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Abstract: A perturbation finite element method for solving 
eddy current problems in two separate steps is developed for 
considering conductive and magnetic materials subject to 
strong skin and proximity effects. The proposed method al-
lows to efficiently and accurately determine the current den-
sity distribution and ensuing Joule losses in conductors of 
any shape in the time domain or for repetitive solutions (e.g., 
parameterized or nonlinear analyses). A limit problem is 
first solved by considering the perfect conductive or mag-
netic nature of the materials, via appropriate boundary con-
ditions. Its solution gives the source for eddy current per-
turbation sub-problems in each conductor, each one requir-
ing its own mesh. 
 
Keywords: Eddy currents, perturbation method, skin and 
proximity effects. 

1. Introduction 
A precise consideration of the skin and proximity ef-

fects in conductors is important for an accurate calcula-
tion of the ensuing Joule losses. Calculating these effects 
with the classical application of the finite element (FE) 
method usually presents difficulties. The mesh to be gen-
erated must be fine enough with respect to the skin depth 
in all the materials, which then leads to a heavy system of 
equations. 

Impedance boundary conditions (BCs) [1] defined on 
the conductor boundaries are an alternative to avoid 
meshing their interior. Such conditions are nevertheless 
generally based on analytical solutions of ideal problems 
and are therefore only valid in practice far from any geo-
metrical discontinuities, e.g., edges and corners. They are 
also generally limited to frequency domain and linear 
analyses. 

In this contribution, a method is developed to over-
come the limitations of impedance BCs, allowing conduc-
tors of any shape to be considered not only in the fre-
quency domain but also in the time domain. The magnetic 
vector potential FE magnetodynamic formulation is used. 
The developed method extends the one in [7] by consider-
ing the magnetic properties of the conductive materials. It 
will also give a more detailed description of the treatment 
of active conductors. It rests on a coupling of limit and 
perturbation solutions, each of these being calculated in 
distinct meshes. A limit eddy current FE problem is first 
solved by considering either perfect conductive or mag-
netic properties, via appropriate conditions on the con-
ductor boundaries. The solution of the limit problem then 
gives the source for FE perturbation sub-problems in each 
conductor then considered with a finite conductivity or 
permeability. 

2. From perfect to non-perfect materials – The eddy 
current formulations 

The equations and relations governing the magnetody-
namic (eddy current) problem in Ω are 
 curl h = j ,  curl e = – ∂t b ,  div b = 0 , (1a-b-c) 
 b = µ h ,   j = σ e , (2a-b) 
where h is the magnetic field, b is the magnetic flux den-
sity, e is the electric field, j is the electric current density 
(including source and eddy currents), µ is the magnetic 
permeability and σ is the electric conductivity. The eddy 
current conducting part of Ω is denoted Ωc and the non-
conducting one ΩcC, with Ω = Ωc ∪ ΩcC. Massive conduc-
tors belong to Ωc. In the following, the subscripts u and p 
will refer to unperturbed and perturbed quantities, respec-
tively. 

Instead of directly solving the eddy current problem 
with the actual conductivity or permeability for all the 
materials, a so-called unperturbed or limit problem is first 
defined in Ω by considering some conductors Ωc, i (i is 
the conductor index) with either an infinite conductivity 
or permeability. This results in a zero skin depth and thus 
in surface currents. The interior of the conductor regions 
Ωc, i can thus be extracted from the studied domain Ω in 
(1) and treated via a BC fixing on their boundaries ∂Ωc, i 
either a zero normal magnetic flux density or a zero tan-
gential magnetic field. 

The consideration of the actual conductivity or perme-
ability of the concerned conductors, these defining the 
perturbing region Ωc, i ⊂ Ωc, will further lead to field dis-
tortions. The perturbed eddy current problem focuses thus 
on Ωc, i and its neighborhood, their union Ωp will serve as 
the studied domain. The perturbation given by the change 
of properties of the conducting region Ωc, i alters the dis-
tribution of the eddy current density and the magnetic 
field. The fields in these conductors are not surface fields 
anymore but penetrate them. 

Particularizing (1) and (2) for both the unperturbed and 
perturbed quantities, and subtracting the unperturbed 
equations from the perturbed ones, a perturbation prob-
lem (defined as the difference between perturbed and un-
perturbed problems) is obtained in Ωp (initially in Ω) [2], 
[3]. Keeping the equations in terms of the distortions 
h = hp – hu and e = ep – eu, one gets 
 ,  , (3-4) sp jeh +σ=curl stp khe −∂µ−=curl
 0

p∂Ω× =n h  or 0
p∂Ω× =n e , (5a-b) 



 
 

with the sources js and ks defined only in Ωc, i and given 
by the unperturbed solution, i.e. 
  in Ωc, i , (6) uups ej )( σ−σ=
  in Ωc, i . (7) utups hk ∂µ−µ= )(

The perturbation problem (3)-(7) is actually rigorously 
defined in the whole studied domain Ω, taking account of 
the geometrical and material details of the initial unper-
turbed problem. The conditions (5a) or (5b) neglect the 
distortion at a certain distance from Ωc, i, which is actu-
ally only correct at infinity (for Ωp extended to the whole 
space). For convenience, an approximation neglecting 
some of these initial details will be made. The so-
modified studied domain Ωp can be a portion or not of Ω, 
with or without inclusion of initial materials, these being 
possibly simplified. At the discrete level, the meshes of 
both unperturbed and perturbed problems can then be 
significantly simplified, each problem asking for mesh re-
finement of different regions. 

The sources js and ks (6)-(7) act as sources reduced to 
Ωc, i for the perturbation equations (3)-(4). This is an in-
teresting consequence of the use of the distortions h and e 
as unknowns instead of the perturbed fields hp and ep di-
rectly. Another implication is the homogeneous nature of 
the boundary conditions (5a) or (5b). 

The perturbed problem, with the unknown fields hp 
and ep, would require non-homogeneous conditions, in-
volving the unperturbed fields as surface sources to be 
projected on the perturbed mesh boundary ∂Ωp. However, 
such BCs can only be applied if the domain Ωp is 
bounded. Indeed a boundary at infinity would support a 
zero source, with consequently no information at all for 
the perturbed problem. The unperturbed field hu could al-
ternatively be used as a volume source field in the whole 
Ωp, but with the disadvantage of necessitating its evalua-
tion and projection on the whole domain. These draw-
backs justify the use of the sources js and ks (6)-(7), the 
reduced support of which noticeably limits the evaluation 
and projection operations. 

For the perfect conductor limit case (σu → ∞, eu → 0 
and σp finite in Ωc, i), the terms defining the source cur-
rent density js (6) are, on the one hand, σu eu being at the 
limit the surface current density on ∂Ωc, i, and, on the 
other hand, σp eu being null in Ωc, i because eu tends to 
zero. Consequently, one has to consider js as a surface 
source current density, i.e. s u uσ= −j e  on ∂Ωc, i . The 
source ks (7) is zero because the permeability in Ωc, i is 
not altered. 

For the perfect magnetic material (µu → ∞, hu → 0 and 
µp finite in Ωc, i), the source ks (7) is reduced to – µu ∂t hu. 
The source current density js (6) is zero, the conductivity 
in Ωc, i remaining unchanged. 

The weak forms of the perturbation problems are to be 
written coherently depending on the place of the sources 
in the equations (3) and (4), which will be detailed in the 
extended paper. Because the magnetic vector potential 
formulation is based on the weak form of (3), the source 
js can be directly involved in one of its integral terms, 
whereas the source ks asks to be involved in extended 
strong definitions of the electric field  
(e = – ∂t a – grad v + ∂t au) and the magnetic vector po-
tential (b = curl a + bu). A clear distinction between weak 
and strong forms is of importance for correctly managing 

the integral terms with the surface sources. Consequences 
on the circuit relations, relating the total current and the 
voltage of each conductor region, will be detailed as well. 

3. Application 
The developed technique will be validated on applica-

tion examples with passive and active conductors and its 
domain of validity will be determined. Its main advan-
tages versus the impedance-type boundary technique will 
be pointed out. An illustration of results is given in Fig. 1. 

   
Fig. 1. Magnetic flux density for the classical FE solution (left), the un-
perturbed or limit solution with perfect conductor (middle) and the per-
turbation solution (right). 

4. Conclusions 
The developed perturbation method offers a way to un-

couple FE regions in eddy current frequency and time 
domain analyses with high frequency excitations, allow-
ing the solution process to be lightened. The skin and 
proximity effects in both active and passive conductors 
with magnetic properties can be accurately determined in 
a wide frequency range, allowing precise losses calcula-
tions in inductors as well as in external conducting pieces, 
in particular in inductively heated pieces. 

Once calculated, the source limit solution for perfect 
conductors or magnetic materials can be used in each sub-
problem not only for a single high frequency signal but 
for several signals. This allows efficient parameterized 
analyses on the signal form and the electric and magnetic 
characteristics of the conductors in a wide range, i.e. on 
all the parameters affecting the skin depth. Nonlinear 
analyses will then clearly benefit from this. 
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