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Summary 

Dynamics of biological-ecological systems is strongly depending on spatial 

dimensions. Most of powerful simulators in ecology take into account for system 

spatiality thus embedding stochastic processes. Due to the difficulty of researching 

particular trajectories, biologists and computer scientists aim at predicting the most 

probable trajectories of systems under study. Doing that, they considerably reduce 

computation times. However, because of the largeness of space, the execution time 

remains usually polynomial in time. In order to reduce execution times we propose an 

activatability-based search cycle through the process space. This cycle eliminates the 

redundant processes on a statistical basis (Generalized Linear Model), and converges 

to the minimal number of processes required to match simulation objectives. 
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Introduction 

 

Most of –if not all–biological and ecological systems are strongly influenced by spatial 

dimensions. Indeed, it is well established that, whatever the particular space scale the 

systems are considered, the analysis of interactions between organisms, or between 

organisms and physico-chemical components, is crucial to understand system 

behaviour and structure. Furthermore, such interactions may occur both in various 

ways (e.g., secretion of chemical compounds, contacts between individuals, 

competition for resource, gain or loss of matter and energy, etc.) and at various 

distances (i.e., from immediate neighbouring to long distances). Finally, such 

interactions may occur in continuous or discrete modes in both space and time.       

Powerful simulators in ecology actually take into account the spatial dimension of 

interactions (Wu J. and David J. L., 2002; Ratzé et al., 2007). Several techniques are 

used, some of them allowing to involve both space and time, at a low level of details 

(e.g., Kendall process, stepping stone models, compartment models, etc.). Among 

these modelling techniques, the most powerful simulators in ecology belong to the 

class of “individual based models” (IBM hereafter; also denoted individually oriented 

models (IOM), Fishwick et al. 1998) which allow integrating spatial interactions at a 

high level of details. The IBM approach completes the set of usual formal 

mathematical methods (Grimm 1994, Sultangazin 2004). For instance, differential 

equations or partial differential equations are very efficient to give a coarse estimation 

of the evolution of large areas. However, (partial) differential equations are limited for 

simulating actual biological processes (Grimm and Uchmanski, 1994), particularly 

when the questions to be address require many details. Ecological modelling often has 

to account simultaneously for: (1) the diversity of individuals, (2) the spatial 

heterogeneity of the environment, (3) the changing interaction network (and changes 

of biotic structures), (4) the discrete and distant interactions between individuals, (5) 

the random processes and behaviours (i.e., random spatial interactions or movements), 

etc. 

IBMs are often implemented by object-oriented models (Coquillard and Hill, 1997) or 

by multi-agent models when there is a need to represent an autonomous social 

behaviour of individuals heading a common goal (Ferber, 1999).  In this case, IBMs 

are usually called agents. In addition, such modelling approach has the main following 

advantages (Hill & Coquillard, 2007): (1) it allows theoretically the simulation of 

ecosystems with large sets of species harbouring different behaviours. Moreover, 

object classes can account for a part of mathematical modelling in order to obtain 

combined simulations if needed (mixing the discrete and continuous approach). (2) 

However, a lot of fieldwork always remains necessary as well as a deep knowledge of 

the modelled species. (3) It takes into account the spatial features of ecosystems that is 

difficult with partial differential equations (e.g., compartment models), or with the 

classical Markovian analysis. (4) It provides the possibility to manage, for each 

individual, the set of parameters the biologist decides to integrate in the model. The 

management of individuals, and correlatively of their physiological variations, enables 

model refinement to approach reality according to the detailed level wished by the 

user. 

 

In a first part, we will show, through a simple example, that (1) introducing spatial 

relationships between individuals is a prerequisite to maintain a sufficient level of 

diversity and (2) that such operation requires a probabilistic approach. In a second part 
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we will propose a statistically driven method for reducing the state of space for a 

model. 

I. Reducing activity 

Example of spatialization necessity  

Let us have a look to the prisoner’s dilemma which is the most emblematic problem in 

the game theory. The problem was initially formalized by W. Tucker. In its classical 

form, the dilemma is expressed as follows: 

 

Two suspects are arrested by the police. The police having separated both prisoners 

visit each of them to offer the same deal. If one testifies for the prosecution against the 

other and the other remains silent (cooperates), the betrayer goes free and the silent 

accomplice receives a full 10-years sentence. If both remain silent, both prisoners are 

sentenced to only six months in jail. If each betrays the other, each receives a five-year 

sentence. Each prisoner must choose to betray the other or to remain silent. Each one 

is assured that the other would not know about the betrayal before the end of the 

investigation. How optimally should the prisoners act? 

 

In this game, the only concern of each prisoner is to maximize his payoff. 

Consequently, all rational players should play “testify” (fig. 1) and cooperating is 

strictly dominated by defecting. As a consequence of such strategy, the game leads to 

the disappearance of cooperators. But many examples of coexistence of cooperation 

and selfish behaviours can be found in animal societies and economical situations. 

How is it possible? M. Nowak and R. May demonstrated in 1992-1995 that 

introducing spatial dimension in the dilemma, even in an elementary - and somewhat 

opened to criticism - form, makes such situation possible. They first reformulated the 

dilemma by introducing a sentence variable b (b>1). Then, they distributed players on 

a grid in which each player has a probability to become a cooperator. This probability 

is function of states and gains of its immediate neighbours (see fig. 2 for details). As a 

result of such a transformation, they obtained for some couples (m, b) the coexistence 

of both strategies (see fig. 3). By doing that, however, they brought into the model 

some probabilistic compounds. Actually, this example illustrates clearly the usual way 

simulators reproduce spatial interactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the other prisoner testifies:  
If I remain silent, I will receive the full 10-years sentence;  

But if I testify, I will only receive a 5-years sentence 

If he does not: 
If I remain silent, I will receive a 6-monthes sentence;  

But if I testify, I will be free. 

«Whatever his choice, I have interest to testify»  

 

 Silent Testify 

Silent (-0.5, -0.5) (-10,0) 

Testify (0, -10) (-5, -5) 

 

 

 

 Silent Testify 

Silent (1 , 1) (b , 0) 

Testify (0 , b) (0 , 0) 
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Figure 1. The original prisoner’s dilemma (upper table) is reformulated by introducing b>1 as a 

sentence variable (lower table).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The spatialized dilemma (after M. Nowak and R. May). P(j) is the probability the 

prisoner j has to become a cooperator. 

 

 
 

 

 

Figure 3. The spatialized prisoner’s dilemma in the (m,b) plane. Each cell of the grid 

represents a game of 100 × 100 players. Large areas present the coexistence of cooperators 

(white) or selfish players (black). In gray colour, the players which have just changed of 

state. After M. Nowak and R. May (modified). 

 

Obviously, integration of space into simulators leads to a better representation of 

reality. However, the level of details increases the number of parameters, 

computations and interactions between parameters. This results in an explosion of the 

state space and to the intractability of simulations. Therefore, solutions have to be 

found to reduce the state space and thus enhance tractability. 
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Space and NP problems 

 

According to the previous example, we can conclude that embedding spatial 

interactions into simulators (designed to model ecological systems) requires, in most 

cases, a stochastic approach. In most cases, several processes are acting 

simultaneously in the course of runs to simulate spatial interactions (e.g., various types 

of competition, seed dispersal, migration, gene flows, chromosome shuffling, 

chromosomal crossovers, etc.) Considering that each of these processes act on several 

levels (that can be large), the number of possible trajectories of the system is an 

exponential function of the number n of processes varying on p levels, and the time 

required to find a particular trajectory of the system is O(n
p
). In other words, this 

problem belongs to the NP complexity class problem (see fig. 4). This is the reason 

why ecologists have early decided to reformulate the statement: “finding a particular 

trajectory” into “finding the most probable trajectory”. 

 

Let us define activity of a system as its number of transitions and activatability as the 

probability of transition activation. If we consider p processes varying on [1,...,n] 

levels and that each level can be activated with a probability following a law π, the 

activatability of the process i is (fig. 4): 
 

∆i[πi(s i1 ,…, sin)], 

 

The activity can be estimated as proportional to the number of replicates (R), the 

confidence interval (%) and the number of processes (p):  

 

),%,( pRA 1
 

 

The number of replicates R depends on σ (the standard error of the response). 

 

Reformulating the original question in “finding the most probable trajectory”, we 

considerably reduced the computation time and escape from the NP-problem trap 

along with its heuristic solutions (the problem is now solvable in a polynomial time 

O(klog(p)) with p processes). However, the problem of activating many stochastic 

processes is still relevant and some algorithms can be time consuming (for instance, 

the algorithm AKS which tests the primarity of a number is O(log(n)
10.5

)). 

These considerations lead to the following question: “How to reduce the number of 

processes?” Kleijnen and Groenendaal (1992) proposed that building of 2
(n-1)

 

experimental designs in which each process is either active or inactive, give the same 

information than a 2
n
 protocol (i.e., involving a half of process combinations). Thus, it 

is possible to test the effects of each process on the results eliminating redundant ones. 

The use of 2
(n-k)

 protocols is also possible but results in introducing confusion between 

some interactions and a confusion of the main effects with their interactions.  

 

 

 

 

                                                 

1 The confidence interval of a mean is calculated as: 

R

s
Tx

R

s
Tx dd ;2/;2/    , where 2/T is given by the 

student law with α  0.05 and d is the degree of freedom (df). 
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Figure 4. Activity, activatability and processes. 

 

 

 

 

 

 
Figure 4. Activity, activatability and processes. 
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Proposal of an activatability cycle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.The activatability cycle. Every loop, processes with no significant effects are 

eliminated. 

 

In this section we will propose a method to build the most parsimonious model from a 

list of processes. Based on statistical evidences, the method is automatable and allows 

to embed into the simulator all the process which have a significant effect on the 

results of simulation, even those on which we have no a priori ideas about their 

pertinence in the model. However, the method cannot be seen as a validation process. 

In addition, the proposal must not be confused with the works of Hoffman (2005), who 

proposed an extended genetic algorithm based method “to accomplish simultaneously 

parameter fitting and parsimonious model selection” among a list of candidate models.  

The proposed cycle of activatability (fig. 5) is based on a complete design protocol (2
n
 

protocol). At every cycle, main effects and their interactions on the response y, can be 

tested through a Generalized Linear Model (Nelder and Wedderburn, 1972).  

 

E(yi) = 0 +1∆1 +
…

+i∆i + 
…

+k∆i.∆j +
…

+         (1) 

 

where yi is the dependant variable
2
, ∆i  (i  [1..n] ) the principal effects (or independent 

variables), ∆i.∆j  the interaction between the effects (sometimes called “product 

terms”) and  is a random error. Equation (1) is thus a linear regression. Quadratic 

effects can also be included in the regression (i.e (∆i)
2
)). In a GLM, it is assumed that   

obeys to one function of the exponential family (Normal, Poisson, Binomial, etc.). The 

k parameters represent the variation of E(yi) when the k
th

 variable move of one unit, 

the remaining variables being unchanged. Formally: 

 

                                                 
2
 In addition, the dependant variable y can be transformed by means of a link function. This is usually the case when the yi 

responses do not follow the Normal distribution. Note that GLM assumes that the yi observations are independent. 
 

Select Select activatableactivatable potentially pertinent processespotentially pertinent processes

Activate selected processesActivate selected processes
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Test the effects (using GLM) and reject inefficient processesTest the effects (using GLM) and reject inefficient processes

yyii ~~ ∆∆i +..+ i +..+ ∆∆j + j + ……++∆∆i i ∆∆j +j +……+ + 

RunRun simulatorsimulator

RunRun simulatorsimulator

ACTIVATABILITY CYCLE SEARCH SPACE
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UsingUsing ∆i [πN(s i1 ,…, siN)]

Test the effects (using GLM) and reject inefficient processesTest the effects (using GLM) and reject inefficient processes

yyii ~~ ∆∆i +..+ i +..+ ∆∆j + j + ……++∆∆i i ∆∆j +j +……+ + 

RunRun simulatorsimulator

RunRun simulatorsimulator

ACTIVATABILITY CYCLE SEARCH SPACE
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Equation (1) is solved by the usual matrix method for multiple regressions. In the 

general case, the resulting model is then tested against the yi responses by means of an 

analysis of variance (ANOVA) which leads to:
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i
, called the 

correlation ratio, where iŷ is the predicted response, y  the average response and iy the 

observed response. R² gives the amount of variation of the yi which is explained by the 

model. 

In addition, it can be demonstrated that 
)1/()1(

/
2

2




knR

kR
F follows a Fisher 

distribution with k and k-n-1 degrees of freedom. In such conditions, we can reject the 

null hypothesis H0: 1 = 2 =…= k = 0, if P(F Fcalculated) < α, with α = 0.05. 

However, even if we reject the null hypothesis, this does not imply that all variables of 

the model have a significant contribution to the response y. To decide if a particular 

variable j has a significant contribution to the response we calculate 
)(2

2

j

j

s
F




 and 

reject the hypothesis H0: j = 0, if F > Fα;1,n-k-1. To test successively each variable of 

the model, a stepwise
3
 procedure eliminates and introduces the variables in the model 

of the response y (usually the p-value <0.05 criterion is used).   
 

Such a procedure takes advantages from allowing to embed into the simulator all the 

variables (= processes) the user wants to test – with no a priori exclusion.  Another 

advantage is that processes can be aggregated into sets which can be treated as active 

units. In this case, the user attempts to measure the effects of some global activities 

(sexual reproduction for instance) on a response (population dynamics involving both 

sexual and asexual reproduction of plants). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6. The life span-fecundity trade-off of a parasitoïd wasp. 

 

                                                 
3
 Backward and forward methods are also used. Each of them introduces or eliminates step by step the variables into the model. 
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Application 

 

In this application, four processes are represented by four real values coded on 16 bit-

structure called genes (see figure 6). The animal (a parasitoid
4
 wasp) has an initial 

position along a trade-off (coded by gene G1) and can change its reproductive strategy 

throughout its life thanks to gene G2, which defines a range. The wider G2, the 

heavier the cost to pay (in term of energy). The cost reduces both fecundity and 

lifespan of the animal. The wasp can move within the range thanks to gene G3, which 

is a parameter of a Bayesian estimator re-evaluated each ten time steps of its life as 

follows: 

 
Posterior = prior × G3 + (1-G3) × posterior; 

Fecundity = Fecundity + G2 × posterior; 

 

When a wasp encounters a patch of hosts, the number of hosts it attacks obeys to a 

saturation function. Thus, its velocity of attacking hosts decreases, following an 

exponential function. When its velocity has reached the average velocity calculated on 

the basis of the average environment richness, it leaves the patch and tries to find a 

new one. The cycle “foraging for hosts on patches and travelling between patches” is 

repeated until the wasp has reached the end of its life or has exhausted its potential 

fecundity. 

The four genes are encapsulated into a single chromosome. Each wasp holds a single 

chromosome. The goal of the simulation consist in finding the vector {G1,…,G4} 

which maximises the score of the wasp, i.e. the number of eggs laid throughout its life. 

The score maximization is obtained by means of a genetic algorithm (GaLib, MIT, 

1997-2007). 

Basically, the four genes {G1,…,G4} are variables. However, each of them induces 

the call of several functions in the code and modifies the behaviour of the wasp. For 

instance, the gene G2 can strongly modify the phenotypic plasticity of the animal (i.e. 

its ability to adapt its fecundity/lifespan ratio to the environment characteristics) and 

influence its score. That is why we will now consider the {G1,…,G4} genes as 

processes instead of variables. 

 

First cycle. 

In this application, 2625 experiments (10 replicates each) were done. The results 

showed that there was no significant effect of G4 on scores, whatever the initial 

conditions in which wasps had to evolve. Consequently, the process directed by G4 

was dropped. 

 

Second cycle. 

Significant effects on {G1, G2, G3} were found, and the three processes clearly acted 

on animal scores (table I). 

 

 

 

 

 

                                                 
4
 An organism that lives at the expense of another (its host), impedes its growth and eventually kills it. Insect parasitoids, which 

are often very tiny, attack a single organism (plant or animal), from which they derive everything they need for their own growth 

and reproduction. One way a parasitoid does this is by laying its eggs in the body of the host insect (from Natural Canadian 

Research document). 
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  G1 G2 G3 

Source of variation  

F Value 

(calculated) Pr > F 

F Value 

(calculated) Pr > F 

F Value 

(calculated) Pr > F 

stability of environment (1) 263.81 <.0001 24.17 <.0001 2.04 0.0864 

inter patch travel time (2) 222.31 <.0001 91.23 <.0001 3.22 0.0121 

(1).(2) 7.97 <.0001 1.78 0.028 0.74 0.7534 

energetic cost (3) 2.34 0.0532 56.46 <.0001 4.15 0.0023 

(1).(3) 1.11 0.3409 2.96 <.0001 1.29 0.1968 

(2).(3) 1.28 0.2031 4.85 <.0001 0.59 0.8926 

averaged # hosts on patchs (4) 3045.64 <.0001 25.14 <.0001 10.95 <.0001 

(1).(4) 20.85 <.0001 11.48 <.0001 1.19 0.2392 

(2).(4) 56.15 <.0001 11.05 <.0001 2.05 0.0019 

(3).(4) 1.25 0.1834 1.45 0.0741 1.26 0.1794 

stochasticity (5) 24.37 <.0001 2.19 0.1126 1.66 0.1899 

(1).(5) 4.27 <.0001 1.08 0.3755 1.14 0.3346 

(2).(5) 1.47 0.1612 1.9 0.0553 0.52 0.844 

(3).(5) 0.36 0.94 0.49 0.8676 1.38 0.202 

(4).(5) 6.3 <.0001 3.07 0.0003 1.08 0.375 

 
Table I. ANOVA test on the model obtained by the GLM procedure. Sources (factor) of variation (i) 

and interactions (i.j) of the linear model are indicated in the left column. Effects on {G1,…,G4}: F 

values and their probability to be greater than the theoretical values of the Fisher law are indicated for 

{G1,…,G3}; values for G4 are omitted since probabilities were systematically  0.05. Significant 

effects are indicated in bold. 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Simulation results (population size = 500, number of generation = 300, number of 

replicates = 50). Left: no effect of G4 on scores was detected according to the ANOVA results. 

Centre and right: after removal of G4, significant effects of initial conditions on {G1, G2, G3} 

and of {G1, G2, G3} on scores were identified. 

 

 

 

 

 

 

 

 
Table II. Comparison between simulations embedding process G4 or not (50 

replications of a run initialized with a single combination of parameters). 

 

   With GA4  Without GA4 

Code size (compiled) 842 757 842 629 

# functions 

# max of calls 

58 

1 992 190 

52 

1 234 692 

Virtual mem. (RES + swap) 3 380 000 3 380 000 

RES 1 572 000 1 572 000 

Execution time 8mn47.661 6mn59.502 

effect of G4 on the score

0
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effec t of the interac tion eggs  *  s tability  on  G2 Effect of G1 *  G2 on scores
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Clearly, results (table I & fig. 7) showed that process G4 was redundant. Removing 

G4 makes the simulations faster than simulations embedding the four processes, and 

gain is about 20%. Most execution time reduction was a consequence of the reduction 

of function calls (1 234 692 versus 1 992 190). On the contrary, code size and memory 

size remained unchanged (table II). 

 

However, it is clear that if the activatability cycle was designed to select processes 

contributing significantly to the response of the simulator, it does not constitute a 

validation of the resulting model. Indeed, the validation phase must be engaged after 

the selection of processes has been achieved, as it is usually done in a classical 

approach. Lastly, if the resulting model can be validated by comparison with 

experimental data corresponding to the protocol design, the model has few chances to 

be validated when confronted to other data. In this case, the experimental design must 

be rebuilt and the activatability cycle reengaged.   

II. Monitoring the activity of a simulated system 

 

The table I showed that the activatability cycle we used resulted in a substantial 

reduction of activity of the simulator. However, the activity itself was indirectly 

estimated through both computing time and number of functions called over the runs. 

Consequently, the monitoring of activity throughout time remains an opened question.  

 

In the information theory, the entropy is considered as a measure of the disorder of the 

system. Let us consider four simple binary units {G1,...,G4} which can be in one of 

the two states: Gi = 0 or Gi = 1. We thus have 16 possible states: 

 
G1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 

G2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

G3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

G4 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 

 

If the states have equal probabilities, the probability of each state is: 
N2states)). of(number /1( , where N is the length of a state. Thus, we find the entropy 

of each unit: 1)2(log
1

2  N

N
s . Consequently, if the 16 states are not of equal 

probability we find that the entropy per unit is smaller than 1. The entropy of the 

system can be computed as: 

 )(log2 ii ppS , where pi is the probability of each state. 

In such conditions, we can ascertain that the entropy St of the system at the instant t is 

limited to the range:  )()()( maxmin GSGSGS t  . Indeed, Smin represents the particular 

case in which there is only one possible state (i.e. one possible combination of 

{G1,…,G4}) and Smax represents the case where all possible combinations have equal 

probabilities (Smax = 4 in this small example). 

 

In a general case, the processes {G1,...,G4} can take several values as we saw in the 

application section. Because of the stochasticity of the simulation, one usually 

conducts simulations through replicates in order to obtain averaged values  4,...,1 GG  

and associated variances at each time step of the runs. It can be reasonability admitted 

that the probability density function of G conforms to a multidimensional Gaussian (in 
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a majority of cases at least). A measure of the entropy can be obtained by establishing 

the variance-covariance symmetric matrix  (NN) of the vector  4,...,1 GG  and next 

by the calculation of its determinant
5
. This value gives the total amount of information 

diminished by the interactions between the processes. It is also an approximation of 

the number of possible combinations at each step of time, i.e. a hyper volume of the 

dispersal of the state space. This hyper volume corresponds to the activatability state 

space of the system. That is, at every time step, the states of the system can change. 

Considering a state change of the system as an activity (i.e., constraining the definition 

of the activity term) of the system, its activatability corresponds to its possible state 

changes or activities. Under these assumptions, the entropy St(Gi), at the t instant, of 

the process Gi is given by (Ahmed and Gokhale, 1989) : )2ln()2/1()(S
2

iit eG   

where 2

i  is the ith element of the diagonal of , and the entropy (or differential 

entropy) St(G), is then given by: 

 

 N

t eGS )2ln()2/1()(   

Smin and Smax do not constitute some likely/sustainable situations. The former 

represents the case in which the system is fixed and is unable to adapt its behaviour to 

a fluctuant environment. The later characterises a system which is highly adaptable (it 

can face any situation), but with a too high cost of energy (e.g., for natural systems) or 

in terms of resources and computation time (virtual systems; see also the figure 6)). 

We can thus ascertain that the environment in which a system evolves imposes some 

constraints to the system so that it must adopt a certain level of disorder (positive 

entropy). This disorder allows the system to face the fluctuations of the environment – 

within a fixed range – to the extent that it pays an energetic price corresponding to 

such flexibility.    

Conclusion 

 

We conclude this paper in enumerating the following traits of the proposal in two short 

sections: 

 

Advantages 

 The proposal of the activatability cycle is automatable. 

 The method allows embedding into the simulator all the processes wished by 

the user with no a priori exclusion. 

 Processes are activated according to their statistical effects on results. 

 

Drawbacks and troubles 

 Reformulating the question, one loses the prediction (statistical results) but 

recognizes the dimension of complexity in the scientific explanation.  

 The necessity of replicates strongly diminishes the information about spatial 

results. Thus, spatial trajectories of particular interest cannot be identified. 

 The selection of processes must be a conservative operation (the internal 

coherence must be preserved). 

                                                 
5
 sometimes called generalized variance 
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