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ABSTRACT
Future and planned optical long-baseline interferometers will allow rapid spectro-imaging at

high angular resolution. A non-homothetic Fizeau instrument using optical fibres is one of the

most promising concepts because it combines good sensitivity and high spectral resolution

capabilities. However, when increasing the number of input telescopes, one critical issue is

the design of the beam recombination scheme, at the heart of the instrument. Extending our

previous analysis on the multi-axial ‘all-in-one’ recombination, where the beams are mixed

all together, in this paper we tackle the possibility of reducing the number of pixels that are

coding the fringes by compressing the pupil plane from a partially redundant output pupils

configuration. Shrinking the number of pixels, which drastically increases with the number

of recombined telescopes, is indeed a key issue that enables one to reach a higher limiting

magnitude, but also allows one to lower the required spectral resolution and fasten the fringe

reading process. By means of numerical simulations, we study the performances of existing

estimators of the squared visibility with respect to the compression process. We show that not

only does the model-based estimator lead to better signal-to-noise ratio (S/N) performances

than the Fourier ones, but above all it is the only one that prevents the introduction of baseline

mixing biases in the visibilities as the pupil plane compression rate increases. Furthermore, we

show that moderate compression allows one to keep the S/N of the visibilities unaffected. In

light of these conclusions, we propose an optimized pupil arrangement for six- and eight-beam

recombiners.

Key words: instrumentation: interferometers – methods: data analysis – techniques: interfer-

ometric.

1 I N T RO D U C T I O N

After the first results of the Cambridge Optical Aperture Synthe-

sis Telescope (COAST; Baldwin et al. 1996; Young et al. 2000),

Navy Prototype Optical Interferometer (NPOI; Hummel 1998) and

Infrared Optical Telescope Array (IOTA; Monnier et al. 2004b), the

next challenge of optical long-baseline interferometry is to com-

monly perform spectro-imaging of faint sources. From the end of

2005, this technique has moved one step forwards with the operating

of the Astronomical Multiple BEam Recombiner (AMBER) instru-

ment (Petrov et al. 2003), the near-infrared combiner of the Very

Large Telescope Interferometer (VLTI; Glindemann et al. 2003).

However, with its three beams, it will require several nights to be

able to restore consistent images (Thiébaut, Garcia & Foy 2003).

Then, huge improvements are contemplated to be accomplished

with second-generation instruments that will use four, six or even

�E-mail: jlebouqu@eso.org

eight telescopes coupled with spectral resolution abilities (Malbet

et al. 2004). One critical point in the design is the choice of the beam

recombination concept, heart of the instrument.

The interferometric observables are the complex coherence fac-

tors (amplitude and phase) of the fringes formed by each pair of

beams (the so-called baselines). They contain the information re-

lated to the spatial distribution of the source at high angular res-

olution. The simplest way to recover all the available information

is to mix all the beams together (an all-in-one scheme), as their

is no need to split and rearrange the beams as in a pairwise de-

sign. Besides, it leads to better performances in the photon noise

regime, because all photons are used to create all fringes. Those

fringes appear by modulating the optical path differences between

the beams. That can be done temporally (with coaxial or Michelson

modulation) or spatially (with multi-axial or Fizeau modulation).

Comparing these two solutions, recent studies emphasized the ad-

vantages of the multi-axial concept thanks to fewer beam splitters,

mirrors and outputs (LeBouquin et al. 2004a).
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However, to measure the coherence factor of each baseline indi-

vidually, the geometry of the multi-axial combiner has to be care-

fully checked. On the detector, each pair of pupils produces a fringe

pattern with a frequency given by their separation. In order to sep-

arate the energy of each fringe pattern in the Fourier plane, the out-

put pupil configuration should be non-redundant. This necessary

condition can be achieved with bidimensional or linear arrange-

ments. In the first approach, the focal image is fringed in different

directions, while in the second one all fringes are aligned but use

different frequencies. Only this last 1D diffraction pattern can be

injected into a slit of the spectrograph, opening spectral abilities

at medium and large resolutions. It explains why the majority of

the projects only consider linearly aligned output pupils, like the

VLTI Spectro Imager (VSI; Malbet et al. 2004), the Michigan In-

frared Combiner (MIRC; Monnier et al. 2004a), the Multi Aperture

Mid-Infrared Spectroscopic Experiment (MATISSE) and the Visible

Spectrograph and Polarimeter (VEGA; Mourard, private communi-

cation).

From Monte Carlo simulations, Ribak et al. (1988) derived ge-

ometries allowing up to 30 beams to be combined without any redun-

dancy. However, the number of frequencies dramatically increases

with the number of input beams. For instance, 35 different frequen-

cies are required for eight beams. Reducing this number has been

initially proposed by Vakili & Koechlin (1989), for a visible in-

terferometer in the presence of a fully turbulent image (dispersed

fringed speckles). The authors used a completely redundant config-

uration but introduced small optical path differences to differently

tilt the fringes in the dispersed image and thus separate the informa-

tion. However, to save the spectral resolution abilities, the spectral

dimension should be oversampled and the total number of pixels

remains the same: the coding is converted from spatial to spectro-

spatial. This method has never been used but could probably be

explored to combine a large number of telescopes. Nevertheless, it

is clearly beyond the scope of this paper, because it requires a global

analysis taking into account its technical specificity (high spectral

resolution, spectro-spatial coding). To fit with existing and future

instrumentation, our work focuses on a partially redundant output

pupils configuration, without using an optical path difference.

In this case, to be able to recover the interferometric quantities,

the fringed image pattern should not be blurred by the atmospheric

turbulence. In other words, the image should be stabilized and not

contain moving speckles. Practically, the common way to transform

a corrugated input wavefront into a planar and stable output is to

spatially filter the beams with single-mode fibres. It also drastically

improves the accuracy of the instrument as demonstrated by the

Fiber Linked Unit for Recombination (FLUOR) experiment (Perrin

1997; Coudé Du Foresto et al. 1998) and theoretical studies (Tatulli,

Mège & Chelli 2004). Yet, the average phase difference between

the pupils (the so-called piston) should remain constant over the

exposure time. This is ensured by freezing the random atmospheric

piston with short exposures of a few milliseconds, or by the help of

an external fringe tracker that allows longer exposures. However,

this is not an issue for our study, because the same frame-to-frame

data processing can be applied to both short or long exposures.

Finally, the average value (distance to white fringe) and the residual

motion (high frequency jitter) of the piston during each exposure

will lead to contrast losses that have to be calibrated. Again, this

pure multiplicative factor on the fringe amplitude has no incidence

in our study.

All these advantages explain why partially redundant multi-axial
combination and spatial filtering is the set-up currently used in the

AMBER interferometer and also why it is a contemplated solution

for next-generation instruments. Even so, no studies of the influence

of the pupil redundancy on the interferometric quantities and on their

estimators have been published. The objective of this work is to fill

this gap. In Section 2, we present the description of the single-mode

all-in-one multi-axial combination. We clarify the relation between

the pupil and the interferogram planes. We explain why and how

to reduce the maximum coding frequency of the fringes by com-

pressing the pupil plane. We recall four different estimators of the

squared visibility that can be used in the case of single-mode in-

terferometry. In Section 3, these estimators are compared in terms

of relative performance. We investigate how they are robust with

respect to the compression process. Finally, Section 4 contains ap-

plications to future projects making use of the multi-axial all-in-one

scheme with an increasing number of recombined beams. Thanks to

results derived in previous sections, we propose an optimal output

pupil configuration for six- and eight-beam combiners.

This work is the second part of our study of single-mode multi-

axial combination for astronomical interferometry. The work pre-

sented here makes intensive use of the formalism and the results

presented in the first paper (Paper I, Tatulli & LeBouquin 2006).

2 S I N G L E - M O D E M U LT I - A X I A L
C O M B I NAT I O N

We redefine here only the parameters relevant for this part of the

study. For a detailed description of the single-mode multi-axial com-

bination, the reader can refer to Section 2 of Paper I. The different

spatially filtered beams are superimposed in a focal plane, forming

a fringed image. The amplitude and phase of this modulation, also

called complex visibility, are related to the source intensity distribu-

tion at high angular resolution, by the Zernike van Cittert theorem.

Strictly speaking, the visibility obtained with a fibred interferometer

is not the source visibility but the so-called modal visibility (Mège

2003), which we will consider to be our observable.

Due to the spatial filtering, the shape of the image pattern and

the fringe frequencies is completely defined by the width and the

separation of the output pupils (Fig. 1). We called D the width

of the beams in a pupil plane, here defined by the extension of

the fibre mode. The fringes are weighted by the diffraction pattern

of the fibre mode in the image plane (here Gaussian, dashed line

in Fig. 1, top panel). The number of fringes in this pattern (Nfri)

is fixed by the distance between the output pupils. Npattern is the

detector reading window size expressed in units of the diffraction

pattern, i.e. Npattern = 1 means half of the lobe of the Gaussian

pattern has been considered. It also corresponds to the number of

independent frequency points under each peak (Fourier sampling

law). Additionally, Pi is a non-redundant integer list that fixes the

relative positions of the other pupils and thus of the others peaks.

Note that the largest frequency used in the Fourier plane identifies

with the largest distance between two pupils. Thus, the position xi

of the pupils i (starting with i = 0 for the first one) can be expressed

as

xi = Pi Nfri D, (1)

where Pi is the non-redundant integer list,

Pi = (0, 1, 3), (2)

Pi = (0, 1, 4, 6), (3)

for three- (equation 2) and four-beam combiners (equation 3). With

such assumptions, the peaks corresponding to each fringe pattern

are equally spaced in the Fourier plane (Fig. 1, middle panel).
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Figure 1. Geometrical relations between the image in the focal plane (top

panel), its power spectral density (PSD; middle panel) and the output pupil

configuration (bottom panel) of a multi-axial all-in-one single-mode inter-

ferometer. Here is shown a three-beam combiner when beam 1 and 2 are

illuminated with an instrumental contrast set to 1. When beam 3 is illumi-

nated, two other fringe systems appear (dotted lines in the Fourier space; the

corresponding fringes in the image space have not been drawn for the sake

of clarity). The displayed geometry is defined by Nfri = 3, Npattern = 4 and

Pi = (0, 1, 3). See text for a complete explanation of these parameters.

2.1 Pupil plane compression

To separate the Fourier peaks, the distance between the pupils should

be at least twice the pupil width (Nfri � 2). When increasing the

number of beams, the non-redundant configuration Pi reaches wide

frequency ranges, such as 35 for an eight-beam combiner. Thus the

largest distance between two pupils is 2 × 35 = 70 times the pupil

width (equation 1). Using Npattern � 2 to record the whole image

pattern, the number of fringes is 2 × 35 × 2 = 140, and it requires

about 2 × 35 × 2 × 4 = 560 pixels to sample them. At the same

time, such a combiner requires a minimal spectral resolution of

about 600, to be sure that the number of fringes in the coherence

length is larger than the number of recorded fringes. First, reducing

the frequency range reduces the number of pixels used to code the

signal and thus the detector noise contribution. Besides, reducing

the number of recorded fringe allows one to reduce the minimal

spectral resolution, when the dispersion is not mandatory for the

scientific case.

The first way to scale down the frequency range is to reduce Nfri.

It corresponds to a homothety of the pupil and the Fourier planes

without changing the pupil diameter and peak width. Peaks start

to overlap when Nfri < 2, and the overlapping rate is similar for

all of them. However, it is impossible to have Nfri < 1 because the

pupils cannot spatially overlap. As a result, this method has limited

compression capability. Another solution to perform more efficient

compression is to keep the distance between the first and second

pupils fixed (i.e the Nfri parameter) and only rescale the position of

the third and further pupils. If we conserve an homothetic scaling

1 2 1 3                                    2

a)

d)

c)

b)

Figure 2. Superposition of the peak due to the compression of the pupil

plane by equation (4) for three- and four-beam combiners. The compression

factor is set to ρ = 1, 2/Nfri, 1/Nfri and 0 (a, b, c and d).

of the latter (namely the compression factor ρ) to keep a partial

non-redundancy, the positions of the pupils now follow

xi = [i + (Pi − i)ρ]Nfri D. (4)

The smallest frequency does not shift, and the Fourier plane trans-

formation is not perfectly homothetic. Gaps are created with a size

of Nfri, the original space unit between the pupils. Interesting values

are displayed on Fig. 2 as follows.

(i) Panel (a): the pupils and Fourier peaks are at the positions

defined by equation (1).

(ii) Panels (a) → (b): the Fourier peaks do not overlap each other,

the configuration is not compressed.

(iii) Panels (b) → (c): the Fourier peaks overlap each other by

less than a half and the configuration is slightly compressed.

(iv) Panels (c) → (d): the Fourier peaks overlap more than a half

of the peak width and the configuration is strongly compressed.

(v) Panel (d): the pupil space is constant and the configuration is

fully redundant. In the Fourier plane, the peaks are superposed by

groups separated by Nfri.

Note that this method allows the Fourier plane to be compressed,

even if it is impossible to juxtapose the closest pupils, for technical

reasons for instance.

2.2 Visibility estimators

There are different ways to recover the individual visibility of each

baseline from the recorded image. Before the advent of single-mode

interferometry and to overcome the problem of turbulence, Roddier

& Lena (1984) developed estimators based on power spectral density

(PSD) integration. In Paper I, we exposed the formal expressions

of expected values and signal-to-noise ratio (S/N) for this kind of

estimator in the framework of filtered multi-axial combiners. In this

paper, this method will be called PSD-integration (Integ).

It is also possible to measure the visibility by considering only the

maximum value of the PSD of each peak. The required calibration is

the same as for PSD-integration. This estimator was not specifically

studied in the previous paper, but it can be calculated with the same

formalism with integration limited to only one pixel (the maximum)
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of the Fourier peak. This method will be called PSD-Maximum
(Max).

By taking more benefit from the deterministic properties of the

PSD, the square visibility can be recovered by fitting the PSD shape.

The shape has to be previously calibrated by observations of unre-

solved star or internal light. This estimator was not presented in

our previous study. We implemented its theoretical expressions for

expected values and the S/N and checked them thanks to numer-

ical experiments described in Paper I. This method will be called

PSD-Fitting (Fit).

Because the shape of the interferogram is completely determinist,

the visibilities can also be recovered by fitting the data. The fit

can be identically done in the direct plane (fringe fit) or in the

Fourier plane (complex Fourier transform fit). It can be formally

expressed as a matricial relation between the recorded values on

the detector and the complex visibility of each baseline: the so-

called pixel to visibility matrix (P2VM). The visibility amplitudes

and phases are recovered in the same inversion process. If no fringe

tracking unit is available, the phase quantity is stochastic from frame

to frame and is meaningless. It is ignored by averaging the square

visibility instead of the complex visibility. As a main difference with

the PSD-based algorithms presented above (Integ, Max and Fit),

this square operation is done after the information of the baselines

has been separated. The calibration requires the recording of the

instrumental fringe shapes with good accuracy. The reader can refer

to the AMBER data processing method for which such a model-

based algorithm is currently used (Millour et al. 2004).

3 N U M E R I C A L E X P E R I M E N T

As far as an astronomer is concerned, the properties of interest

when dealing with different estimators are the relative accuracy

performance, the relative bias on the expected value and their de-

pendencies with the instrumental parameters.

3.1 Estimator relative performances without compression

Fig. 3 illustrates the performance of the PSD-based estimators com-

pared to the model-based one in different noise regimes, with-

out compression, and for two different detector reading windows

(Npattern). The source visibility is arbitrarily set to μ = 0.5 and the

detector noise is σ = 15 e− pixel−1. The model-based estimator al-

ways presents a better S/N, especially in the strong photon-rich and

10+0 10+1 10+2 10+3 10+4
0.2

0.4

0.6

0.8

1.0

10+0 10+1 10+2 10+3 10+4

:  Fit :  Integ :  Max

nb. of photon per pixel
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R

  /
  S

N
R

p2
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Npattern = 2
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Npattern = 6

Figure 3. Ratio between the S/N of the PSD-based estimators and the S/N

of the model-based one, as a function of the number of photons per pixel

in the interferogram. The source visibility is set to μ = 0.5. Detector noise

is σ = 15 e− pixel−1. The Fourier peaks are fully separated (Nfri = 2.5 and

no compression). The curves are plotted for a narrow and a large detector

reading window (left and right panels).

photon-poor domains. The PSD-based estimators follow more or

less the same curves for a small detector reading window. However,

when increasing the number of independent points over the fringe

frequencies (Npattern > 2), the PSD-maximum shows a worse per-

formance, because it does not take into account all of the available

information. At least, they all reach a similar asymptote in photon-

noise limit, from where their S/N is about 0.6 times the model-based

one. This asymptote does not depend on the instrumental configu-

ration but is only a function of the source visibility.

In Paper I, we have mentioned the advantage of the model-based

estimator versus PSD-integration, especially for unresolved sources

with high visibility. Showing the computations presented here we

conclude that this advantage can be extended over all the PSD-

based estimators without exception. It tends to prove that a first-

order estimation systematically drives a better (or at worst identical)

performance than quadratic one.

3.2 Estimator robustness to compression

To compare the estimator relative robustness to compression, we

compute the recovered visibility amplitudes for a large range of

compression factors. The initial set-up is the same as in Section 3.1

(four beams, Nfri = 2.5, Npattern = 6, and pupil positions given by

equation 3). For the sake of the clarity of Fig. 4, the input visibilities

have been chosen to be arbitrarily different, and all the phases are set

to zero. It has absolutely no incidence on the results, which have been

validated with various sets of input parameters (combiner geometry,

fringe visibilities and phases). Results are displayed in Fig. 4, with a

compression factor ranging from 1 to 0.1. As soon as peaks overlap,

PSD-integration and PSD-fit rapidly fail to recover to visibility.

PSD-maximum only fails when peaks strongly overlap (ρ � 0.4).

Besides, the model-based estimation is never biased even when the

compression factor reaches 0.1.

The bias in the estimated visibility can be explained by the mix-

ing of information between corresponding peaks when they start to

overlap. This blend is due to the coherent sum of the two interfero-

grams under the overlapped frequencies. Because the input phases

and optical path delays are arbitrarily zero, the asymptotic square

visibility recovered is the square average of the two corresponding

‘single’ visibilities, as shown in the right asymptotes of Fig. 4. In a

general way, it depends on both the visibilities and phases. Such a

complex sum prevents a simple calibration of this effect. The only

solution is to previously calibrate the complex shape of each indi-

vidual peak and then to inverse both the amplitudes and the phases

at the same time. By doing so, one has just reinvented the model-

based estimator in the Fourier space, and it explains why this last

estimator is never biased.

3.3 Signal-to-noise ratio versus compression

We now focus on the model-based estimator because we have shown

that the latter is the only one able to retrieve unbiased interferometric

quantities even if the pupil plane is compressed. Formal expressions

of the S/N computed in Paper I remain valid for all compression fac-

tors. Computations give similar results in both the photon noise and

detector noise regime. We present here only photon-rich computa-

tions. The instrumental set-up used is the same as in Section 3.2.

Remember that it has been chosen for illustration purpose only and

that we checked the results with various combiner configurations.

The right panel of Fig. 4 shows the results, after normalization of

the S/N by the value obtained without compression. Three different

slopes can be distinguished, as follows.
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Figure 4. Left panel: positions (thick lines) and supports (filled regions) of the fringe peaks in the Fourier space versus the compression factor. Middle panel:

square visibility (μ2) obtained with the different estimators described in Section 2.2. Right panel: the S/N on the square visibility of each baseline computed

for the model-based estimator normalized with respect to the zero-compression factor value (ρ = 1). The vertical dashed line is for ρ = 1/Nfri = 0.4.

(i) Peak 6 never overlaps. Its S/N remains constant.

(ii) Peaks 4 and 5 interact with one neighbour. Their S/N stay

unchanged when peaks slightly overlap but rapidly decrease when

peaks strongly overlap.

(iii) Peak 2 interacts with its two neighbours. Its S/N stays un-

changed for a slight overlap but presents a more abrupt decrease

when peaks strongly overlap.

Slopes related to peaks 1 and 3 can be explained as a combination of

the latter. They start with two-peak interactions (each of them with a

side of peak 2). So their S/N follow the curve of peaks 4 and 5. Then

they meet together over peak 2 and begin also to be engaged in a

three-peak interaction. Their S/N reach the curve related to peak 2.

The expression of the model-based estimator as a matrix can help

to understand these results. Each complex visibility (one per base-

line) corresponds to one line of this matrix. When peaks overlap,

corresponding lines become more and more similar, and thus sin-

gular, which mathematically reduces the accuracy of the inversion.

From this study, we conclude that (whatever the initial peak posi-

tion and the number of neighbours) the S/N is unaffected by a slight

overlap but decreases rapidly for a strong one. So a compression

factor of 1/Nfri can be applied to any configuration without dam-

aging the performance, whatever the initial Nfri parameter and the

noise regime.

3.4 Remarks

In this section, the presented computations have been done with a

Gaussian interferogram shape, which is the Fourier transform of a

beam filtered by a Gaussian mode. Strictly speaking, a fibre mode is

purely Gaussian only if the profile of the refraction index is a Gaus-

sian function too. However, it gives a good approximation in general

with step-index fibres or waveguides. All the results have been also

checked with a Bessel interferogram envelop (corresponding to cir-

cular pupils) and lead to same conclusions. However, one should

remember that turbulent beams (not perfectly corrected by adaptive

optics or not spatially filtered) will lead to fringes that cannot be

fitted by a first-order estimator. Besides, the total number of pixels

remains constant in our computations, although it becomes possible

to reduce it when the Fourier plane is compressed (Shannon sam-

pling is relaxed). We have tried to optimize the sampling rate for

each compression factor, but it does not change the results.

4 A P P L I C AT I O N TO S I X - A N D E I G H T- B E A M
C O M B I N E R S

For more than four beams, it is impossible to theoretically determine

the best non-redundant pupil configuration Pi that minimizes the

maximum frequency used. This well-known problem can only be

solved by ‘brute force’ methods, and non-redundant integer lists

have been obtained for a large number of telescopes (Ribak et al.

1988), such as

Pi = (0, 1, 4, 10, 12, 17), (5)

Pi = (0, 1, 8, 20, 22, 25, 31, 35), (6)

for six and eight beams, respectively. The maximum of Pi is larger

than the number of baselines, even if the configuration is optimized.

As a consequence, it leaves gaps in the frequency space. To compress

the Fourier plane, we applied equation (4) on the six- and eight-

beam configurations. Surprisingly, some peaks fully overlap before

the compression factor goes to zero. So we expected that some

worse starting Pi configuration (with more gaps) could be more

compressed and finally provide a smaller frequency range.

To test it, we directly introduced the minimum allowed overlap

rate in the ‘brute force’ optimization algorithm as a new user-defined

parameter (ρmin). Fig. 5 shows the results with no compression (top

panels, corresponding to equations 5 and 6) and with the maximum

overlap rate allowed by our study (bottom panels, ρmin = 1/Nfri) for

six- and eight-beam combiners. There is no simple transformation

between the best pupil configurations with and without compres-

sion. We infer that it is impossible to find the best compressed con-

figuration from the best uncompressed one. Empirically, we remark

that the compact solution leaves more gaps in the frequency space,

which are overcompensated by the compression. As a consequence,

the maximum frequency is not multiplied by a factor ρmin = 1/Nfri

= 0.5. We only reach a compression of ∼0.58 for the six-beam

combiner and ∼0.55 for the eight-beam combiner.

5 C O N C L U S I O N

In this paper, we have chosen to focus on the multi-axial single-

mode interferometry concept because it is one of the most promis-

ing solutions for future spectro-imaging interferometers with a large

number of telescopes (LeBouquin et al. 2004a). Also, it is currently
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Figure 5. Results of plane optimization for six- (left panels) and eight-beam (right panels) combiners. The output pupil configuration and the Fourier plane are

represented at the same scale (autocorrelation relation). The pupil positions are computed for a compression factor of ρ = 1 (top panels) and ρ = 0.5 (bottom

panels). The minimum distance between the pupils is set to twice the pupil width (Nfri = 2). The frequency range is reduced by a factor 0.58 and 0.55 in the

six- and eight-beam cases, respectively.

used in the AMBER instrument. Based on this specific recombina-

tion scheme, we have proposed a simple method by compressing

the output pupil plane by keeping a partial non-redundancy condi-

tion. We then have recalled the definition of four different visibility

estimators that can be classified into two types: the estimators that

make use of the PSD of the interferogram and the estimator based

on the model fitting of the interferogram.

First extending our analysis of Paper I, we have shown that with-

out compression, the model-based estimator drives to better perfor-

mances than all PSD-based estimators, whatever the noise regime

(detector or photon noise) and the instrumental set-up. This tends to

prove that a first-order estimation systematically drives a better per-

formance than a quadratic one. Then we have analysed the effects

of compression on these estimators. We have demonstrated that a

model-based estimator is as well the suitable algorithm to deal with

compression. Indeed, by first separating the baseline complex visi-

bilities before taking the modulus, the method prevents information

mixing between the baselines that leads to a bias in the visibility.

Yet, the compression reduces the S/N because the matrix used in

the inversion process becomes more and more singular. However,

the accuracy on the visibilities is not dramatically damaged before

the peak maximum reaches the edge of its close neighbour, which

we have called a slight overlap.

With regard to the existing AMBER instrument, this study allows

us to claim that the model-based estimator (the so-called P2VM,

Millour et al. 2004) is a suitable algorithm and that the pupil overlap

rate used (slight overlap) only reduces the S/N by a few per cent.

With regard to future instruments dealing with a larger number

of input beams, we propose to use this overlapping rate to mini-

mize the required frequency range. None the less, we have shown

that the maximum frequency can be multiplied by a factor smaller

than 0.6. Such an optimization of the output pupil configuration

has important consequences. First, it reduces the number of pixels

per spectral channel, leading to a smaller contribution of the detec-

tor noise and a better limiting magnitude. Secondly, it reduces the

minimum required spectral resolution and thus increases again the

limiting magnitude when dispersion is not mandatory for the sci-

entific case. At the same time, by reducing the number of required

pixels and/or spectral channels, it increases the reading speed, which

is an important parameter if no fringe tracking unit is available.

From a technical point of view, integrated optics (IO) offers

promising solutions to realize a multi-axial single-mode combiner.

This technology has been proved with both laboratory and sky exper-

iments (Berger et al. 2001; LeBouquin et al. 2004b), and multi-axial

combiners have already been designed (Berger et al. 2000). The size

of the chip is directly related to the physical space between the out-

put pupils. Because losses are mainly due to linear propagation in

the waveguides, reducing the required distance between the beams,

as presented in this work, will lead to a better global efficiency. The

compactness of the planar optical component allows one to com-

bine many beams in the same chip, which drastically reduces the

instability and the required alignments. The observational strategies

(number of baselines, wavelength. . .) can be adapted to the object

thanks to the plug and play ability of IO combiners. Finally, out-

put beams of the planar component can act as the input slit of a

spectrograph, avoiding complex anamorphic optics.
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