tracking impossible in the IR
modality.

In our case, we are tracking a bottle of frozen water at a temperature of
approximately -5 ◦C, which is moving partially behind a window. While behind
the window, the bottle is not discernible in IR video and the target is lost (Fig.
7). The Bhattacharyya distance goes above the selected threshold (Fig. 8). The
particle filter detects the bottle when it reappears. The reason is that the bottle
is the only object in the scene with that particular temperature distribution and
size. Comparable behavior arises several times in the sequence. Figure 9 shows
tracking of the target using both modalities during the experiment.
The cooperative method swaps between IR and visible modalities when the
bottle is above/behind the window.

This experiment demonstrates that it is possible to use the cooperative
method in the other way, when visible video helps the tracking in an IR video.
This situation can occur for instance when we want to track with an IR camera
a person getting in a car: the car screen is opaque to IR wavelength.

13



frame 2 frame 83

frame 50 frame 106

Figure 7: The “cold bottle” sequence: tracking in IR video. It is possible to
track when the bottle is above the edge of the window edge (up to frame 32).
When behind the window, it disappears from the IR video (frames 33 to 79).
Then the particle filter recovers the target and tracks again the bottle. Same
action repeats four times in the sequence.

Figure 8: The “cold bottle” sequence: Bhattacharyya distance graph. From
the plot, it is clear when the bottle is hidden and reappears – Bhattacharyya
distance steeply grows (frames 32, 152, 277 and 424) and falls (frames 84, 221,
348 and 464) in that particular moments.
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frame 2 frame 83

frame 50 frame 106

Figure 9: The “cold bottle” sequence: cooperative tracking in IR and visible
modalities. This figure shows frames at same time as Fig. 7. When it was
impossible to track in IR behind the window, color video helps to keep track of
the target (frames 50 and 83).
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Conclusion and prospects

In this paper, a method for cooperative tracking using color and infrared image
sequences has been proposed. A particle filter is used as a tracking algorithm in
both modalities. It searches for color or temperature distributions similar to the
target model. The relevance of this method has been shown on two examples,
where one modality assumed the tracking during an occlusion occurring in the
other modality.

Due to cost reasons, visible cameras have often a better spatial resolution
than thermal infrared ones. An application of this work could be to track in
the visible range for a precise spatial segmentation, and when the target is
temporally lost, keeping track of the target in the infrared sequence, even if it
implies in return a lost in the spatial precision.

Current works aim at updating the model of the object during the tracking.
Here, we have supposed that the object model was the same before and after
the occlusions. If the model changes, the difficulty is to set the threshold on the
Bhattacharyya distance in order to be able to distinguish between a real change
in the model and an occurring occlusion.

On infrared images, observation model based only on temperature histogram
may be unable to distinguish two objects crossing each other and having the
same temperature (for instance two cars on a road crossing each other). Adding
motion information can help to overcome this case. An importance density
function based on motion has already been proposed for color sequences in our
previous works[2] . We are currently integrating motion information in the par-
ticle filters in order to increase the tracking robustness in the thermal infrared
sequences.
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