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ABSTRACT

There are several solutions to code the signal arising from optical long-baseline multi-aperture
interferometers. In this paper, we focus on the non-homothetic spatial coding scheme (multi-
axial) with the fringe pattern coded along one dimension on one detector (all-in-one). After
describing the physical principles governing single-mode interferometers using that sort of
recombination scheme, we analyse two different existing methods that measure the source
visibility. The first technique, the so-called Fourier estimator, consists of integrating the high-
frequency peak of the power spectral density of the interferogram. The second method, the
so-called model-based estimator, has been specifically developed for the Astronomical Multi-
BEam combineR (AMBER) instrument of the Very Large Telescope Interferometer (VLTI) and
deals with directly modelling the interferogram recorded on the detector. Performances of both
estimators are computed in terms of the signal-to-noise ratio (S/N) of the visibility, assuming
that the interferograms are perturbed by photon and detector noises. Theoretical expressions of
the visibility S/N are provided, validated through numerical computations and then compared.
We show that the model-based estimator offers up to 5 times better performances than the
Fourier one.

Key words: instrumentation: interferometers – methods: data analysis – techniques: interfer-
ometric.

1 I N T RO D U C T I O N

The next challenge of long-baseline optical interferometry is to com-
monly perform direct imaging of the observed source, analogous to
the way it is done in radio-interferometry (Högbom 1974) or in
infrared aperture masking (Tuthill, Monnier & Danchi 2000). Af-
ter the first promising results obtained with the Cambridge Opti-
cal Aperture Synthesis Telescope (COAST) (Baldwin et al. 1996;
Young et al. 2000), Navy Prototype Optical Interferometer (NPOI)
(Hummel 1998) and Infrared Optical Telescope Array (IOTA)
(Monnier et al. 2004a), such a technique should soon move one step
forward with the operating of the Astronomical Multi-BEam com-
bineR (AMBER) instrument (Petrov et al. 2000), the three beam re-
combiner of the Very Large Telescope Interferometer (VLTI). From
the beginning of 2005, AMBER will indeed take full benefit of the
unique combination of the great sensitivity of large aperture tele-
scopes and the spatial frequency coverage provided by the VLTI,
even though it will require multiple nights of observing to be able
to restore consistent images (Thiébaut, Garcia & Foy 2003; Tatulli
et al. 2004a). Then, in less than a decade, huge improvements are
expected to be accomplished with second generation instruments of

�E-mail: lastname@obs.ujf-grenoble.fr

the VLTI that will enable snapshot imaging by using four, six or
even eight telescopes simultaneously (e.g. Malbet et al. 2004).

One critical point in the design of future interferometric imaging
instruments is the choice of the beam recombination scheme, which
can become particularly complex, especially when dealing with
multi-aperture (N tel � 3) interferometers. Following the solution
that has been chosen for the AMBER instrument, we investigate the
properties of a single-mode non-homothetic spatial coding scheme
(from now on ‘multi-axial’) with the fringe pattern in the same spa-
tial dimension on the same detector (from now on ‘all-in-one’). In
other words, interferograms are obtained by mixing together all the
input beams arising from the different telescopes, thanks to output
pupils arranged along one single dimension (see Fig. 1). We analyse
the ways to estimate the source visibility from such interferograms.

Indeed, single-mode multi-axial all-in-one recombination ap-
pears particularly well suited in the framework of interferometric
imaging. First, it is the simplest and most compact way to recover
information arising from all the baselines. Moreover, it provides
a better transmission than Michelson recombination schemes (i.e.
temporal coding) because it makes use of fewer mirrors and beam
splitters for the same given number of input pupils. In addition,
the number of pixels required to code the signal is also smaller,
driving to higher limiting magnitudes (Lebouquin et al. 2004).
Furthermore, the remarkable spatial filtering properties of single-
mode waveguides allow to change the phase corrugations of the
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Figure 1. Sketch of a multi-axial all-in-one single-mode interferometer. t i

denotes the total ‘static’ transmission from the ith telescope aperture to the
optical plane A (i.e. mirrors, delay line, transmission of the ith fibre, . . .),
whereas ρi takes into account the ‘dynamical’ transmission, i.e. the coupling
coefficient of the ith fibre. i(α) is the interferogram. pi (α) and p j (α) are the
photometric channels. The photometric fluxes Fi , F j and the coherent flux
Fi j

c are defined in the optical plane A. ai (α) and bi (α) are respectively the
detected beams in the interferometric and photometric channels. In other
words, ai (α) and bi (α) are the transmission factor between the photometric
flux and the interferometric and photometric channels, respectively. Note
that the definition of ai (α) and bi (α) includes the transmission of the beam
splitter.

incoming turbulent wavefront into intensity fluctuations at the out-
put of the fibres. In other words, only one fraction of the source
flux, the so-called coupling coefficient, which depends on the Strehl
ratio of the pupil apodized by the fibre single mode (Coudé du
Foresto et al. 2000), remains in the interferogram. However, the very
advantageous counterpart is that the shape of the interferogram is
entirely deterministic, i.e. the form of the peaks in the Fourier plane
is fixed, and the fringe pattern is fully determined by two free pa-
rameters, its amplitude and its phase.

Before the advent of single-mode interferometers and in order to
overcome the problem of the turbulence, Roddier & Léna (1984)
proposed to estimate the visibility in the Fourier plane from the in-
tegration of the high-frequency peak of the long exposure power
spectral density of the interferogram. Then Coudé Du Foresto,
Ridgway & Mariotti (1997), in a natural way, used the same es-
timator to compute the visibility arising from the Fiber Linked Unit
for Recombination (FLUOR) experiment, the first interferometer
making use of single-mode waveguides. In multi-axial coding, we
can furthermore take advantage of the deterministic nature of the in-
terferogram shape to perform model fitting techniques. It was though
only recently, namely for the AMBER instrument, that this property
was used to estimate the visibility, by fitting the fringe pattern (its
phase and its amplitude) in the detector plane (Millour et al. 2004).

In this paper, we recall in Section 2 the general formalism of
multi-axial all-in-one recombination, i.e. the equation governing
the interferogram, as well as the two techniques currently used to
estimate the visibility. As mentioned above, the first technique, the
so-called Fourier estimator, integrates the high-frequency peak of
the power spectral density of the interferogram, whereas the sec-
ond one, the so-called model-based estimator, directly models the
interferogram in the detector plane. For both estimators, theoretical
expressions of the signal-to-noise ratio (S/N) of the visibility are
provided. In Section 3, those expressions are validated thanks to nu-
merical simulations of noisy interferograms. Then in Section 4 both
estimators are compared, from a formal point of view and in terms
of relative performances. The influence of instrumental parameters

is investigated as well, with a special emphasis regarding the choice
of the width of the reading window of the detector. The presence of
an atmospheric piston that blurs the fringes has not been taken into
account in this analysis. Indeed, regardless of the chosen estimator,
its effect results in an attenuation of the squared visibility (Colavita
1999), and the sensitivity of both estimators to this point is the same.

This paper is the first part of our study on multi-axial all-in-one
recombination. In a second paper (Lebouquin & Tatulli, in prepara-
tion), we analyse in which way such a recombination scheme allows
to optimize the visibility S/N thanks to specific geometric configu-
ration of the output pupils.

2 G E N E R A L F O R M A L I S M

Fig. 1 sketches the principle of multi-axial recombination in waveg-
uided interferometers. The light arising from the ith telescope is
filtered by a single-mode fibre to convert phase fluctuations of the
corrugated wavefront into intensity fluctuations. The fraction of light
ρi entering the fibre is called the coupling coefficient (Shaklan &
Roddier 1988) and depends on the Strehl ratio of the apodized pupil
(Coudé du Foresto et al. 2000). Making use of a beam splitter, one
part of the light is selected to estimate the photometry, thanks to
dedicated photometric channels. The remaining part of the light is
recombined with the beam coming from the jth telescope to form
fringes. The coding frequency of the fringes f i j is fixed by the sepa-
ration of the output pupils, which are arranged along one dimension.

When only the ith beam is lit, the signal recorded on the interfer-
ometric channel is the photometric flux Fi spread on the intensity
mode pattern ai (α), i.e. the diffraction pattern of the ith output pupil
weighted by the single mode of the fibre. α is the angular variable
in the image plane. Fi results in the source photon flux N atten-
uated by the total transmission of the instrument, i.e. the product
of the ‘static’ transmission t i and the coupling coefficient ρi of the
single-mode fibre:

Fi = Ntiρi . (1)

When beams i and j are lit simultaneously, the coherent addition of
both beams results in an interferometric component superimposed
onto the photometric continuum. The interferometric part, i.e. the
fringes, arises from the amplitude modulation of the coherent flux
Fi j

c at the coding frequency f i j . The coherent flux is the geometrical
product of the photometric fluxes, weighted by the visibility:

Fi j
c = 2N

√
t i t j

√
ρiρ j V i j ei(�i j +φ

i j
p ), (2)

where V i j ei�i j
is the complex modal visibility (Mège, Malbet &

Chelli 2001) and φi j
p takes into account a potential differential at-

mospheric piston. Note that, strictly speaking, the modal visibility is
not the source visibility. Rigorously, the modal visibility depends on
the convolution between the source visibility and the telescope trans-
fer function, which is atmosphere dependent in the optical range. As
such, the modal visibility is biased both by the geometric antenna-
lobe effect (the object is multiplied by the telescope point spread
function, as commonly known in radio-astronomy) and by the tur-
bulence. When the object is unresolved by one single telescope
however, the modal visibility can be fairly approximated by the ob-
ject one (Tatulli & Chelli 2005) and its estimation is robust (stable to
the level of 1 per cent or less) to a change of atmospheric conditions
during the calibration process (Tatulli et al. 2004b). In any case, a
further study of the relationship between the modal visibility and
the source visibility is beyond the scope of this paper, and further
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Figure 2. Image of a typical interferogram at the output of a multi-axial
all-in-one recombiner. Here is shown a two-beam recombination with in-
strumental contrast set to 1. The fringes are weighted by the intensity mode
pattern (dashed line). N pattern indicates the width of the detector reading win-
dow, the width of one mode pattern being defined as the interval between the
top of the Gaussian mode and where the amplitude of the Gaussian mode
has decreased by a factor exp (−π). This definition has been chosen so that
this width corresponds to half of the first lobe of the Airy pattern in the case
of pupils which are not weighted by the first mode of single-mode fibres.
N fri refers to the number of fringes in one mode pattern. This term is fixed
by the distance between the output pupils.

information can be found in the papers mentioned above. Here, we
consider our observable to be the modal visibility.

Such an analysis can be done for each pair of telescopes available
in the interferometer. As a result, the interferogram recorded on the
detector can be written in the general form:

i(α) =
Ntel∑

i

ai (α)Fi

+
Ntel∑
i< j

√
ai (α)a j (α)Ci j

B (α)Re
[

Fi j
c ei(2πα f i j +φ

i j
s (α)+�

i j
B (α))

]
,

(3)

where φi j
s (α) is the instrumental phase taking into account a possible

misalignment and/or differential phase between the beams ai (α) and
a j (α). Cij

B and �
i j
B (α) are respectively the loss of contrast and the

phase shift due to diffusion and polarization effects,1 which may not
be homogeneous along the fringe pattern. Fig. 2 gives an example
of a multi-axial all-in-one interferogram in the two-telescope case.

Thanks to the photometric channels, the number of photoevents
pi (α) coming from each telescope can be estimated independently:

pi (α) = Fi bi (α), (4)

where bi (α) is the detected beam in the ith photometric channel.
We can notice from equations (1) and (2) that the estimator of

the squared modal visibility ˜|V i j |2 results in the ratio between the
squared coherent flux and the photometric fluxes. Using the previous
definitions, we can set a generic form of the estimator as follows:

˜|V i j |2 = 〈|Fi j
c |2〉

〈4Fi F j 〉 . (5)

Note that 〈 |Fi j
c |2〉 is computed instead of 〈Fi j

c 〉 because, in the ab-
sence of fringe tracking, the random atmospheric differential piston
φi j

p totally blurs the coherent signal. It now remains to estimate Fi

and Fi j
c from the interferogram.

1Assuming a non-polarized incoming light.

2.1 Fourier estimator: integrating the power spectral density

In the Fourier space, the interferogram defined by equation (3) takes
the form of the sum of photometric and interferometric peaks. The
photometric peaks are centred at the zero spatial frequency, whereas
the interferometric peaks M̂i j

+ ( f ) are located at their respective spa-
tial coding frequency f i j , their counterpart M̂i j

− ( f ) being in the neg-
ative spatial frequency domain. This method in the Fourier space
requires that (i) the photometric peaks and the interferometric peaks
are not overlapping, and (ii) the high-frequency peaks are not over-
lapping one another. If these conditions are fulfilled, the squared
coherent flux can be estimated by computing the integral of the
power spectral density |M̂i j

+ ( f )|2 (Roddier & Léna 1984; Conan
1994), over its frequency support, i.e. [ f i j − D/λ, f i j + D/λ]
where D is the diameter of the output pupil. From the definition of
the coherent flux and using the Parseval equality, one obtains∫

|M̂i j
+ ( f )|2d f =

∣∣Fi j
c

∣∣2

∫
Ci j

B
2
(α)ai (α)a j (α) dα

4
. (6)

The photometric flux is easily computed from the photometric chan-
nel (see equation 4):

P̂ i = Fi

∫
bi (α) dα. (7)

Then the estimation of the fringe contrast Ci j is written as

˜|Ci j |2 =
〈 ∫ |M̂i j

+ ( f )|2d f
〉

〈P̂ i P̂ j 〉
= ˜|V i j |2 × C2

r , (8)

with

C2
r =

∫
Ci j

B
2
(α)ai (α)a j (α) dα∫

bi (α) dα
∫

b j (α) dα
(9)

being the instrumental contrast of the recombiner that depends on
the contrast loss due to polarization effects, on the alignment of the
beams ai (α) and a j (α), and on the flux ratio between the interfero-
metric and the photometric channels. Note that the power spectral
density of the interferogram has to be properly unbiased from photon
and detector noise (Perrin 2003).

2.2 Model-based estimator: modelling the interferogram

The model-based estimator has been introduced for the first time
in the data reduction process of the AMBER instrument (Millour
et al. 2004). It consists of modelling the interferogram thanks to a
priori knowledge of the instrument. The purpose of such a signal
processing is twofold: (i) to develop optimized algorithms in terms
of performances of the instrument, i.e. the S/N of the visibility; and
(ii) in contrast to the Fourier estimator, to authorize high-frequency
peak overlapping when dealing with multibeam (N tel > 3) recombi-
nation, thus allowing to code the interferogram on fewer pixels. This
second point is beyond the scope of this paper. Let us just mention
here that plainly choosing the different coding frequencies is crucial
to optimizing the design of the multibeam recombiner making use
of integrated optics. This is especially true in the case of imaging
instruments such as VITRUV (Lebouquin et al. 2004) that are re-
combining four beams or more, as is shown in our second paper on
the subject (Lebouquin & Tatulli, in preparation).

A full description of this estimator can be found in Millour et al.
(2004). We only recall here the basics principles. To model the
signal on the detector, equation (3) has to be rewritten in its sampled
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version, where k stands for the pixel number, between 1 and N pix:

ik =
Ntel∑

i

Fi ai
k +

Ntel∑
i< j

c(i, j)
k Ri j + d (i, j)

k I i j , (10)

with

c(i, j)
k = Ci j

B (k)
√

ai
ka j

k√∑
k Ci j

B
2
(k)ai

ka j
k

× cos
[
2παk f i j + φi j

s (k) + �
i j
B (k)

]
(11)

and

Ri j =
√∑

k

Ci j
B

2
(k)ai

ka j
k Re

[
Fi j

c

]
, (12)

d (i, j)
k and I i j being the quadratic counterpart of c(i, j)

k and Ri j , re-
spectively. c(i, j)

k and d (i, j)
k are called the carrying waves of the signal

at the coding frequency f i j , because they ‘carry’ (in terms of am-
plitude modulation) Ri j and I i j , which are directly linked to the
complex coherent flux. Furthermore, the photometric fluxes are still
computed from the photometric channels (see equation 7):

pi = Fi
∑

k

bi
k . (13)

Fi and Fi j
c are then jointly estimated from the photometry (pi ) and

the interferogram (i k) by resolving a set of (N pix + N tel) linear
equations with (2N b + N tel) unknowns [N b being the number of
pairs of telescopes, i.e. N b = N tel(N tel − 1)/2]:[

i
p

]
= [C]

[
R
I
F

]
, (14)

where the matrix C takes the detailed form
Nb︷ ︸︸ ︷⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.. c(i, j)
1 ..

| : |
.. c(i, j)

Npix
..

0 .. 0

| . . . :

0 .. 0

Nb︷ ︸︸ ︷
.. d (i, j)

1 ..

| : |
.. d (i, j)

Npix
..

0 .. 0

| . . . |
0 .. 0

Ntel︷ ︸︸ ︷
.. ai

1 ..

| : |
.. ai

Npix
..∑

b1
k .. 0

| . . . |
0 ..

∑
bNtel

k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15)

The matrix C entirely characterizes the instrument. It depends on the
shape of the detected beams ai

k, bi
k and on the carrying waves c(i, j)

k ,

d (i, j)
k that hold information about the interferometric beam

√
ai

ka j
k ,

the coding frequencies f i j and the instrumental differential phases
φi j

s , and the polarization state within Cij
B and �

i j
B . Such quantities

can be calibrated in a laboratory, hence they are assumed to be
perfectly known. The calibration procedure is fully described by
Millour et al. (2004).Chas to be inverted in order to solve the system.
In the AMBER experiment, the generalized inverse of C has been
called the Pixel To Visibility Matrix (P2VM), because it enables to
compute the visibility of the fringes from the measurements on the
detector. The estimation of the contrast is written as

˜|Ci j |2 =
〈

Ri j 2〉 + 〈
I i j 2〉〈

pi p j
〉 = ˜|V i j |2 × C2

r . (16)

C2
r is still the squared instrumental contrast

C2
r =

∑
k Ci j

B
2
(k)ai

ka j
k∑

k bi
k

∑
k b j

k

(17)

Table 1. Covariances for both estimators.

Fourier estimator Model-based estimator

Cov (|Fi j
c |2, FiFj) = 0 Cov (|Fi j

c |2, FiFj) �= 0
Cov (Fi , F j ) = 0 Cov (Fi , F j ) �= 0

with the same definition as in equation (9). Note that the quantity
Ri j 2 + I i j 2 has to be properly unbiased, like the power spectral
density in the Fourier plane.

2.3 S/N of the modal visibility

Using second-order expansion of Papoulis (1984), we derive from
equation (5) the relative error (i.e. the inverse of the S/N) of the
squared visibility:

E2(|V i j |2) = σ 2(
∣∣Fi j

c

∣∣2
)∣∣Fi j

c

∣∣2
2 + σ 2(Fi )

Fi
2 + σ 2(F j )

F j
2

+ 2
Cov(Fi , F j )

Fi F j

− 2
Cov

(∣∣Fi j
c

∣∣2
, Fi F j

)∣∣Fi j
c

∣∣2
Fi F j

. (18)

The main difference between both approaches lies in the following
remark: in the case of the Fourier estimator, the coherent and pho-
tometric fluxes are directly estimated from the measurements, each
independently, whereas in the case of the model-based estimator, the
coherent and photometric fluxes are jointly reconstructed from the
measurements by way of computation of the P2VM matrix, and are
therefore correlated. As a result, we have the situations presented in
Table 1.

Detailed computation of equation (18) is given in Appendix A
for both estimators, assuming that the interferogram is corrupted
by photon and detector noise. Atmospheric noise is neglected here
because it has been shown in Tatulli et al. (2004b) that, in presence
of modal filtering (and in contrast to multispeckle interferometry;
Goodman 1985), speckle noise is the dominant noise in the case
of very bright sources (negative magnitudes) only, and is therefore
marginally relevant. Furthermore, we did not take into account in
these computations the effect of the atmospheric piston because it
only results in the attenuation of the squared visibility, the sensitivity
of both estimators to this specific point being the same.

In next section, we propose to simulate the estimation of the
modal visibility from multi-axial recombination and to validate our
theoretical calculations. Then we compare the performances of both
estimators.

3 VA L I DAT I O N O F T H E T H E O R E T I C A L

E X P R E S S I O N S

In order to validate our theoretical expressions derived in the pre-
vious section, we perform statistical simulations of noisy inter-
ferograms. For the sake of simplicity, we assume from now on a
two-telescope interferometer. Note however that the validity of our
theoretical approach has been also checked for an increasing number
of telescopes. Moreover, a deep analysis of multibeam (�3) recom-
bination is proposed in our second paper on the subject (Lebouquin
& Tatulli, in preparation).

Following the formalism of Section 2, the interferogram arising
from multi-axial all-in-one recombination is entirely defined by the
following parameters.
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Single-mode multi-axial interferometry 1163

(i) The shape of a(α), which is assumed to be the same for
each beam. It arises from the inverse Fourier Transform of the
autocorrelation of the output pupil of diameter D. To take into ac-
count the weighting of the single-mode fibre, we assumed a Gaus-
sian shape with a pupil stop of width D (that is a convolution by
a Bessel function in the detector plane). As a result, the low- and
high-frequency peaks have truncated Gaussian shapes with a base
width of 2D/λ. We consider that the photometry is recorded on one
pixel.

(ii) The number of fringes N fri in the interference pattern for
the lowest coding frequency. It is defined as the distance between
the closest output pupils in D/λ units (see Fig. 2). We choose here
N fri = 2.

(iii) The number of pixels per fringe N pf to code the interfero-
gram. It must be chosen such that it fulfils the Shannon criteria for
the highest frequency coding f max of the carrying waves. If it is writ-
ten under the form f max = β D/λ, then the number of pixels must
verify N pf � 2β. For the two-telescope case considered here, we
arbitrarily set N pf = 2.5.

(iv) The width of the detector reading window N pattern that fixes
the total number of fringes taken into account in the interferogram
and hence the total number of pixels N pix read on the detector. We
impose in this section N pattern = 2. This choice means that the de-
tector reading window is two mode patterns wide, exactly as if we
only would consider the fringes in the first lobe of the diffraction
pattern, in the case of an Airy disc. Such choice seems reasonable at
first thought because outside this lobe the interferogram is severely
attenuated (as one can notice in Fig. 2). Nevertheless, a deeper anal-
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Figure 3. Theoretical (solid lines) and simulated (cross) values of the modal visibility mean value (top) and S/N (bottom), for the P2VM (left) and the Fourier
(right) estimators. Plots are shown as a function of the number of photoevents per pixel in the interferogram. Detector noise has been set to σ = 15 e− pixel−1.
The vertical dashed line shows the limit between the detector and the photon noise regime. For the estimation of the visibility arising from numerical simulations,
we plot the statistical error bars due to a limited number of samples (1000 data sets), i.e. the dispersion of the 1000 estimated modal visibilities, divided by the
square root of the number of samples.

ysis of this specific point shows that such a parameter is a key issue,
as will be discussed in Section 4.2.

(v) The fraction of flux going into the photometric channels (i.e.
the transmission of the beam splitter). We assume here that the beam
splitter selects 30 per cent of the flux for the photometry.

For a given source magnitude, the number of photoevents oc-
curring on each pixel of the interferometric and the photometric
channels are computed following equations (3) and (4) respec-
tively, assuming photon noise and additive detector noise with
σ = 15 e− pixel−1. Such a procedure is then repeated until we ob-
tain a sample of 1000 data sets, which is large enough to perform
statistics. For both estimators, we compute the theoretical and statis-

tical mean value and S/N of the modal visibility ˜|V i j |2, using equa-
tions (5) and (18). Fig. 3 shows the results of our computations,
for both methods (formal and simulated) and for both estimators
(P2VM and Fourier), setting the true value of the modal visibility
to 0.5. Theoretical calculations and numerical simulations are in
excellent agreement, both for the estimated visibility and the S/N.
This study validates the theoretical expressions of both estimators
as well as their respective theoretical S/N.

4 D I S C U S S I O N

4.1 Estimator relative performances

Although both estimators arise from the same formal definition
of equation (5), they exhibit fundamental conceptual differences.
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1164 E. Tatulli and J.-B. LeBouquin

Obviously, both techniques present the same instrumental contrast
(see equations 9 and 17, respectively), which is not surprising be-
cause the instrumental design is strictly the same, as well as the same
estimation of the photometry (see equations 7 and 13, respectively).
However, the very difference lies in the computation of the coherent
flux.

First, in the Fourier case, the coherent flux results in a second-
order (i.e. quadratic) estimation, i.e. |Fi j

c |2 is directly estimated. In
contrast, the model-based computation is equivalent to a first-order
estimation, that is the complex quantity Fi j

c is calculated, and then
the squared modulus is taken to get rid of the atmospheric differ-
ential piston. This latter method is equivalent to fit the complex
Fourier Transform of the interferogram. A second-order estimator
based on modelling would have been the fitting of the power spec-
tral density itself, or equivalently, the fitting of the autocorrelation
of the interferogram in the detector plane. Performing first-order
estimation is above all interesting because it allows to separate in-
formation (i.e. the visibilities for each baseline) before computing
the squared modulus. As a result, this method prevents ‘cross-talk’
between the baselines even if the peaks are partially superimposed,
which is particularly worthwhile in the case of visibility estimation
from multibeam (�3) interferometers, as developed in our second
paper on the subject (Lebouquin & Tatulli, in preparation). We also
infer that a first-order estimation drives better (or at worst identical)
performances than a quadratic one, though a thorough analysis of
this point, which is beyond the scope of this paper, remains to be
done. Moreover and above all, the model-based algorithm, thanks
to the P2VM calibration matrix, entirely benefits from knowledge
of the instrument, whereas the Fourier estimator does not.2 When
making use of the model-based estimator, the shape of the inter-
ferogram is perfectly known: precisely, its envelope (the diffraction

pattern
√

ai
ka j

k ) as well as its coding frequency and its instrumental
phase. This a priori information is gathered in the matrix C defined
in Section 2.2. Also clearly, introducing perfectly known (i.e. true
and un-noisy) a priori information in the data reduction procedures
can only improve the performances of the corresponding estimator.
These two remarks and particularly the second point explain why
the model-based algorithm leads to better performances than the
Fourier one, as is illustrated in Fig. 4. Note that the higher the visi-
bility, the greater the S/N improvement. In the two-telescope case, a
gain of a factor 3 to 5 can be achieved at best, for unresolved sources.

However, this analysis assumes perfect calibration of the instru-
ment. It means that the calibration matrix must be both perfectly
stable in time and very precise, i.e. recorded with an S/N much
higher than the S/N of the interferograms. If the instrument is not
stable between the calibration procedures and the observations, the
P2VM will drift and, as a result, the estimated visibilities will be
biased. Also, if the calibration is not precise enough, it will be the
limiting factor of the visibility S/N. In the case of the AMBER
instrument, the calibration procedure is quite complex and it can
require a great integration time (several minutes) to get a useful
and precise calibration. More generally, the time and the way to
calibrate an instrument severely depends on its stability and on its
complexity. Ambitious designs such as the ‘silicon v-groove array’
of the MIRC recombiner (Monnier et al. 2004b), or recombination
schemes making use of integrated optics chips (Berger et al. 2003;
Lebouquin et al. 2004) should drive drastic improvements on this
specific point.

2Although some approximate assumptions about the peak position have to
be made to set the integration interval.
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Figure 4. Ratio between the S/N of the Fourier estimator and the S/N of
the model-based one, as a function of the number of photoevents per pixel
in the interferogram. Detector noise is still σ = 15 e− pixel−1. The curves
are plotted for three types of sources: fully resolved (V = 0.05, solid line),
moderately resolved (V = 0.5, dashed line) and unresolved (V = 0.95, dotted
line).

4.2 Influence of instrumental parameters

Previous analysis has been done with a given configuration of the
instrument. One last point to investigate is how both estimators be-
have, one compared to the other, when the parameters governing
the interferogram are varying. Obviously, modifying the number of
pixels per fringe or even the detector noise level will result in similar
changes for both estimators, i.e. the slope of the S/N in the detector
noise regime. Also, changing the coding frequency, which only de-
fines the position of the interferometric peak in the Fourier space,
will lead to equivalent modifications of the performances of both es-
timators, at least as far as the high-frequency peaks are separable.3

At last, choosing the optimized area on which the interferogram
gives valuable information without adding too much detector noise
is a crucial point. Because the model-based algorithm takes into
account the shape of the interferogram whereas the Fourier estima-
tor does not, the compromise to find is not the same in both cases.
It means the response to a change of the detector reading window
will differ with regards to the chosen estimator. The effects of this
parameter are investigated here.

In a multi-axial combination, one has the choice of the limits of
the reading window on the detector, i.e. of the number of pixels to
consider. Also, the larger the window, the more signal you integrate,
but the more detector noise you record too. In Fig. 5, we show the
evolution of the S/N of the modal visibility as a function of the
width of the window on the detector (here defined in the fraction
of intensity mode pattern). The entire first lobe of the fringe pattern
contains N fri = 8 fringes, with N pf = 4 pixels per fringe. All the
other parameters of the instrument are kept unchanged.

(i) Fourier estimator: in the photon-poor regime, at the detection
limit of the instrument, the S/N shows a maximum when the width
of the reading window is about half of the first lobe of the envelope.
Beyond that point, the pixels have very small individual S/N and
only bring a noise contribution in the estimation of the visibility. In

3When N tel � 3, see Lebouquin & Tatulli (in preparation).
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Figure 5. S/N of the modal visibility as a function of the detector reading window, in the fraction of intensity mode pattern, for photon-poor (left, here
1γ pixel−1 ) and photon-rich (right, here 106 γ pixel−1) regimes. Results are displayed for marginally resolved (V = 0.9, top) and fully resolved (V = 0.1,
bottom) sources. The instrumental parameters are: N fri = 4 fringes per beam, N pf = 4 pixels per fringe, and a detector noise of σ = 15 e− pixel−1. The vertical
dashed lines correspond to recording one entire mode pattern (see Fig. 2).

the photon-rich regime, the S/N reaches its maximum for the same
width of the reading window but exhibits a plateau as the width
increases. This behaviour continues for as long as the S/N of each
individual pixel is dominated by the photon noise. Then the S/N of
the visibility starts to decrease. The width of the plateau depends
on the incoming flux of the source and is all the more large than the
source is bright.

(ii) Model-based estimator: as for the Fourier estimator, the shape
of the S/N for the model-based estimator is linked to the shape of
the fringe pattern. However, in this case, the S/N is increasing with
the width of the detector window and does not exhibit a maximum
(in other words, the optimum is found for an ‘infinite’ width). As
a matter of fact, thanks to the generalized inverse of the matrix
C that takes into account the shape of the interferogram, each pixel
contribution is weighted by its individual S/N. So the pixels with bad
S/N (due to the envelope or fringe modulation) are ‘removed’ from
the reconstruction and do not introduce noise into the estimation
of the visibility. Nevertheless, we can see that the slope of the S/N
becomes almost flat from a detector width of about one intensity
mode pattern.

This analysis shows that, in the framework of interferometric
observations making use of multi-axial all-in-one recombination
and in the case of bright sources, it is worth the effort integrating

the interferogram on the entire lobe in order to optimize the S/N
of the visibility. This statement stands for both estimators. When
observing faint sources, i.e. when reaching the limiting magnitude
of the instrument, and in the specific case of the Fourier estimator,
performances are slightly improved when reducing the width of the
reading window to half of the lobe, although the gain on the S/N
never exceeds a factor of 2.

5 C O N C L U S I O N

In this paper, we have developed the theoretical formalism that al-
lows to model single-mode interferometers using multi-axial all-in-
one coding, from the signal processing point of view. From this for-
malism, two estimators of the visibility have been analysed. The first
one consists of using the classical integration of the power spectral
density of the interferogram in the Fourier plane, whereas the second
one deals with modelling the interferogram in the detector plane, as
has been chosen for the AMBER experiment. Performances of such
estimators have been computed. Considering photon and detector
noises, theoretical expression of the S/N of the visibility have been
recalled for the Fourier estimator, and derived for the first time in
the case of the model-based estimator. These expressions have been
validated through numerical simulations and then compared. We
have shown that the second technique offers optimal performances
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1166 E. Tatulli and J.-B. LeBouquin

because it makes full use of knowledge about the instrument, es-
pecially the shape of the interferogram. In the two-telescope case
that has been emphasized in this paper, we have demonstrated that
the model-based estimator enables at best to achieve over a factor
of 5 of the visibility S/N, compared to the Fourier one. Finally, we
have addressed the question of the width of the reading window of
the detector. This point is indeed a crucial issue when dealing with
multi-axial recombination. We have shown that, regardless of the
chosen estimator, integrating the entire lobe of the intensity mode
pattern offers optimized performances.
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Coudé Du Foresto V., Ridgway S., Mariotti J.-M., 1997, A&AS, 121, 379
Goodman J. W., 1985, Statistical Optics. Wiley, New York
Högbom J. A., 1974, A&AS, 15, 417
Hummel C. A., 1998, Proc. SPIE, 3350, 483
Lebouquin J.-B. et al., 2004, Proc. SPIE, 5491, 1362
Malbet F. et al., 2004, Proc. SPIE, 5491, 439
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A P P E N D I X A : T H E O R E T I C A L S / N

O F T H E V I S I B I L I T Y

We assume that the interferogram as well as the photometric outputs
are corrupted by photon (Poisson) noise and additive Gaussian noise
of variance σ 2.

4ftp://ftp-icf.llnl.gov/pub/Yorick/doc/index.html

A1 Generic expression

The estimator of the squared visibility can be expressed in a generic
form

˜|V i j |2 ∝
〈∣∣Fi j

c

∣∣2〉
〈Fi F j 〉 , (A1)

where Fi j
c is the coherent flux at the frequency f i j , and Fi , F j are

the photometric fluxes.
The relative error E(|V i j |2) on the squared visibility is then given

by Papoulis (1984):

E2(|V i j |2) = σ 2
(∣∣Fi j

c

∣∣2)∣∣Fi j
c

∣∣2
2 + σ 2(Fi )

Fi
2 + σ 2(F j )

F j
2

+ 2
Cov(Fi , F j )

Fi F j

− 2
Cov

(∣∣Fi j
c

∣∣2
, Fi F j

)∣∣Fi j
c

∣∣2
Fi F j

. (A2)

Theoretical expression of each term of the previous equation is now
given for both estimators.

A2 S/N for the Fourier estimator

The coherent flux is linked to the spectral density of the interfer-
ogram by the following relationship (see equation 6, written in its
sampled form):∣∣Fi j

c

∣∣2 ∝
∑

k

∣∣M̂i j ( fk)
∣∣2

. (A3)

Hence, the expected value and the error on the coherent flux is
written as∣∣Fi j

c

∣∣2 ∝
∑

k

∣∣M̂i j ( fk)
∣∣2

, (A4)

σ 2
(∣∣Fi j

c

∣∣2) ∝
∑

k

σ 2
(∣∣M̂i j ( fk)

∣∣2)
+

∑
k

∑
l �=k

Cov
(∣∣M̂i j ( fk)

∣∣2
, M̂i j ( fl )

∣∣2)
. (A5)

The statistics of the spectral density of an interferogram have already
been computed by Goodman (1985) in the case of photon noise and
completed by Tatulli et al. (2004b) with detector and atmospheric
noise. We recall the results here, without taking into account the
atmospheric noise (i.e. speckle noise):∣∣M̂i j ( fk)

∣∣2 = N
2∣∣̂i( fk)

∣∣2 + N + Npixσ
2
det, (A6)

where we recognize the bias part due to photon noise (N , Goodman
1985) and additive Gaussian noise (N pix σ 2

det, Tatulli et al. 2004b),

σ 2(|M̂i j ( fk)|2) = 2N
3 |̂i( fk)|2 + 4N

2 |̂i( fk)|2 + N
2

+ N 2
pixσ

4 + 3Npixσ
4 + 2Npixσ

2 N

+ 2Npixσ
2 N

2 |̂i( fk)|2, (A7)
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Cov(
∣∣M̂i j ( fk)

∣∣2
, M̂i j ( fl )

∣∣2
) = 2N

3
Re[̂i( fk )̂i∗( fl )̂i∗( fk − fl )]

+ 2N
3
Re[̂i( fk )̂i( fl )̂i∗( fk + fl )]

+ 2N
2 |̂i( fk)|2

+ 2N
2 |̂i( fl )|2

+ N
2 |̂i( fk − fl )|2

+ N
2 |̂i( fk + fl )|2

+ N + 3Npixσ
4, (A8)

where î( f ) is the normalized spectral density [such as î(0) = 1],
i.e.

î( f ) = V ( f )ĝ( f ), (A9)

î( f ) = V ( f )

Ntel
ĝ( f ), (A10)

for the photometric and the interferometric peaks respectively, N tel

being the number of telescopes, and ĝ( f ) being the normalized
Fourier Transform of the beam a(α) (assuming, the same shape for
the whole beams). Furthermore, we have

σ 2(Fi ) = Fi + σ 2
det. (A11)

Finally, because the coherent flux and each photometric flux are
estimated independently, we have

Cov
(∣∣Fi j

c

∣∣2
, Fi F j

) = 0, (A12)

Cov(Fi , F j ) = 0. (A13)

A3 S/N for the P2VM estimator

We recall that the real and imaginary part of the weighted complex
visibility are defined by the system of equations[

i
P

]
= [C]

[
R
I
F

]
. (A14)

If we call M = mk , k ∈ [1..N pix + N tel] the vector resulting in the
concatenation of the interferogram i and the photometry P, we can
write

Ri j =
Npix∑

k

ξ
i j
k mk, (A15)

I i j =
Npix∑

k

ζ
i j
k mk, (A16)

Fi =
Npix∑

k

β i
kmk, (A17)

where ξ
i j
k , ζ i j

k and β i
k are the coefficients of the P2VM matrix. Hence,

one obtains∣∣Fi j
c

∣∣2 = Ri j 2 + I i j 2 =
∑

k

∑
l

[
ξ

i j
k ξ

i j
l + ζ

i j
k ζ

i j
l

]
mkml , (A18)

Fi F j =
∑

k

∑
l

β i
kβ

j
l mkml . (A19)

Here, the covariance between the coherent flux and the photometric
fluxes, as well as the covariance between the photometric fluxes,
have to be taken into account. For the sake of simplicity, equa-
tion (A2) can be rewritten:

E2(|V i j |2) = σ 2
(∣∣Fi j

c

∣∣2)∣∣Fi j
c

∣∣2
2 + σ 2(Fi F j )

Fi F j
2

− 2
Cov

(∣∣Fi j
c

∣∣2
, Fi F j

)∣∣Fi j
c

∣∣2
Fi F j

. (A20)

It now remains to compute all the terms knowing that

σ 2
(∣∣Fi j

c

∣∣2) =
∣∣Fi j

c

∣∣4 −
∣∣Fi j

c

∣∣2
2

, (A21)

σ 2(Fi F j ) = Fi 2 F j 2 − Fi F j
2
, (A22)

Cov
(∣∣Fi j

c

∣∣2
, Fi F j

) =
∣∣Fi j

c

∣∣2
Fi F j −

∣∣Fi j
c

∣∣2
Fi F j . (A23)

To lighten the calculations, we introduce the variable γ such that
γ

i j
kl = ξ

i j
k ξ

i j
l + ζ

i j
k ζ

i j
l . Then we can compute the second-order statis-

tics of the squared coherent flux and the photometric fluxes:∣∣Fi j
c

∣∣2 =
∑

k

∑
l

γ
i j
kl mkml

=
∑

k

γ
i j
kk m2

k +
∑

k

∑
l �=k

γ
i j
kl mk ml , (A24)

Fi F j =
∑

k

β i
kβ

j
k m2

k +
∑

k

∑
l �=k

β i
kβ

j
l mk ml . (A25)

Then the fourth-order statistics F4 = |Fi j
c |4, Fi 2 F j 2

, |Fi j
c |2 Fi F j

can be described by the generic equation

Table A1. Coefficients of the fourth-order statistics of the coherent and
photometric fluxes: (a) |Fi j

c |4 and Fi 2 F j 2; (b) |Fi j
c |2 Fi F j .

(a) |Fi j
c |4 Fi 2 F j 2
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F4 =
∑

k

α
(4)
k m4

k +
∑

k

∑
l �=k

α
(3)
kl m3

k ml

+
∑
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∑
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k ml mn
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∑
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(1)
klnomk ml mn mo, (A26)

where α
(1)
klno, α

(2,1,1)
kln , α

(2,2)
kl , α

(3)
kl and α

(4)
k are given in Table A1 in

each specific case. Previous equations can be computed knowing

the statistics of mk , i.e.

m2
k = mk

2 + mk + σ 2, (A27)

p2 = p2 + p + Nphotpixσ
2, (A28)

N photpix being the number of pixels to code the photometric outputs.

The third and fourth moments m3
k and m4

k are derived from first-
and second-order ones assuming Gaussian statistics for the sake of
simplicity.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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