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The "adiabatic" process, from the Greek α-(a-), not, δια (dia), through, βαινιν (bainen), to pass, was introduced by Carnot (in 1824) and W. J. M. Rankine (in 1858) in thermodynamics, then by Boltzmann (in 1866) in classical mechanics [START_REF] Keith | The meaning of "adiabatic[END_REF]. In 1928, Fritz London applied adiabatic process in chemical kinetics. Concerning the quantum physics, in 1911-1916 Paul Ehrenfest used adiabatic invariance in the development of the 'Old Quantum Theory' and in 1928 Born and Fock [START_REF] Born | Beweis des Adiabatensatzes[END_REF] demonstrated the quantum adiabatic theorem. By definition, quantum adiabaticity occurs when, during its evolution driven by an hamiltonian H(t), a quantum state |Ψ(t) prepared in an eigenstate |n(0) remains close to the instantaneous eigenstate |n(t) (with a proper phase choice) as time t goes on. The basic concept of adiabaticity in quantum theory has been widely applied in both theories and experiments. Applications range from energy level crossings, such as Landau-Zener transition, Born-Oppenheimer molecular coupling, collisional processes, quantum control or adiabatic quantum computation [START_REF] Nakamura | Nonadiabatic Transition: Concepts, Basic Theories and Applications[END_REF][START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics[END_REF]. Unfortunately, even for the twolevel system, no sufficient conditions are known to efficiently describe an adiabatic evolution driven by a general hamiltonian H(t) [START_REF] Du | Experimental Study of the Validity of Quantitative Conditions in the Quantum Adiabatic Theorem[END_REF]. For instance, an example as simple as the Schwinger's hamiltonian (solved hereafter) [START_REF] Schwinger | On Nonadiabatic Processes in Inhomogeneous Fields[END_REF] H(t) = ω0 2 cos θ sin θe -iωt sin θe iωt -cos θ , proves that neither the "usual" adiabatic phase evolution t 0 E n / -i n| ṅ nor the commonly used approximate adiabatic criterion [START_REF]En-Em comes from the time derivative of m|n = δmn and of m|H|n = Enδmn, where δ mk is Kronecker's delta[END_REF] [START_REF] Messiah | Mécanique quantique[END_REF]:

m =n |E n -E m | | m| Ḣ|n | |E n -E m | = m =n m| ṅ E n -E m ≪ 1, (1) 
are sufficient (or necessary) to ensure adiabaticity. This statement may look surprising [START_REF] Sarandy | Consistency of the Adiabatic Theorem[END_REF][START_REF] Wu | Validity of the quantum adiabatic theorem[END_REF][START_REF] Tong | Quantitative Conditions Do Not Guarantee the Validity of the Adiabatic Approximation[END_REF][START_REF] Duki | Comment I on "Inconsistency in the Application of the Adiabatic Theorem[END_REF][START_REF] Ma | Comment II on "Inconsistency in the Application of the Adiabatic Theorem[END_REF][START_REF] Marzlin | Marzlin and Sanders Reply[END_REF] but is presented in textbooks [START_REF] Isaac | Quantum Mechanics[END_REF][START_REF] Bransden | Introduction to Quantum Mechanics[END_REF]. It is indeed well known in NMR or in quantum optics (through Rabi oscillation) that resonant terms can lead to population transfer, i.e. to a non adiabatic behavior. This is linked to branch points, connecting the different eigenstates of the adi-abatic Hamiltonian, and explains for instance that non adiabatic behaviour exist when several successive transitions between pairs of levels occurs [START_REF] Joye | Interferences in adiabatic transition probabilities mediated by Stokes lines[END_REF][START_REF] Nakamura | Nonadiabatic transitions and gauge structure[END_REF][START_REF] Stenholm | Quantum Dynamics of Simple Systems[END_REF][START_REF] Wilkinson | Nonadiabatic transitions in multilevel systems[END_REF]. Thus, condition (1)is not valid globally.

It is therefore important to derive general conditions, for a system and its phase evolution, which ensure adiabaticity. This is the goal of this article. As a corollary we will answer the still pending (even in the twolevel case) question: why and when the standard condition (1), of a slow hamiltonian variation rate, compared to the frequency associated to the spectral gap ∆E n = min m =n |E m -E n |, is a sufficient adiabatic condition. Indeed, we show that condition (1) is sufficient to ensure adiabaticity but only when the hamiltonian is real and non oscillating.

Because almost all existing results, as the adiabatic criterion (1) are based on the so called adiabatic limit of a slow down evolution, we shall first start by studying the standard results and by explaining why the standard adiabatic theorem can not help to solve the problem. Hopefully this part will also clarify the recent debate concerning the adiabatic phase and adiabatic criterion [START_REF] Du | Experimental Study of the Validity of Quantitative Conditions in the Quantum Adiabatic Theorem[END_REF][START_REF] Duki | Comment I on "Inconsistency in the Application of the Adiabatic Theorem[END_REF][START_REF] Ma | Comment II on "Inconsistency in the Application of the Adiabatic Theorem[END_REF][START_REF] Marzlin | Marzlin and Sanders Reply[END_REF][START_REF] Ye | Condition for the adiabatic approximation[END_REF][START_REF] Mackenzie | Perturbative approach to the adiabatic approximation[END_REF][START_REF] Vértesi | Perturbative analysis of possible failures in the traditional adiabatic conditions[END_REF][START_REF] Tong | Sufficiency Criterion for the Validity of the Adiabatic Approximation[END_REF][START_REF] Ye | Two kinds of quantum adiabatic approximation[END_REF][START_REF] Tong | A note on the geometric phase in adiabatic approximation [rapid communication[END_REF][START_REF] Mackenzie | Validity of the adiabatic approximation in quantum mechanics[END_REF][START_REF] Wei | Quantum adiabatic computation and adiabatic conditions[END_REF][START_REF] Zhao | Reexamination of the quantum adiabatic theorem[END_REF][START_REF] Wu | Adiabatic condition and quantum geometric potential[END_REF][START_REF] Rigolin | Beyond the quantum adiabatic approximation: Adiabatic perturbation theory[END_REF] following the (over-subtle) "rediscovery" by Marzlin and Sanders [START_REF] Marzlin | Inconsistency in the Application of the Adiabatic Theorem[END_REF] that condition [START_REF] Keith | The meaning of "adiabatic[END_REF] is not a sufficient one. We shall then derive exact bounds for adiabaticity. We then discussed their validity in a the general two-level case and their simplification in the case of a non oscillating hamiltonian. For clarity some lengthly calculations are reported in an appendix.

STANDARD RESULTS

Quantum adiabatic theorem

The Born and Fock's quantum adiabatic theorem has been rigorously demonstrated, several times and by several different methods (see for instance [START_REF] Born | Beweis des Adiabatensatzes[END_REF][START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics[END_REF][START_REF] Messiah | Mécanique quantique[END_REF][START_REF] Jansen | Bounds for the adiabatic approximation with applications to quantum computation[END_REF] and references therein), extended to the infinite dimensional setting by Kato [START_REF] Kato | On the Adiabatic Theorem of Quantum Mechanics[END_REF], studied as a geometrical holonomy evolution by Berry [START_REF] Berry | Quantal Phase Factors Accompanying Adiabatic Changes[END_REF], extended to degenerate cases (without gap condition) [START_REF] Avron | Adiabatic Theorem without a Gap Condition[END_REF] and to open quantum system [START_REF] Sarandy | Adiabatic approximation in open quantum systems[END_REF].

In the non degenerate (E m = E n ) case, the adiabatic theorem stipulates that:

|Ψ ǫ (t) -e -i R t 0 (En/ -i nǫ| ṅǫ ) |n ǫ (t) = O(ǫ) ---→ ǫ→0 0, (2)
where evolution speed is controlled by ǫ and the subscript stands for the H ǫ (t) = H(ǫt) evolution [START_REF]The path parametrization is here s(t) = t/T = ǫt ∈ [0, 1] and Hǫ(t) = H(s(t)) where T is the evolution time. The Schrödinger equation is then i d|Ψǫ(t)[END_REF] . Here the dot designates the time derivative and

t 0 f = t 0 f (t ′ )dt ′ .
To illustrate the limited practical utility of the theorem, let's suppose that an external laser field, with constant angular frequency R 1 (t) = ω, is applied to a twolevel system that we want to adiabatically drive by experimentally modifying two parameters: the coupling Rabi frequency (proportional to the square-root of the laser intensity) R 2 (t) = Ω(t), and the detuning of the laser from resonance R 3 (t) = δ(t). The hamiltonian is, in the rotating wave approximation: 2

δ(t)+ω Ω(t)e -iωt Ω(t)e iωt -δ(t)-ω = H(R 1 (t), R 2 (t), R 3 (t), R 4 (t)
). Due to the R 4 (t) = ωt term, slowing down the time would lead to ω(ǫt) = (ωǫ)t. When ǫ → 0, this would require reducing ω to zero which is experimentally impossible. Moreover, even in the static field (ω = 0) regime, the theorem applies but only if δ and Ω can be slowed down simultaneously. The theorem says nothing about the adiabaticity if δ(t) and Ω(t) are varied independently with time.

Although undoubtedly of great theoretical interest, as in the quantum adiabatic computation using interpolating hamiltonian [START_REF] Farhi | A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem[END_REF], the theorem describes an evolution driven by H(ǫt) with ǫ → 0 and is obviously of no utility concerning the evolution driven by H(t) itself, as in this case ǫ = 1 and cannot be reduced to zero. The theorem is then better formulated within the parameter domain than within the time domain [START_REF] Wu | Validity of the quantum adiabatic theorem[END_REF][START_REF] Liu | Singularities of Berry connections inhibit the accuracy of the adiabatic approximation[END_REF]: an evolution driven by H(R(t)) is adiabatic if the parameter path, between an initial R in parameter value and a final one R fin , is followed infinitely slowly.

Approximate adiabatic condition

Contrary to the quantum adiabatic theorem, the approximate adiabatic condition (1) can be applied to H(t) itself. The origin of condition (1) arises [START_REF] Messiah | Mécanique quantique[END_REF] from the fact that the error term in Eq. ( 2) can be written [START_REF] Jansen | Bounds for the adiabatic approximation with applications to quantum computation[END_REF] as

O(ǫ) = m =n mǫ| ṅǫ En-Em + O(ǫ 2 )
, where the linear ǫ dependence is here only implicit and, deliberately but confusingly, hidden in | ṅǫ . This has been the source of confusion [START_REF] Sarandy | Consistency of the Adiabatic Theorem[END_REF][START_REF] Wu | Validity of the quantum adiabatic theorem[END_REF][START_REF] Tong | Quantitative Conditions Do Not Guarantee the Validity of the Adiabatic Approximation[END_REF][START_REF] Duki | Comment I on "Inconsistency in the Application of the Adiabatic Theorem[END_REF][START_REF] Ma | Comment II on "Inconsistency in the Application of the Adiabatic Theorem[END_REF][START_REF] Marzlin | Marzlin and Sanders Reply[END_REF] when used with ǫ = 1 where |m ǫ = |m . The confusion occurs because, even if derived without any proof by using ǫ = 1 0, the criterion (1) ensures an adiabatic evolution in almost all the known examples: Landau-Zener(-Stückelberg), Rosen-Zener-Demkov, Nikitin, Zhu-Nakamura models or in the Rapid Adiabatic Passage or STImulated Raman Adiabatic Passage (STIRAP) processes, ... [START_REF] Nakamura | Nonadiabatic Transition: Concepts, Basic Theories and Applications[END_REF][START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics[END_REF][START_REF] Evgueni | chapter 49: Adiabatic and Diabatic Collision Processes at Low Energies[END_REF]. Important enough, as we shall see, all these examples use nonoscillating (exponential or polynomial) functions. Therefore, the simple idea of adiabaticity, given by the condition (1), of a small but finite variation rate of H(t) (compared to the spectral gap), is broadly used. Similarly, as extracted from equation ( 2) without any proof by using ǫ = 1 0, an adiabatic phase evolution of t 0 E n / -i n| ṅ is widely used [START_REF] Tong | A note on the geometric phase in adiabatic approximation [rapid communication[END_REF]. However as mentioned in the introduction the Schwinger's example demonstrates that this "usual" adiabatic condition, as well as this "usual" adiabatic phase, is neither sufficiently nor necessarily to obtain an adiabatic evolution.

To avoid any confusion the term O(ǫ 2 ) has to be evaluated. This can be done for instance by giving an exact bound [START_REF] Jansen | Bounds for the adiabatic approximation with applications to quantum computation[END_REF] on the adiabatic fidelity

| Ψ|n | such as [56] 1 -| Ψ(t)|n(t) | ≤ Ḣ(0) ∆E n (0) 2 + Ḣ(t) ∆E n (t) 2 + t 0 7 Ḣ 2 ∆E n 3 + Ḧ ∆E n 2 . (3) 
Similar bounds [START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics[END_REF][START_REF] Tong | Sufficiency Criterion for the Validity of the Adiabatic Approximation[END_REF][START_REF] Schaller | General error estimate for adiabatic quantum computing[END_REF] exists. They can be used to restore the usual theorem [START_REF]The path parametrization is here s(t) = t/T = ǫt ∈ [0, 1] and Hǫ(t) = H(s(t)) where T is the evolution time. The Schrödinger equation is then i d|Ψǫ(t)[END_REF] because dHǫ dt = ǫ dHǫ d(ǫt) = ǫ dH ds vanishes when ǫ → 0. However, they have severe limitations because, due to the integral term, they require a maximal evolution time T to provide an adiabatic evolution when none is needed. This can be easily seen from the Schwinger's H(t) = 10ω 2 cos θ sin θe -iωt sin θe iωtcos θ example with ω = 1 s -1 and θ = 0.01.

GENERAL BOUNDS

In order to derive a more useful bound than (3), let's study the evolution of |Ψ(t) driven by a general Nlevel hamiltonian H(t). For the corresponding eigenvalues E m (t) of H(t), the eigenvectors e iθm(t) |m(t) , m = 1, • • • , N form a so called adiabatic basis, where θ m (t) are arbitrary phases to be chosen conveniently later. To study the adiabatic evolution we assume that |Ψ(t = 0) = |n(0) . The Schrödinger equation for |Ψ(t) = N m=1 U mn (t)e iθm(t) |m(t) , i.e. with U (0) = I, leads to the time-evolution equation: i U = H ′ U , where

H ′ mk = (E m + θm )δ mk -i m| k e i(θ k -θm) . ( 4 
)
As usual, we identify the operators and their matrices in the standard (also called natural or canonical) basis

|m st , m = 1, • • • , N . Thus, H ′ = P -1 HP -i P -1 Ṗ
where the columns of P are the eigenvectors e iθm(t) |m :

P mk = m st |P |k st = e iθ k (t) m st |k of H.
The evolution is adiabatic if and only if the fidelity |U nn (t)| is close to unity (or |Ψ Ψ| -|n n| ≪ 1). In order to also study the phase evolution of the state |ψ we compare the matrix U to another time evolution matrix U ′ which can be more easily evaluated.

Let's define U ′ by U ′ (0) = 1 and

i U ′ = P ′-1 H ′ P ′ U ′ , (5) 
where P ′ is an auxiliary matrix to be chosen conveniently.

Then, the important equality comparing two operators

U (t) -U ′ (t) = (P ′ (t) -1)U ′ (t) -U (t)(P ′ (0) -1) - U (t) t 0 U -1 (t ′ ) Ṗ ′ (t ′ )U ′ (t ′ )dt ′ (6) 
can be established by multiplying it by U -1 and then taking the time derivative. Several choices are possible but, for simplicity we choose P ′ to have P ′-1 H ′ P ′ as an eigenvalue value decomposition of H ′ . In this case U ′ is diagonal:

U ′ nn = e -i R t 0 E ′ n (t ′ )/ dt ′ where E ′ n is the eigenvalue of the n th eigenvector |n ′ = P ′ |n st of H ′ . P ′ is unitary, so P ′ = U = U ′ = 1.
We then apply Eq. ( 6) on |n st and take the norm on both sides to have

|Ψ(t) -e -i R t 0 E ′ n |n(t) ≤ |n ′ (0) -|n st + |n ′ (t) -|n st + t 0 | ṅ′ (7) 
Eq. ( 7) gives a bound as well as the correct phase evolution for adiabatic evolution. Sufficient adiabatic conditions are:

(P ′ (t) -1)|n st |n ′ (t) -|n st ≪ 1 (8) t 0 Ṗ ′ (t ′ )|n st dt ′ = t 0 | ṅ′ (t ′ ) dt ′ ≪ 1 (9)
To tight these bounds we choose the phase of |n ′ to be such that n st |n ′ ≥ 0. The adiabatic fidelity is bound by the inequality 2(1 2 , which should now be tighten as much as possible by choosing the θ m (t) phases.

-| Ψ(t)|n(t) |) ≤ |Ψ(t) - e -i R t 0 E ′ n |n(t)
Links and differences, of Eq. ( 7) with the usual theorem given by Eq. ( 2) and of Eq. ( 8) with the usual condition given by Eq. ( 1), can be inferred by applying standard perturbation theory to Eq. ( 4):

E ′ n ≈ E n -i n| ṅ + θn + m =n |H ′ mn | 2 H ′ nn -H ′ mm ( 10 
)
|n ′ ≈ |n st + m =n H ′ mn H ′ nn -H ′ mm |m st . ( 11 
)
Using the equality θ m = θ n +arg(-i m| ṅ ) for all m = n, creates (to this second order approximation) reals P ′ mn , and condition (8) becomes:

m =n m| ṅ (E n -E m )/ -i n| ṅ + i m| ṁ -d dt arg m| ṅ ≪1 (12 
) This condition, first derived in [START_REF] Ye | Condition for the adiabatic approximation[END_REF], generalizes condition (1) when H is not real [57]. However, as [START_REF] Keith | The meaning of "adiabatic[END_REF], it is an insufficient adiabatic criterion for two reasons: it arises from a perturbative approach, and it neglects the condition [START_REF] Wu | Validity of the quantum adiabatic theorem[END_REF], which is important for oscillating H. Indeed, it is only when the hamiltonian matrix elements are non oscillating functions -in the approximate sens of none of their sum, product, division or combination has a large number of monotonic changes -that the condition ( 9) can be neglected. More precisely, in the general case when all the P ′ mn = m st |n ′ are real (or with a time independent phase argument) and monotonic, an important simplification occurs because

t 0 | Ṗ ′ mn (t ′ )|dt ′ = |P ′ mn (t) -P ′ mn (0)| ≤ |P ′ mn (t) -1| + |P ′ mn (0) -1|.
In this case, we see, by using the 1-norm [56] , that the derivative condition (9) essentially reduces to the sole (8) condition. Similarly P ′ mn piecewise functions with finite number (M -1) of monoticity changes[58] would lead to a m |P ′ mn -1| ≪ 1/M type of condition.

Multi levels system

We use here an exact perturbation theory [START_REF] Paldus | Handbooks of Atomic, Molecular, and Optical Physics, chapter 5: Perturbation Theory[END_REF] to calculate P ′ |n st . We write H ′ = H 0 + V where V is a perturbation. For simplicity, i.e. in order to isolate the n th subspace, we renumber the states to have n = 1 and, using the 1 + (N -1) block matrix notation, we choose (see Eq. ( 4))

H ′ = H 0 + V ; H 0 = H ′ nn 0 0 H ′ nn -δ ′ , V = 2 0 Ω ′ † Ω ′ 0 .
We then apply techniques, detailed in the appendix, to endup with the following simple conditions:

δ ′-1 Ω ′ ≪ 1 (13) t 0 Ω ′ d dt (δ ′-1 ) + δ ′-1 d dt Ω ′ ≪ 1 (14)
which are together sufficient adiabatic conditions because they imply Eqs. ( 8) and ( 9). Eq. ( 14) is here to prevent the use of oscillating hamiltonian. Indeed, as discussed previously, if H is real and "non-oscillating", meaning that Ω ′ mn and (δ ′-1 ) mk are (piecewise) real monotonic functions, the condition ( 14) essentially reduces to condition [START_REF] Marzlin | Marzlin and Sanders Reply[END_REF].

Eq. ( 13) itself can be seen as a generalization of the Eq. ( 12) which itself generalizes the standard condition [START_REF] Keith | The meaning of "adiabatic[END_REF].

Indeed, if we add to the condition (13) the, fortunately common condition of negligible coupling within the space orthogonal to |n , i.e. negligible[59] δ ′ off diagonal terms to have (δ ′ -1 ) mm ≈ (δ ′ mm ) -1 , we can recover Eq. ( 12) by choosing θ m = θ n + arg(-i m| ṅ ) (i.e. Ω ′ real).

Finally, the appendix indicates that, for a strongly non-oscillating (very few monotonicity changes) real hamiltonian H the sole usual condition (1), which is then condition [START_REF] Marzlin | Marzlin and Sanders Reply[END_REF], is sufficient to ensure an adiabatic behavior.

Two level system

Let's now illustrate the results in the two-level (N = 2) framework. We write, by removing the average diagonal energy, the general hamiltonian in the (spinmagnetic interaction H = -γ B. 2 σ) form:

H(t) = ω0(t) 2 cos θ(t) sin θ(t)e -iϕ(t) sin θ(t)e iϕ(t)
-cos θ(t)

. Using -θ 1 = θ 2 = θ 1 + arg(-i 2| 1 ), the appendix shows that Eq. ( 8) and Eq. ( 9) are equivalent to:

| φ sin θ -i θ| φ cos θ -ω 0 -d dt arg( φ sin θ -i θ) = |Ω ′ | |δ ′ | ≪ 1 (15) t 0 dt ′ d dt ′ |Ω ′ (t ′ )| δ ′ (t ′ ) ≪ 1 (16) 
In order to check their validity, or similarly the one of conditions ( 13) and ( 14), we first use the simple example due to Schwinger [START_REF] Schwinger | On Nonadiabatic Processes in Inhomogeneous Fields[END_REF], where all the parameters ω 0 , θ, φ = ω are real and time independent. In this case the condition [START_REF] Joye | Interferences in adiabatic transition probabilities mediated by Stokes lines[END_REF] vanishes and

U (t) = e -i R t 0 H ′ / = (cos Ω R t 2 -i δ ′ Ω R sin Ω R t 2 ) -i Ω ′ Ω R sin Ω R t 2 -i Ω ′ Ω R sin Ω R t 2 (cos Ω R t 2 +i δ ′ Ω R sin Ω R t 2 )
where Ω R = |Ω ′ | 2 + δ ′2 is the generalized Rabi frequency. The adiabatic evolution (negligible off-diagonal terms in U ) is ensured by the condition

|Ω ′ | ΩR = |ω sin θ| √ (ω0-ω cos θ) 2 +ω 2 sin 2 θ ≪ 1
which is indeed equivalent to our condition (15):

|Ω ′ | |δ ′ | =
|ω sin θ| |ω0-ω cos θ| ≪ 1. Furthermore, our equation ( 7), including its phase

t 0 E ′ 1 / = Ω R t/2
, correctly describes an adiabatic evolution.

On the contrary, using this analytical example (by looking at the resonant ω ≈ ω 0 or small θ cases for instance) it is straightforward to demonstrates that Eq. ( 1):

|Ω ′ | |ω0| = |ω sin θ| |ω0|
≪ 1, as well as the "usual" adiabatic phase evolution ω 0 t/2 = t 0 E 1 / -i 1| 1 (see Eq. ( 2)), are not correlated with an adiabatic evolution.

We now add to our study the condition ( 16) by the use of the real cycling hamiltonian H = 2 δ Ω Ω -δ where δ(t) = α cos(̟t) and α, ̟, Ω are positive constants verifying, for simplicity, weak-coupling (Ω ≪ α) and large amplitude (α ≫ ̟). For t ∈ [0,

T 1 = π/̟], |Ω ′ | δ ′ = | θ| ω0 = Ωδ-Ω δ (δ 2 +Ω 2 ) 3/2 is
real and with a single monotonicity change, so our second condition ( 16) reduces to condition [START_REF] Bransden | Introduction to Quantum Mechanics[END_REF]. The non-adiabatic transition probability p 1 (so called single-passage or one-way transition), is given by the Landau-Zener's formula:

p 1 ≈ e -π 2 Ω 2
α̟ [42] and the adiabatic limit p 1 → 0 is covered by the condition (15): max t∈[0,T1] θ ω0 = α̟ Ω 2 ≪ 1. After M (even) multiple passage, for t = M T 1 , the non-adiabatic transition probability becomes p M ≈ p 1 sin 2 MΘ cos 2 Θ and depends of a relative (Stückelberg) phase Θ ≃ α ̟ of the wavefunction [START_REF] Kayanuma | Role of phase coherence in the transition dynamics of a periodically driven two-level system[END_REF]. For Θ ∼ π/2[π], p M can be M 2 times higher than p 1 leading to a full non adiabaticity p M ∼ 1 even if p 1 ≪ 1. This illustrates why, in such an oscillating case, condition (15)

( α̟ Ω 2 ≪ 1)
is not sufficient and the extra condition (16) ( α̟ Ω 2 ≪ 1/M ) is needed to ensure an adiabatic evolution. This example shows that, with an oscillating hamiltonian, even if a single passage is quasi-adiabatic constructive interferences might accumulate the small non adiabatic amplitude to result, after multiple passages, in a full non-adiabatic transition[60]. This is very similar to the case of single crossing but with several levels [START_REF] Joye | Interferences in adiabatic transition probabilities mediated by Stokes lines[END_REF][START_REF] Giller | Adiabatic Limit Interference Effects for Two Energy Level Transition Amplitudes and Nikitin-Umanskii Formula Studied by Fundamental Solution Method[END_REF], or to multilevel system [START_REF] Wilkinson | Nonadiabatic transitions in multilevel systems[END_REF], leading, using stationary phase (saddle-point) theorem or steepest descent WKB type of methods, to sums or products of dephased Landau-Dykhne-Davis-Pechukas's formulas corresponding to several successive transitions between pairs of levels [START_REF] Nakamura | Nonadiabatic transitions and gauge structure[END_REF][START_REF] Stenholm | Quantum Dynamics of Simple Systems[END_REF]. Finally, this shows that the standard condition (1) breaks down, not only when resonant terms are present, as sometimes believed [START_REF] Duki | Comment I on "Inconsistency in the Application of the Adiabatic Theorem[END_REF][START_REF] Mackenzie | Perturbative approach to the adiabatic approximation[END_REF][START_REF] Vértesi | Perturbative analysis of possible failures in the traditional adiabatic conditions[END_REF][START_REF] Amin | Consistency of the Adiabatic Theorem[END_REF], but more generally when oscillating terms are presents.

CONCLUSION

By simply diagonalizing the hamiltonian H ′ (hamiltonian in the adiabatic basis), we have derived simple conditions, Eqs.( 13) and ( 14) and exact bounds (Eq. ( 7)) for the state and its phase, ensuring an adiabatic evolution. The usual (or standard) condition ( 1) is found to be a sufficient adiabatic condition but only for a real and "nonoscillating" hamiltonian evolution. This explains why all the previously cited examples (Landau-Zener, STIRAP, ...) deal with the (real) interaction representation or the dressed state basis, where ω = 0, and use non oscillating functions such as exponential or polynomial ones.

Condition [START_REF] Isaac | Quantum Mechanics[END_REF] prevents oscillation[61] but unfortunately with no distinction between case with constructive crossings or case with destructive (Stückelberg) interferences. However, the generic most common case concerns a "complex enough" system with small total probability when the single crossing probability is small [START_REF] Akulin | Coherent Dynamics of Complex Quantum Systems[END_REF], i.e. where the sole Eq. ( 13), or Eq. (1) for real hamiltonian, is sufficient to ensure an adiabatic evolution.

This result simply highlight the fact that the standard mathematical technique (so called asymptotic analysis) to study the adiabaticity consists in extracting, form the global solution of the Schroedinger equation, a set of local solutions which individually covers a region (let say between time 0 and T ), with a controlled behavior of the coefficients in the equation. This means that the criterion ( 1) is local and that in order to study the adiabatic behavior of a given hamiltonian, one should cut its evolution in part where we could apply safely the criterion [START_REF] Keith | The meaning of "adiabatic[END_REF], namely in part with single branching point or with single crossing between pairs of levels. Globally we shall add each local non-adiabatic amplitude to get the global non-adiabatic amplitude [START_REF] Joye | Interferences in adiabatic transition probabilities mediated by Stokes lines[END_REF][START_REF] Nakamura | Nonadiabatic transitions and gauge structure[END_REF][START_REF] Stenholm | Quantum Dynamics of Simple Systems[END_REF][START_REF] Wilkinson | Nonadiabatic transitions in multilevel systems[END_REF][START_REF] Giller | Adiabatic Limit Interference Effects for Two Energy Level Transition Amplitudes and Nikitin-Umanskii Formula Studied by Fundamental Solution Method[END_REF]. We would stress that all this should be very well known, but seems to be forgot by many physicist if we refer to recent published articles. Our article, demonstrate in a simple way that using non-oscillating function the number of local solution is obviously finite and so the added probability remains small if the criterion (1) is globally fulfilled.

Finally, the adiabatic evolution is strongly related to the (semi-)classical limit → 0 of quantum mechanics [START_REF]The path parametrization is here s(t) = t/T = ǫt ∈ [0, 1] and Hǫ(t) = H(s(t)) where T is the evolution time. The Schrödinger equation is then i d|Ψǫ(t)[END_REF] [START_REF] Berry | The adiabatic limit and the semiclassical limit[END_REF], to the WKB approximation [START_REF] Giller | Adiabatic Limit Interference Effects for Two Energy Level Transition Amplitudes and Nikitin-Umanskii Formula Studied by Fundamental Solution Method[END_REF], to the Minimal work principle [START_REF] Allahverdyan | Minimal work principle: Proof and counterexamples[END_REF], to the quasistatic thermodynamical process [START_REF] Rezek | Irreversible performance of a quantum harmonic heat engine[END_REF], and to perturbation theory. Therefore, we hope that this work and the given examples can enable the development of significant techniques, or provide novel insights into these important systems.

Thanks to Sabine Jansen to have pointed out to me Born and Fock's consideration concerning monotonicity.

APPENDIX Multi levels model

We demonstrate here that conditions [START_REF] Marzlin | Marzlin and Sanders Reply[END_REF] and ( 14) imply the conditions [START_REF] Sarandy | Consistency of the Adiabatic Theorem[END_REF] and [START_REF] Wu | Validity of the quantum adiabatic theorem[END_REF]. The techniques are similar to one used in Davis-Kahan sin θ theorem or Weyl-Bauer-Fike's types of perturbative bounds [START_REF] Ipsen | A Note on Unifying Absolute and Relative Perturbation Bounds[END_REF][START_REF] Chen | A note on the perturbation bounds of eigenspaces for hermitian matrices[END_REF][START_REF] Li | Combined perturbation bounds: I. eigensystems and singular value decompositions[END_REF]. The starting point is the exact Brillouin-Wigner perturbation theory that we demonstrate here for completeness [START_REF] Paldus | Handbooks of Atomic, Molecular, and Optical Physics, chapter 5: Perturbation Theory[END_REF].

We define the projector Q n = 1 -|n st n st |, which in matrix notation is Q n = ( 0 0 0 1 ) , and the eigenvector

|n ′ ∝ |n ′ of H ′ = H 0 + V with a simple normalization n st |n ′ = 1. H 0 = H ′ -V commutes with Q n so[62] (E ′ n -H 0 )Q n |n ′ = Q n (E ′ n -H ′ + V )|n ′ = Q n V |n ′ . When multiply by (E ′ n -H 0 ) -1 this directly lead, using Q n |n ′ = |n ′ -|n st , to the Brillouin-Wigner equation: |n ′ = (1 -(E ′ n -H 0 ) -1 Q n V ) -1 |n st .
Using the matrix notation, and the blockwise inversion, this becomes:

|n ′ = 1 (1+δ ′-1 ∆ ′ ) -1 δ ′-1 Ω ′ 2 (17) where ∆ ′ = E ′ n -H ′ nn = n st |H 0 + V |n ′ -H ′ nn = n st |V |n ′ satisfies δ ′-1 ∆ ′ = δ ′-1 Ω ′ † 2 (1 + δ ′-1 ∆ ′ ) -1 δ ′-1 Ω ′ 2 ( 18 
)
The idea is now to use the smallness of δ ′-1 Ω ′ (see Eq. ( 13)) to evaluate |n ′ = |n ′ / n ′ |n ′ and its time derivative, i.e. to study Eqs. ( 8) and ( 9). We first take the norm of Eq. ( 18) and use (1

+ δ ′-1 ∆ ′ ) -1 ≤ ∞ k=0 δ ′-1 ∆ ′ k = (1 -δ ′-1 ∆ ′ ) -1 to see that: if δ ′-1 Ω ′ ≪ 1 then δ ′-1 ∆ ′ ≪ 1 (see also Eq. ( 19 
)). Therefore Eq. ( 17) shows that Eq. ( 8) is implied by (it is in fact equivalent to) Eq. ( 13): δ ′-1 Ω ′ ≪ 1.

When δ ′-1 Ω ′ ≪ 1, i.e. |n ′ ≈ |n st , the time derivative of |n ′ = |n ′ / n ′ |n ′ shows that | ṅ′ ≈ | ṅ′ . Time derivative of the equations ( 17) and ( 18) can then be used to study Eq. ( 9). Indeed, using δ′-1 = -δ ′-1 δ′ δ ′-1 and (again) useful estimations on the smallness (see Eq. ( 18)) of the norm of δ ′-1 ∆ ′ and its time derivative, finally leads to the fact that condition ( 14) (together with ( 13)) implies the condition [START_REF] Wu | Validity of the quantum adiabatic theorem[END_REF].

Two levels model

We derive here, in a simpler way, the conditions ( 13) and ( 14). The eigenvectors e iθ1 |1 , e iθ2 |2 of the hamiltonian H, corresponding respectively to the eigenvalues ω 0 /2 and -ω 0 /2, are given by the columns

of P = e -i ϕ 2 cos θ 2 e iθ 1 -e -i ϕ 2 sin θ 2 e iθ 2 e i ϕ 2 sin θ 2 e iθ 1 e i ϕ 2 cos θ 2 e iθ 2
and

H ′ = 2 -φ cos θ + ω 0 + 2 θ1 ( φ sin θ + i θ)e i(θ2-θ1) ( φ sin θ -i θ)e i(θ1-θ2) -ω 0 + φ cos θ + 2 θ2 . With θ 2 = -θ 1 , H ′ = 2 δ ′ Ω ′ † Ω ′ -δ ′ .
The N = 2 case is a very special one because it is always possible to choose H ′ , and then P ′ real with θ 2 = θ 1 + arg(-i 2| 1 ). Using 15) and [START_REF] Joye | Interferences in adiabatic transition probabilities mediated by Stokes lines[END_REF].

Non oscillating case

We assume here that the usual condition (1) is fulfilled for a strongly non-oscillating real hamiltonian (i.e. with monotonics the P mk = m st |k = ϕ mk functions) and we give here a clue that the evolution is indeed adiabatic.

By using a proof by contradiction, we assume that the evolution is not adiabatic. Thus condition ( 13) is not fulfilled so non negligible δ ′ off diagonal terms exists to modify substantively the δ ′ eigenvalues. The (Weyl-)Bauer-Fike's theorem [START_REF] Wilkinson | Nonadiabatic transitions in multilevel systems[END_REF] applied to δ ′ , implies that one of the off diagonal elements (∼ φmk ) of δ ′ should then be bigger than the diagonal ones (the gap ∆E n ). But Eq. ( 20) indicates that a time T ∼ 1/ Ω ′ is needed to have an non adiabatic evolution. Thus condition [START_REF] Keith | The meaning of "adiabatic[END_REF], which is roughly Ω ′ ≪ ∆E n , would implies that ϕ mk ∼ φmk T ≫ 1 which contradicts ϕ mk = m st |k ≤ 1. 

the obvious notations H ′ = ω ′ 0 2 cos′ 2 -sin θ ′ 2 sin θ ′ 2 cos θ ′ 2 .

 22222 θ ′ sin θ ′ sin θ ′ -cos θ ′ , i.e. P ′ = cos θ Our conditions (8-9) then read θ ′ ≪ 1 and t 0 | θ′ | ≪ 1 which leads to the general conditions of adiabatic evolution: Eqs. (

  (Weyl-)Bauer-Fike's theorem Let H ′ d be the diagonal part ofH ′ = H ′ d + H ′ non diag . Multiplying H ′ non diag |n ′ = (E ′ n -H ′ d )|n ′ by (E ′ n -H ′ d ) -1and taking norm on both sides leads to the (Weyl-Lidskii)-Bauer-Fike's theorem (applied to H ′ ): / of a geometrical phase (Berry Phase for cyclic evolution) plus a dynamical phase simplifies the H ′ matrix elements (see Eq. 4)). Using-d|Unn| -|U 2 nn | = m =n |U mn | 2 = U •n , when integrating the (Schrödinger) equation (i Unn = Ω † U •n ) leads to the (quantum Zeno's type of) adiabatic condition: 1 -|U nn (t)| ≤ 1cos( Ω ′ t/2) ≤ Ω ′ /2 2 2 t 2 .(20)

	min m	|E ′ n -H ′ mm | ≤ H ′ non diag	(19)
	Universal optimal bound	
	Using the following choice θ m = 0 E m dt t 0 i m| ṁ -t dt and the norm ≤ dUnn [56] equality 1

This optimal bound is reached by the Schwinger system for δ ′ = 0.

dt

= Hǫ(t)|Ψǫ(t) or i ǫ d|Ψ(s) ds = H(s)|Ψ(s) . More generally a local control of the speed is possible: Hs(t) = H(s(t)) by using a monotonic function s(t) ∈ [0, 1] [START_REF] Roland | Quantum search by local adiabatic evolution[END_REF]. An example is the interpolating hamiltonian H(s) = Hin(1 -s) + H fin s.

[56] In this article we use

x .

[57] For real hamiltonian H, |m is real, so the (Pancharatnam's phase) arg m| ṅ is zero, and d dt m|m = 2 m| ṁ = 0.

[58] Interestingly enough, very similar considerations have been used by Born and Fock in their seminal paper [START_REF] Born | Beweis des Adiabatensatzes[END_REF].

[59] Simple condition (similar to Weyl's theorem), for the smallness of δ ′-1 off diagonal terms exists. For instance by choosing H0 as the diagonal part of H ′ in the Brillouin-Wigner equation we can replace conditions [START_REF] Marzlin | Marzlin and Sanders Reply[END_REF] essentially by Ḣ(t) 1 ∆E(t) ≪ ∆En(t) . However, this may be of small practical interest because it contains not only ∆En, the gap relative to |n , as in Eq. ( 1), but also the global energy spectral gap ∆E = min m =k |E k -Em|.

[60] Interestingly enough, the reverse case, namely the diabatic limit (p1 ≈ 1) can lead (for instance when α/̟ annul the Bessel J0 function) to the reverse phenomenum of adiabaticity created after multiple passages (pM ≈ 0) known as suppression of the tunneling, coherent destruction of tunneling, dynamical localization or population trapping depending on the context [START_REF] Kayanuma | Role of phase coherence in the transition dynamics of a periodically driven two-level system[END_REF][START_REF] Grifoni | Driven quantum tunneling[END_REF].

[61] More practical definition of a "non-oscillating" hamiltonian than based on the small number of monotonicity change of the adiabatic hamiltonian H ′ would be useful. We conjecture (and hope that someone could demonstrate it) that real hamiltonian containing sum, product, multiplication or division of composition of (real) exponential or polynomial functions are of this type. A possible clue for this proof may be based on iterative used of Eq. ( 6) with the iterative U ′′ , P ′′ , U (3) , P (3) • • • matrices converging toward the wanted diagonalization, as done in the Jacobi algorithm which iterates the N = 2 case. During each Jacobi step, the P (m) elements are still of the sum, product, multiplication or division of composition of (real) exponential or polynomial types. The exponent of the polynomial functions grows, as well as the number of monoticity changes, but slowly enough to be always bounded (they never reach infinity due to the isolated zero theorem).

[62] We wrote E ′ n 1 simply as E ′ n