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In this article, we analyze a spatio-temporally nonlocal nonlinear parabolic equation. First, we valid the equation by an existence-uniqueness result. Then, we show that blowing-up solutions exist and study their time blow-up profile. Also, a result on the existence of global solutions is presented. Furthermore, we establish necessary conditions for local or global existence.

Introduction

In this paper, we investigate the spatio-temporally nonlinear parabolic equation

(1.1)        u t + (-∆) β/2 u = 1 Γ(1 -γ) t 0 (t -s) -γ |u| p-1 u(s) ds x ∈ R N , t > 0, u(x, 0) = u 0 (x) x ∈ R N ,
where u 0 ∈ C 0 (R N ), N ≥ 1, 0 < β ≤ 2, 0 < γ < 1, p > 1 and the nonlocal operator (-∆) β/2 is defined by

(-∆) β/2 v(x) := F -1 |ξ| β F(v)(ξ) (x)
for every v ∈ D((-∆) β/2 ) = H β (R N ), where H β (R N ) is the homogeneous Sobolev space of order β defined by

H β (R N ) = u ∈ S ; (-∆) β/2 u ∈ L 2 (R N ) if β ∈ N, H β (R N ) = u ∈ L 2 (R N ); (-∆) β/2 u ∈ L 2 (R N ) if β ∈ N,
where S is the space of Schwartz distributions; F stands for the Fourier transform and F -1 for its inverse, Γ is the Euler gamma function and C 0 (R N ) denotes the space of all continuous functions tending to zero at infinity. When Eq. (1.1) is considered with a nonlinearity of the form u p , it reads

u t + (-∆) β/2 u = u p .
This equation has been considered by Nagasawa and Sirao [START_REF] Nagasawa | Probabilistic treatment of the blowing up of solutions for a nonlinear integral equation[END_REF], Kobayashi [START_REF] Kobayashi | On some semilinear evolution equations with time-lag[END_REF], Guedda and Kirane [START_REF] Guedda | Criticality for some evolution equations[END_REF], Kirane and Qafsaoui [START_REF] Kirane | Global nonexistence for the Cauchy problem of some nonlinear Reaction-Diffusion systems[END_REF], Eidelman and Kochubei [START_REF] Eidelman | Cauchy problem for fractional diffusion equations[END_REF] and by Fino and Karch [START_REF] Fino | Decay of mass for nonlinear equation with fractional Laplacian[END_REF].

The fractional Laplacian (-∆) β/2 is related to Lévy flights in physics. Many observations and experiments related to Lévy flights (super-diffusion), e.g., collective slip diffusion on solid surfaces, quantum optics or Richardson turbulent diffusion, have been performed in recent years. The symmetric β-stable processes (β ∈ (0, 2)) are the basic characteristics for a class of jumping Lévy's processes. Compared with the continuous Brownian motion (β = 2), symmetric β-stable processes have infinite jumps in an arbitrary time interval. The large jumps of these processes make their variances and expectations infinite according to β ∈ (0, 2) or β ∈ (0, 1], respectively (see [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF]). Let us also mention that when β = 3/2, the symmetric β-stable processes appear in the study of stellar dynamics (see [START_REF] Chandrasekhar | Stochastic problems in physics and astronomy[END_REF]).

As a physical motivation, the problem (1.1) describes a diffusion in a superdiffusive medium coupled to a classically diffusive medium. The right-side of (1.1) might be interpreted as the effect of a classically diffusive medium that is nonlinearly linked to a super-diffusive medium. Such a link might come in the form of a porous material with reactive properties that is partially insulated by contact with a classically diffusive material (thanks to Olmstead [25]). For more informations see the recent paper of Roberts and Olmstead [START_REF] Roberts | Blow-up in a subdiffusive medium of infinite extent[END_REF]. Our article is motivated mathematically by the recent and very interesting paper [START_REF] Cazenave | An equation whose Fujita critical exponent is not given by scaling[END_REF] which deals with the global existence and blow-up for the parabolic equation with nonlocal in time nonlinearity

(1.2) u t -∆u = t 0 (t -s) -γ |u| p-1 u(s) ds x ∈ R N , t > 0,
where 0 ≤ γ < 1, p > 1 and u 0 ∈ C 0 (R N ), which is a particular case of (1.1); it corresponds to β = 2. If we set

p γ = 1 + 2(2 -γ) (N -2 + 2γ) + and p * = max 1 γ , p γ ∈ (0, +∞],
where (• ) + is the positive part, they proved that (i): If γ = 0, p ≤ p * , and u 0 ≥ 0, u 0 ≡ 0, then u blows up in finite time.

(ii): If γ = 0, p > p * , and u 0 ∈ L qsc (R N ) (where q sc = N (p -1)/(4 -2γ)) with u 0 L qsc sufficiently small, then u exists globally. If γ = 0 then all nontrivial positive solutions blow-up as proved by Souplet in [START_REF] Souplet | Blow-up in nonlocal reaction-diffusion equations[END_REF]. The study in [START_REF] Cazenave | An equation whose Fujita critical exponent is not given by scaling[END_REF] reveals the surprising fact that for equation (1.2) the critical exponent in Fujita's sense p * is not the one predicted by scaling. This can be explained by the fact that their equation can be formally converted into

(1.3) D α 0|t u t -D α 0|t ∆u = |u| p-1 u, where D α
0|t is the left-sided Riemann-Liouville fractional derivative of order α ∈ (0, 1) defined in (2.8) below (we have set in (1.3), α = 1 -γ ∈ (0, 1)). Eq. (1.3) is a pseudo-parabolic equation and as it is well known scaling is efficient for detecting the Fujita exponent only for equations of parabolic type. Needless to say that the equation considered in [START_REF] Cazenave | An equation whose Fujita critical exponent is not given by scaling[END_REF] is a genuine extension of the one considered by Fujita in his pioneering work [START_REF] Fujita | On the blowing up of solutions of the problem for ut = ∆u + u 1+α[END_REF].

In this article, concerning blowing-up solutions, we present a different proof from the one presented in [START_REF] Cazenave | An equation whose Fujita critical exponent is not given by scaling[END_REF], and for the more general equation (1.1). Our proof is more versatile and can be applied to more nonlinear equations (see the Remarks in Section 4). Our analysis is based on the observation that the nonlinear differential equation (1.1) can be written in the form:

(1.4) u t + (-∆) β/2 u = J α 0|t |u| p-1 u
, where α := 1 -γ ∈ (0, 1) and J α 0|t is the Riemann-Liouville fractional integral defined in (2.10). We will show that:

(1) For u 0 ∈ C 0 (R N ), u 0 ≥ 0, u 0 ≡ 0, if p ≤ 1 + β(2 -γ) (N -β + βγ) + or p < 1 γ ,
then all solutions of problem (1.1) blow-up in finite time.

(

) For u 0 ∈ C 0 (R N ) ∩ L psc (R N ), where p sc := N (p -1)/β(2 -γ), if p > max 1 + β(2 -γ) (N -β + βγ) + ; 1 γ , 2 
and u 0 L psc is sufficiently small, then u exists globally.

The method used to prove the blow-up theorem is the test function method of Mitidieri and Pohozaev [START_REF] Mitidieri | A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities[END_REF], Kirane et al. [START_REF] Guedda | Criticality for some evolution equations[END_REF][START_REF] Kirane | Critical exponents of Fujita type for certain evolution equations and systems with Spatio-Temporal Fractional derivatives[END_REF]; it was also used by Baras and Kersner [START_REF] Baras | Local and global solvability of a class of semilinear parabolic equations[END_REF] for the study of the necessary conditions for the local existence.

Furthermore, in the case β = 2, we derive the blow-up rate estimates for the parabolic equation (1.1). We shall prove that, if u 0 ∈ C 0 (R N ) ∩ L 2 (R N ), u 0 ≥ 0, u 0 ≡ 0 and if u is the blowing-up solution of (1.1) at the finite time T * > 0, then there are constants c, C > 0 such that c(T

* -t) -α1 ≤ sup R N u(• , t) ≤ C(T * -t) -α1 for 1 < p ≤ 1 + 2(2 -γ)/(N -2 + 2γ) + or 1 < p < 1/
γ and all t ∈ (0, T * ), where α 1 := (2 -γ)/(p -1). We use a scaling argument to reduce the problems of blow-up rate to Fujita-type theorems (it is similar to blow-up analysis in elliptic problems to reduce the problems of a priori bounds to Liouville-type theorems). As far as we know, this method was first applied to parabolic problems by Hu [START_REF] Hu | Remarks on the blow-up estimate for solutions of the heat equation with a nonlinear boundary condition[END_REF], and then was used in various parabolic equations and systems (see [START_REF] Chlebik | From critical exponents to blow-up rates for parabolic problems[END_REF][START_REF] Fila | The Blow-Up Rate for a Semilinear Parabolic System[END_REF]). We notice that in the limiting case when γ → 0, we obtain the constant rate 2/(p -1) found by P. Souplet [START_REF] Souplet | Monotonicity of solutions and blow-up for semilinear parabolic equations with nonlinear memory[END_REF].

For more informations, we refer the reader to the excellent paper of Andreucci and Tedeev [START_REF] Andreucci | Universal bounds at the blow-up time for nonlinear parabolic equations[END_REF] for the blow-up rate by an alternative method

The organization of this paper is as follows. In Section 2, we present some definitions and properties. In Section 3, we derive the local existence of solutions for the parabolic equation (1.1). Section 4 contains the blow-up result of solutions for (1.1). Section 5 is dedicated to the blow-up rate of blowing-up solutions. Global existence is studied in Section 6. Finally, a necessary condition for local existence and a necessary condition for global existence are given in Section 7.

Preliminaries

In this section, we present some definitions and results concerning the fractional laplacian, fractional integrals and fractional derivatives that will be used hereafter. First, if we take the usual linear fractional diffusion equation (2.1)

u t + (-∆) β/2 u = 0, β ∈ (0, 2], x ∈ R N , t > 0,
then, its fundamental solution S β can be represented via the Fourier transform by

(2.2) S β (t)(x) := S β (x, t) = 1 (2π) N/2 R N e ix.ξ-t|ξ| β dξ.
It is well-known that this function satisfies

(2.3) S β (1) ∈ L ∞ (R N ) ∩ L 1 (R N ), S β (x, t) ≥ 0, R N S β (x, t) dx = 1,
for all x ∈ R N and t > 0. Hence, using Young's inequality for the convolution and the following self-similar form S β (x, t) = t -N/β S β (xt -1/β , 1), we have

(2.4) S β (t) * v q ≤ Ct -N β ( 1 r -1 q ) v r , for all v ∈ L r (R N ) and all 1 ≤ r ≤ q ≤ ∞, t > 0. Moreover, as (-∆) β/2 is a self-adjoint operator with D (-∆) β/2 = H β (R N ), we have (2.5) R N u(x)(-∆) β/2 v(x) dx = R N v(x)(-∆) β/2 u(x) dx, for all u, v ∈ H β (R N ).
We denote by ∆ β/2 D the fractional laplacian in an open bounded domain Ω with homogeneous Dirichlet boundary condition. We have the following facts: If λ k (k = 1, ..., +∞) is the eigenvalues for the laplacian operator in L 2 (Ω) with homogeneous Dirichlet boundary condition and ϕ k its corresponding eigenfunction, then

(2.6) ∆ β/2 D ϕ k = λ β/2 k ϕ k in Ω, ϕ k = 0 on R N \ ∂Ω, and 
D(∆ β/2 D ) = u ∈ L 2 (Ω) s.t. u| ∂Ω = 0 ; ∆ β/2 D u L 2 (Ω) := k=+∞ k=1 |λ β/2 k < u, ϕ k >| 2 < +∞ . So, for u ∈ D(∆ β/2 D ) we have ∆ β/2 D u = k=+∞ k=1 λ β/2 k < u, ϕ k > ϕ k .
The following integration by parts formula (2.7)

Ω u(x)∆ β/2 D v(x) dx = Ω v(x)∆ β/2 D u(x) dx, holds for all u, v ∈ D(∆ β/2 D ).
Next, if AC[0, T ] is the space of all functions which are absolutely continuous on [0, T ] with 0 < T < ∞, then, for f ∈ AC[0, T ], the left-handed and right-handed Riemann-Liouville fractional derivatives D α 0|t f (t) and D α t|T f (t) of order α ∈ (0, 1) are defined by (see [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF])

D α 0|t f (t) := DJ 1-α 0|t f (t), (2.8) D α t|T f (t) := - 1 Γ(1 -α) D T t
(s -t) -α f (s) ds, (2.9) for all t ∈ [0, T ], where D := d/dt is the usual time derivative and (2.10)

J α 0|t f (t) := 1 Γ(α) t 0 (t -s) α-1 f (s) ds
is the Riemann-Liouville fractional integral defined for all f ∈ L q (0, T ) (1 ≤ q ≤ ∞). Now, for every f, g ∈ C([0, T ]), such that D α 0|t f (t), D α t|T g(t) exist and are continuous, for all t ∈ [0, T ], 0 < α < 1, we have the formula of integration by parts (see [28, (2.64) 

p. 46]) (2.11) T 0 D α 0|t f (t)g(t) dt = T 0 f (t) D α t|T g (t) dt.
Note also that, for any f ∈ AC 2 [0, T ], we have (see (2.2.30) in [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF])

(2.12) -D.D α t|T f = D 1+α t|T f, where AC 2 [0, T ] := {f : [0, T ] → R such that Df ∈ AC[0, T ]} .
Moreover, for all 1 ≤ q ≤ ∞, the following equality (see [17, Lemma 2.4 p.74])

(2.13) D α 0|t J α 0|t = Id L q (0,T ) holds almost everywhere on [0, T ]. Later on, we will use the following results.

• If w 1 (t) = (1 -t/T ) σ + , t ≥ 0, T > 0, σ 1, then D α t|T w 1 (t) = (1 -α + σ)Γ(σ + 1) Γ(2 -α + σ) T -α 1 - t T σ-α + , (2.14) D α+1 t|T w 1 (t) = (1 -α + σ)(σ -α)Γ(σ + 1) Γ(2 -α + σ) T -(α+1) 1 - t T σ-α-1 + , (2.15) 
for all α ∈ (0, 1); so (2.16)

D α t|T w 1 (T ) = 0 ; D α t|T w 1 (0) = C T -α , where C = (1 -α + σ)Γ(σ + 1)/Γ(2 -α + σ). • If w 2 (t) = 1 -t 2 /T 2 + , T > 0, 1, we have D α t|T w 2 (t) = T -α Γ(1 -α) k=0 C 1 ( , k, α) 1 - t T +k-α , (2.17) D 1+α t|T w 2 (t) = T -α-1 Γ(1 -α) k=0 C 2 ( , k, α) 1 - t T +k-α-1 , (2.18)
for all -T ≤ t ≤ T, α ∈ (0, 1), where

     C 1 ( , k, α) := c k (1 -α + + k)2 -k (-1) k Γ(k+ +1)Γ(1-α) Γ(k+ +2-α) , C 2 ( , k, α) := ( + k -α)C 1 ( , k, α), c k := ! ( -k)!k! ; so (2.19) D α t|T w 2 (T ) = 0 ; D α t|T w 2 (-T ) = C 3 ( , k, α) T -α ,
where

C 3 ( , k, α) := 2 2 -α (-1) Γ(1 -α) k=0 c k (1 -α + + k) Γ(k + + 1)Γ(1 -α) Γ(k + + 2 -α) .

Local existence

This section is dedicated to proving the local existence and uniqueness of mild solutions to the problem (1.1). Let T (t) := e -t(-∆) β/2 . As (-∆) β/2 is a positive definite self-adjoint operator in L 2 (R N ), T (t) is a strongly continuous semigroup on L 2 (R N ) generated by the fractional power -(-∆) β/2 (see Yosida [START_REF] Yosida | Functional Analysis[END_REF]). It holds T (t)v = S β (t) * v, where S β is given by (2.2) and u * v is the convolution of u and v. We start by giving the

Definition 3.1 (Mild solution). Let u 0 ∈ C 0 (R N ), 0 < β ≤ 2, p > 1 and T > 0. We say that u ∈ C([0, T ], C 0 (R N )) is a mild solution of the problem (1.1) if u satisfies the following integral equation (3.1) u(t) = T (t)u 0 + t 0 T (t -s)J α 0|s |u| p-1 u ds, t ∈ [0, T ]. Theorem 3.2 (Local existence). Given u 0 ∈ C 0 (R N ) and p > 1, there exist a maxi- mal time T max > 0 and a unique mild solution u ∈ C([0, T max ), C 0 (R N )) to the prob- lem (1.1). Furthermore, either T max = ∞ or else T max < ∞ and u L ∞ ((0,t)×R N ) → ∞ as t → T max . In addition, if u 0 ≥ 0, u 0 ≡ 0, then u(t) > 0 for all 0 < t < T max . Moreover, if u 0 ∈ L r (R N ), for 1 ≤ r < ∞, then u ∈ C([0, T max ), L r (R N )).
Proof. For arbitrary T > 0, we define the Banach space

E T := u ∈ L ∞ ((0, T ), C 0 (R N )); u 1 ≤ 2 u 0 L ∞ ,
where

• 1 := • L ∞ ((0,T ),L ∞ (R N )) . Next, for every u ∈ E T , we define Ψ(u) := T (t)u 0 + t 0 T (t -s)J α 0|s |u| p-1 u ds.
We prove the local existence by the Banach fixed point theorem.

• Ψ : E T → E T : Let u ∈ E T , using (2.4), we obtain with • ∞ := • L ∞ (R N ) , Ψ(u) 1 ≤ u 0 ∞ + 1 Γ(1 -γ) t 0 s 0 (s -σ) -γ u(σ) p ∞ dσ ds L ∞ (0,T ) = u 0 ∞ + 1 Γ(1 -γ) t 0 t σ (s -σ) -γ u(σ) p ∞ ds dσ L ∞ (0,T ) ≤ u 0 ∞ + T 2-γ (1 -γ)(2 -γ)Γ(1 -γ) u p 1 ≤ u 0 ∞ + T 2-γ 2 p u 0 p-1 L ∞ Γ(3 -γ) u 0 ∞ . Now, if we choose T small enough such that (3.2) T 2-γ 2 p u 0 p-1 ∞ Γ(3 -γ) ≤ 1, we conclude that Ψ(u) 1 ≤ 2 u 0 ∞ , and then Ψ(u) ∈ E T .
• Ψ is a contraction: For u, v ∈ E T , taking account of (2.4), we have

Ψ(u) -Ψ(v) 1 ≤ 1 Γ(1 -γ) t 0 s 0 (s -σ) -γ |u| p-1 u(σ) -|v| p-1 v(σ) ∞ dσ ds L ∞ (0,T ) = 1 Γ(1 -γ) t 0 t σ (s -σ) -γ |u| p-1 u(σ) -|v| p-1 v(σ) ∞ ds dσ L ∞ (0,T ) ≤ T 2-γ Γ(3 -γ) |u| p-1 u -|v| p-1 v 1 ≤ C(p)2 p u 0 p-1 ∞ T 2-γ Γ(3 -γ) u -v 1 ≤ 1 2 u -v 1 ,
thanks to the following inequality

(3.3) ||u| p-1 u -|v| p-1 v| ≤ C(p)|u -v|(|u| p-1 + |v| p-1 );
T is chosen such that

(3.4) T 2-γ 2 p u 0 p-1 ∞ max(2C(p), 1) Γ(3 -γ) ≤ 1.
Then, by the Banach fixed point theorem, there exists a mild solution u ∈ Π T , where Π T := L ∞ ((0, T ), C 0 (R N )), to the problem (1.1).

• Uniqueness: If u, v are two mild solutions in E T for some T > 0, using (2.4) and (3.3), we obtain

u(t) -v(t) ∞ ≤ C(p)2 p u 0 p-1 ∞ Γ(1 -γ) t 0 s 0 (s -σ) -γ u(σ) -v(σ) ∞ dσ ds = C(p)2 p u 0 p-1 ∞ Γ(1 -γ) t 0 t σ (s -σ) -γ u(σ) -v(σ) ∞ ds dσ = C(p)2 p u 0 p-1 ∞ Γ(2 -γ) t 0 (t -σ) 1-γ u(σ) -v(σ) ∞ dσ.
So the uniqueness follows from Gronwall's inequality (cf. [START_REF] Cazenave | Introduction aux problèmes d'évolution semi-linéaires[END_REF]).

Next, using the uniqueness of solutions, we conclude the existence of a solution on a maximal interval [0, T max ) where

T max := sup {T > 0 ; there exist a mild solution u ∈ Π T to (1.1)} ≤ +∞.
Note that, using the continuity of the semigroup T (t), we can easily conclude that

u ∈ C([0, T max ), C 0 (R N )).
Moreover, if 0 ≤ t ≤ t + τ < T max , using (3.1), we can write

u(t + τ ) = T (τ )u(t) + 1 Γ(1 -γ) τ 0 T (τ -s) s 0 (s -σ) -γ |u| p-1 u(t + σ) dσ ds + 1 Γ(1 -γ) τ 0 T (τ -s) t 0 (t + s -σ) -γ |u| p-1 u(σ) dσ ds. (3.5)
To prove that u(t) L ∞ (R N ) → ∞ as t → T max , whenever T max < ∞, we proceed by contradiction. Suppose that u is a solution of (3.1) on some interval [0, T ) with u L ∞ ((0,T )×R N ) < ∞ and T max < ∞. Using the fact that the last term in (3.5) depends only on the values of u in the interval (0, t) and using again a fixed-point argument, we conclude that u can be extended to a solution on some interval [0, T ) with T > T. If we repeat this iteration, we obtain a contradiction with the fact that the maximal time T max is finite.

• Positivity of solutions: If u 0 ≥ 0 and u 0 ≡ 0, then we can construct a nonnegative solution on some interval [0, T ] by applying the fixed point argument in the set

E + T = {u ∈ E T ; u ≥ 0}.
In particular, it follows from (3.1) that u(t) ≥ T (t)u 0 > 0 on (0, T ]. It is not difficult by uniqueness to deduce that u stays positive on (0, T max ).

• Regularity: If u 0 ∈ L r (R N ) ∩ C 0 (R N ), for 1 ≤ r < ∞, then by repeating the fixed point argument in the space E T,r := {u ∈ L ∞ ((0, T ), C 0 (R N ) ∩ L r (R N )); u 1 ≤ 2 u 0 L ∞ , u ∞,r ≤ 2 u 0 L r }, instead of E T , where • ∞,r := • L ∞ ((0,T ),L r (R N )) , and by estimating u p L r (R N ) by u p-1 L ∞ (R N ) u L r (R N )
in the contraction mapping argument, using (2.4), we obtain a unique solution in E T,r ; we conclude then that

u ∈ C([0, T max ), C 0 (R N ) ∩ L r (R N )).
We say that u is a global solution if T max = ∞; when T max < ∞, u is said to blow up in a finite time and in this case we have u(

• , t) L ∞ (R N ) → ∞ as t → T max .
Remark. We note that classical or strong solution do not exist due to the singularity in time in the nonlinear term.

Blow-up of solutions

Now, we want to derive a blow-up result for Eq. (1.1). Our argument uses weak solutions.

Definition 4.1 (Weak solution). Let u 0 ∈ L ∞ Loc (R N ), 0 < β ≤ 2 and T > 0. We say that u is a weak solution of the problem (1.1) if u ∈ L p ((0, T ), L ∞ Loc (R N )
) and verifies the equation

R N u 0 (x)ϕ(x, 0) + T 0 R N J α 0|t (|u| p-1 u)(x, t)ϕ(x, t) = T 0 R N u(x, t)(-∆) β/2 ϕ(x, t) - T 0 R N u(x, t)ϕ t (x, t), (4.1) for all compactly supported ϕ ∈ C 1 ([0, T ], H β (R N )) such that ϕ(• , T ) = 0, where α := 1 -γ ∈ (0, 1). Lemma 4.2. Consider u 0 ∈ C 0 (R N ) and let u ∈ C([0, T ], C 0 (R N
)) be a mild solution of (1.1), then u is a weak solution of (1.1), for all 0 < β ≤ 2 and all T > 0.

Proof. Let T > 0, 0 < β ≤ 2, u 0 ∈ C 0 (R N ) and let u ∈ C([0, T ], C 0 (R N )) be a solution of (3.1). Given ϕ ∈ C 1 ([0, T ], H β (R N )
) such that suppϕ is compact with ϕ(• , T ) = 0. Then after multiplying (3.1) by ϕ and integrating over R N , we have

R N u(x, t)ϕ(x, t) = R N T (t)u 0 (x)ϕ(x, t)+ R N t 0 T (t -s)J α 0|s |u| p-1 u (x, t) ds ϕ(x, t).
We differentiate to obtain

d dt R N u(x, t)ϕ(x, t) = R N d dt (T (t)u 0 (x)ϕ(x, t)) + R N d dt t 0 T (t -s)J α 0|s |u| p-1 u (x, s) dsϕ(x, t). (4.2)
Now, using (2.5) and a property of the semigroup T (t) ([6, Chapter 3]), we have:

R N d dt (T (t)u 0 (x)ϕ(x, t)) = R N A (T (t)u 0 (x)) ϕ(x, t) + R N T (t)u 0 (x)ϕ t (x, t) = R N T (t)u 0 (x)Aϕ(x, t) + R N T (t)u 0 (x)ϕ t (x, t), (4.3) and R N d dt t 0 T (t -s)f (x, s) dsϕ(x, t) = R N f (x, t)ϕ(x, t) + R N t 0 A (T (t -s)f (x, s)) dsϕ(x, t) + R N t 0 T (t -s)f (x, s) dsϕ t (x, t) = R N f (x, t)ϕ(x, t) + R N t 0 T (t -s)f (x, s) dsAϕ(x, t) + R N t 0 T (t -s)f (x, s) dsϕ t (x, t), (4.4) 
where

f := J α 0|t |u| p-1 u ∈ C([0, T ]; L 2 (R N )
). Thus, using (3.1), (4.3) and (4.4), we conclude that (4.2) implies

d dt R N u(x, t)ϕ(x, t) = R N u(x, t)Aϕ(x, t) + R N u(x, t)ϕ t (x, t) + R N f (x, t)ϕ(x, t).
We conclude by integrating in time over [0, T ] and using the fact that ϕ(• , T ) = 0.

Theorem 4.3. Let u 0 ∈ C 0 (R N ) be such that u 0 ≥ 0 and u 0 ≡ 0. If (4.5) p ≤ 1 + β(2 -γ) (N -β + βγ) + := p * or p < 1 γ ,
for all β ∈ (0, 2], then the mild solution to (1.1) blows-up in a finite time.

Note that in the case where p = p * and β ∈ (0, 2) we take p > N/(N -β) with N > β.

Proof. The proof is by contradiction. Suppose that u is a global mild solution to (1.1), then u is a solution of (1.1) in C([0, T ], C 0 (R N )) for all T 1 such that u(t) > 0 for all t ∈ [0, T ]. Then, using Lemma 4.2, we have

R N u 0 (x)ϕ(x, 0) + T 0 R N J α 0|t (u p )(x, t)ϕ(x, t) = T 0 R N u(x, t)(-∆) β/2 ϕ(x, t) - T 0 R N u(x, t)ϕ t (x, t), for all test function ϕ ∈ C 1 ([0, T ], H β (R N )) such that suppϕ is compact with ϕ(• , T ) = 0, where α := 1 -γ ∈ (0, 1). Now we take ϕ(x, t) = D α t|T ( φ(x, t)) := D α t|T (ϕ 1 (x)) ϕ 2 (t) with ϕ 1 (x) := Φ |x|/T 1/β , ϕ 2 (t) := (1 -t/T ) η +
, where ≥ p/(p -1), η ≥ max{(αp + 1)/(p -1); α + 1} and Φ a smooth nonnegative non-increasing function such that

Φ(r) = 1 if 0 ≤ r ≤ 1, 0 if r ≥ 2, 0 ≤ Φ ≤ 1, |Φ (r)| ≤ C 1 /r
, for all r > 0. Using (2.16), we then obtain

Ω u 0 (x)D α t|T φ(x, 0) + Ω T J α 0|t (u p )(x, t)D α t|T φ(x, t) = T 0 R N u(x, t)(-∆) β/2 D α t|T φ(x, t) - Ω T u(x, t)DD α t|T φ(x, t), (4.6) 
where

Ω T := [0, T ]×Ω for Ω = x ∈ R N ; |x| ≤ 2T 1/β , Ω = Ω dx and Ω T = Ω T dx dt.
Furthermore, using (2.11) and (2.16) in the left hand side of (4.6), and (2.12) in the right hand side, we obtain

C T -α Ω u 0 (x)ϕ 1 (x) + Ω T D α 0|t J α 0|t (u p )(x, t) φ(x, t) = T 0 R N u(x, t)(-∆) β/2 D α t|T φ(x, t) + Ω T u(x, t)D 1+α t|T φ(x, t). (4.7)
Moreover, using (2.13), we may write

Ω T u p (x, t) φ(x, t) + C T -α Ω u 0 (x)ϕ 1 (x) = T 0 R N u(x, t)(-∆) β/2 ϕ 1 (x)D α t|T ϕ 2 (t) + Ω T u(x, t)D 1+α t|T φ(x, t). (4.8) So, Ju's inequality (-∆) β/2 ϕ 1 ≤ ϕ -1
1 (-∆) β/2 (ϕ 1 ) (see the Appendix) allows to write:

Ω T u p (x, t) φ(x, t) + C T -α Ω u 0 (x)ϕ 1 (x) ≤ C Ω T u(x, t) ϕ -1 1 (x) (-∆) β/2 ϕ 1 (x)D α t|T ϕ 2 (t) + Ω T u(x, t) ϕ 1 (x) D 1+α t|T ϕ 2 (t) = C Ω T u(x, t) φ1/p φ-1/p ϕ -1 1 (x) (-∆) β/2 ϕ 1 (x)D α t|T ϕ 2 (t) + Ω T u(x, t) φ1/p φ-1/p ϕ 1 (x) D 1+α t|T ϕ 2 (t) . (4.9)
Therefore, using Young's inequality

(4.10) ab ≤ 1 2p a p + 2 p-1 p b p where pp = p + p, a > 0, b > 0, p > 1, p > 1, with a = u(x, t) φ1/p , b = φ-1/p ϕ -1 1 (x) (-∆) β/2 ϕ 1 (x)D α t|T ϕ 2 (t)
in the first integral of the right hand side of (4.9), and with

a = u(x, t) φ1/p , b = φ-1/p ϕ 1 (x) D 1+α t|T ϕ 2 (t)
in the second integral of the right hand side of (4.9), we obtain

(1 - 1 p ) Ω T u p (x, t) φ(x, t) ≤ C Ω T (ϕ 1 (x)) -p (ϕ 2 (t)) -1 p-1 (-∆ x ) β/2 ϕ 1 (x)D α t|T ϕ 2 (t) p +C Ω T (ϕ 1 (x)) (ϕ 2 (t)) -1 p-1 D 1+α t|T ϕ 2 (t) p (4.11)
as u 0 ≥ 0. At this stage, we introduce the scaled variables: τ = T -1 t, ξ = T -1/β x, use formulas (2.14) and (2.15) in the right hand-side of (4.11), to obtain: (4.12)

Ω T u p (x, t) φ(x, t) ≤ C T -δ , where δ := (1 + α) p -1 -(N/β), C = C(|Ω 1 | , |Ω 2 |), (|Ω i | stands for the measure of Ω i , for i = 1, 2), with Ω 1 := ξ ∈ R N ; |ξ| ≤ 2 , Ω 2 := {τ ≥ 0 ; τ ≤ 1} .
Now, noting that, as

(4.13) p ≤ p * or p < 1 γ ⇐⇒ δ ≥ 0 or p < 1 γ ,
we have to distinguish three cases:

• The case p < p * (δ > 0): we pass to the limit in (4.12), as T goes to ∞; we get lim

T →∞ T 0 |x|≤2T 1/β u p (x, t) φ(x, t) dx dt = 0.
Using the Lebesgue dominated convergence theorem, the continuity in time and space of u and the fact that φ(x, t) → 1 as T → ∞, we infer that

∞ 0 R N u p (x, t) dx dt = 0 =⇒ u ≡ 0.
Contradiction.

• The case p = p * (δ = 0): using inequality (4.12) with T → ∞ and taking into account the fact that p = p * , we have on one hand

(4.14) u ∈ L p ((0, ∞), L p (R N ));
on the other hand, repeating the same calculation as above by taking this time ϕ 1 (x) := Φ |x|/(B -1/β T 1/β ) , where 1 ≤ B < T is large enough such that when T → ∞ we don't have B → ∞ at the same time, we arrive at (4.15)

Σ T u p (x, t) φ(x, t) ≤ C B -N/β + C B -N/β+ p,
thanks to the following rescaling: τ = T -1 t, ξ = (T /B) -1/β x, where

Σ T := [0, T ] × x ∈ R N ; |x| ≤ 2B -1/β T 1/β and Σ T = Σ T dx dt.
Thus, using p > N/(N -β) and taking the limits when T → ∞ and then B → ∞, we get:

∞ 0 R N u p (x, t) dx dt = 0 =⇒ u ≡ 0,
which is a contradiction. Note that, in the case β = 2 it is not necessary to take the condition p > N/(N -β) with N > β. Indeed, from (4.9) with the new function ϕ 1 , we may write

Σ T u p (x, t) φ(x, t) ≤ C Σ T u(x, t) φ1/p φ-1/p (ϕ 1 (x)) D 1+α t|T ϕ 2 (t) + C ∆ B u(x, t) φ1/p φ-1/p (ϕ 1 (x)) -1 ∆ x ϕ 1 (x) D α t|T ϕ 2 (t) , (4.16) 
where

∆ B = [0, T ]× x ∈ R N ; B -1/2 T 1/2 ≤ |x| ≤ 2B -1/2 T 1/2 ⊂ Σ T and ∆ B = ∆ B dx dt.
Moreover, using Young's inequality (4.17 

∆ B ab ≤ ∆ B a p 1/p ∆ B b p 1/ p , where pp = p+p, a > 0, b > 0, p > 1, p > 1, with a = u(x, t) φ1/p , b = φ-1/p (ϕ 1 (x)) -1 ∆ x ϕ 1 (x) D α t|T ϕ 2 (t)
, in the second integral of the right hand side of (4.16), we obtain

(1 - 1 p ) Σ T u p (x, t) φ(x, t) ≤ C Σ T (ϕ 1 (x)) (ϕ 2 (t)) -1 p-1 D 1+α t|T ϕ 2 (t) p +C ∆ B u p φ 1/p ∆ B (ϕ 1 (x)) -p (ϕ 2 (t)) -1 p-1 ∆ x ϕ 1 (x)D α t|T ϕ 2 (t) p 1/ p . (4.18)
Taking account of the scaled variables: τ = T -1 t, ξ = (T /B) -1/2 x, and the fact that δ = 0, we get (4.19)

Σ T u p (x, t) φ(x, t) ≤ C B -N/2 + C B -N 2 e p +1 ∆ B u p φ 1/p . Now, as lim T →∞ ∆ B u p φ 1/p = 0 from (4.14) ,
passing to the limit in (4. [START_REF] Kirane | Global nonexistence for the Cauchy problem of some nonlinear Reaction-Diffusion systems[END_REF]), as T → ∞, we get

∞ 0 R N u p (x, t) dx dt ≤ C B -N/2 .
We conclude that u ≡ 0 by taking the limit when B goes to infinity; contradiction.

• For the case p < 1/γ, we repeat the same argument as in the case p < p * by choosing this time the test function as follows: ϕ(x, t) = D α t|T ϕ(x, t) := D α t|T ϕ 3 (x)ϕ 4 (t) where ϕ 3 (x) = Φ (|x|/R) , ϕ 4 (t) = (1 -t/T ) η + and R ∈ (0, T ) large enough such that when T → ∞ we don't have R → ∞ at the same time; the function Φ is the same as above. We then obtain 

C T u p (x, t) ϕ(x, t) + C T -α C (ϕ 3 (x)) u 0 (x) ≤ C C T u(x, t) ϕ 1/p ϕ -1/p (ϕ 3 (x)) D 1+α t|T ϕ 4 (t) + C C T u(x, t) ϕ 1/p ϕ -1/p (ϕ 3 (x)) -1 (-∆ x ) β/2 ϕ 3 (x) D α t|T ϕ 4 (t) , (4.
a = u(x, t) ϕ 1/p , b = ϕ -1/p (ϕ 3 (x)) -1 (-∆ x ) β/2 ϕ 3 (x) D α
t|T ϕ 4 (t) in the second integral of the right hand side of (4.20) and using the positivity of u 0 , we get

(1 - 1 p ) C T u p (x, t) ϕ(x, t) ≤ C C T (ϕ 3 (x)) (ϕ 4 (t)) -1 p-1 D 1+α t|T ϕ 4 (t) p + C C T (ϕ 3 (x)) -p (ϕ 4 (t)) -1 p-1 (-∆ x ) β/2 ϕ 3 D α t|T ϕ 4 p .
Then, the new variables ξ = R -1 x, τ = T -1 t and (2.14)-(2.15) allow us to obtain the estimate

C T u p (x, t) ϕ(x, t) dx dt ≤ C T 1-(1+α) p R N + C T 1-α p R N -β p.
Taking the limit as T → ∞, we infer, as p < 1/γ ⇐⇒ 1 -αp < 0, that

∞ 0 C u(x, t) p (ϕ 3 (x)) dx dt = 0.
Finally, by taking R → ∞, we get a contradiction as u(x, t) > 0 for all x ∈ R N , t > 0.

Remarks.

(1) If we take β = 2 and v(x, t) = (Γ(1 -γ))

(1-γ)/(p-1) u(Γ(1 -γ) 1/2 x, Γ(1 -γ)t) where u is a solution of (1.1), we recover the result in [START_REF] Cazenave | An equation whose Fujita critical exponent is not given by scaling[END_REF] as a particular case.

(2) We can extend our analysis to the equation (4.21)

u t = -(-∆) β/2 u + 1 Γ(1 -γ) t 0 ψ(x, s)|u(s)| p-1 u(s) (t -s) γ ds, x ∈ R N , where p > 1, β ∈ (0, 2], 0 < γ < 1 and ψ ∈ L 1 Loc (R N × (0, ∞)), ψ(• , t) > 0 for all t > 0, ψ(B -1/β T 1/β ξ, T τ ) ≥ C > 0 if p ≤ p * ψ(Rξ, T τ ) ≥ C > 0 if p < 1/γ, for any 0 < R, B < T, τ ∈ [0, 1] and ξ ∈ [0, 2].
(3) In Theorem 4.3, we use precisely the weak solution, but in this case we obtain a nonexistence of global weak solutions. Therefore, to obtain blow-up results, we use the mild solution and the alternative: either

T max = ∞ or else T max < ∞ and u L ∞ ((0,t)×R N ) → ∞ as t → T max .
(4) We can take the nonlocal porous-medium spatio-fractional problem which is our first motivation to extend the results of [START_REF] Cazenave | An equation whose Fujita critical exponent is not given by scaling[END_REF]:

       u t + (-∆) β/2 |u| m-1 u = 1 Γ(1 -γ) t 0 (t -s) -γ |u| p-1 u(s) ds x ∈ R N , t > 0, u(x, 0) = u 0 (x) x ∈ R N ,
where β ∈ (0, 2], 0 < γ < 1, 1 ≤ m < p, u 0 ≥ 0 and u 0 ≡ 0. The threshold on p will be

p ≤ 1 + (2 -γ)(N (m -1) + β) (N -β + βγ) + or p < m γ .

Blow-up Rate in the case β = 2

In this section, we present the blow-up rate for the blowing-up solutions to the parabolic problem (1.1). We take the solution of (1.1) with an initial condition satisfying (5.1)

u 0 ∈ C 0 (R N ) ∩ L 2 (R N ), u(• , 0) = u 0 ≥ 0, u 0 ≡ 0.
The following lemma will be used in the proof of Theorem 5.2 below.

Lemma 5.1. Let ϕ be a nonnegative classical solution of (5.2)

ϕ t = ∆ϕ + J 1-γ -∞|t (ϕ p ) in R N × R,
where γ ∈ (0, 1), p > 1 and

J 1-γ -∞|t (ϕ p )(t) := 1 Γ(1 -γ) t -∞ (t -s) -γ ϕ p (s) ds.
Then ϕ ≡ 0 whenever

(5.3) p ≤ p * or p < 1 γ .
Proof. We repeat the same computations as in Theorem 4.3 with 1 -

t 2 /T 2 η + instead of (1 -t/T ) η + for η 1, use (2.17)-(2.19
) and take account of the inequality

J 1-γ -∞|t (ϕ p ) ≥ J 1-γ -T |t (ϕ p ).
Moreover, we take ϕ

/p 1 ϕ -/p 1
instead of φ1/p φ-1/p (resp. ϕ 1/p ϕ -1/p ) in (4.9),(4.16) (resp. in (4.20)) for 1 to use the Young and Hölder's inequality. Note that here, we rather use the ε-Young inequality

ab ≤ ε 2 a p + C(ε)b e p ,
for 0 < ε < 1.

Theorem 5.2. Let u 0 satisfy (5.1). For p ≤ p * or p < (1/γ), let α 1 := (2-γ)/(p-1) and let u be the blowing-up mild solution of (1.1) in a finite time T max := T * .

Then there exist two constants c, C > 0 such that

(5.4) c(T * -t) -α1 ≤ sup R N u(• , t) ≤ C(T * -t) -α1 , t ∈ (0, T * ).
Proof. The proof is in two parts:

• The upper blow-up rate estimate. Let

M (t) := sup R N ×(0,t] u, t ∈ (0, T * ).
Clearly, M is positive, continuous and nondecreasing in (0, T * ). As lim t→T * M (t) = ∞, then for all t 0 ∈ (0, T * ), we can define

t + 0 := t + (t 0 ) := max{t ∈ (t 0 , T * ) : M (t) = 2M (t 0 )}. Choose A ≥ 1 and let (5.5) λ(t 0 ) := 1 2A M (t 0 ) -1/(2α1)
.

we claim that

(5.6) λ -2 (t 0 )(t + 0 -t 0 ) ≤ D, t 0 ∈ T * 2 , T * ,
where D > 0 is a positive constant which does not depend on t 0 . We proceed by contradiction. If (5.6) were false, then there would exist a sequence

t n → T * such that λ -2 n (t + n -t n ) -→ ∞, where λ n = λ(t n ) and t + n = t + (t n ). For each t n choose (5.7) (x n , tn ) ∈ R N × (0, t n ] such that u(x n , tn ) ≥ 1 2 M (t n ).
Obviously, M (t n ) → ∞; hence, tn → T * . Next, re-scale the function u as (5.8)

ϕ λn (y, s) := λ 2α1 n u(λ n y + xn , λ 2 n s + tn ), (y, s) ∈ R N × I n (T * ),
where I n (t) := (-λ -2 n tn , λ -2 n (t -tn )) for all t > 0. Then ϕ λn is a mild solution of (5.9)

ϕ s = ∆ϕ + J α -λ -2 n tn|s (ϕ p ) in R N × I n (T * ),
i.e., for G(t) := G(x, t) := (4πt) -N/2 e -|x| 2 /4t and * being the space convolution, we have (5.10)

ϕ λn (s) = G(s + λ -2 n tn ) * ϕ λn (-λ -2 n tn ) + s -λ -2 n tn G(s -σ) * J α -λ -2 n tn|σ ((ϕ λn ) p ) dσ in R N × I n (T * ); whereupon, as ϕ λn (0, 0) ≥ A, 0 ≤ ϕ λn ≤ λ 2α1 n M (t + n ) = λ 2α1 n 2M (t n ) = 4A in R N × I n (t + n
), thanks to (5.5) and the definition of t + n . Moreover, as

ϕ λn ∈ C([-λ -2 n tn , T ], C 0 (R N ) ∩ L 2 (R N
)) for all T ∈ I n (T * ), so, as in Lemma 4.2, ϕ λn is a weak solution of (5.9). On the other hand, if we write ϕ λn as ϕ λn (s) = v(s) + w(s) for all s ∈ I n (T * ), where

v(s) := G(s+λ -2 n tn ) * ϕ λn (-λ -2 n tn ) and w(s) := s -λ -2 n tn G(s-σ) * J α -λ -2 n tn|σ ((ϕ λn ) p ) dσ, we have, see [6, Chapter 3], for T ∈ I n (T * ) v ∈ C((-λ -2 n tn , T ); H 2 (R N ))∩C 1 ((-λ -2 n tn , T ); L 2 (R N )) ⊂ L 2 ((-λ -2 n tn , T ); H 1 (R N
)) and, using the fact that f (s) := J α -λ -2 n tn|s ((ϕ λn ) p ) ∈ L 2 ((-λ -2 n tn , T ); L 2 (R N )) and the maximal regularity theory, we have

w ∈ W 1,2 ((-λ -2 n tn , T ); L 2 (R N ))∩L 2 ((-λ -2 n tn , T ); H 2 (R N )) ⊂ L 2 ((-λ -2 n tn , T ); H 1 (R N )). It follows that ϕ λn ∈ C([-λ -2 n tn , T ], L 2 (R N )) ∩ L 2 ((-λ -2 n tn , T ), W 1,2 (R N
)); so from the parabolic interior regularity theory (cf. [22, Theorem 10.1 p. 204]) there is µ ∈ (0, 1) such that the sequence ϕ λn is bounded in the C µ,µ/2 loc (R N ×R)-norm by a constant independent of n, where C µ,µ/2 loc (R N ×R) is the locally Hölder space defined in [START_REF] Ladyženskaja | Linear and Quasilinear Equations of Parabolic Type[END_REF]. Similar uniform estimates for J α -λ -2 n tn|s (ϕ p ) follow if µ is sufficiently small. The parabolic interior Schauder's estimates (see [START_REF] Krylov | Lectures on Elliptic and Parabolic Equations in Hölder Spaces[END_REF]Th. 8.11.1 p. 130]), using the existence theorems in Hölder's space, imply now that the C 2+µ,1+µ/2 loc (R N × R)norm of ϕ λn is uniformly bounded. Hence, we obtain a subsequence converging in

C 2+µ,1+µ/2 loc (R N × R) to a solution ϕ of ϕ s = ∆ϕ + J α -∞|s (ϕ p ) in R N × (-∞, +∞),
such that ϕ(0, 0) ≥ A and 0 ≤ ϕ ≤ 4A in R N × R. Whereupon, using Lemma 5.1, we infer that ϕ ≡ 0 in R N × (-∞, +∞). Contradiction with the fact that ϕ(0, 0) ≥ A > 1. This proves (5.6).

Next we use an idea from Hu [START_REF] Hu | Remarks on the blow-up estimate for solutions of the heat equation with a nonlinear boundary condition[END_REF]. From (5.5) and (5.6) it follows that

(t + 0 -t 0 ) ≤ D(2A) 1/α1 M (t 0 ) -1/α1 for any t 0 ∈ T * 2 , T * .
Fix t 0 ∈ (T * /2, T * ) and denote t 1 = t + 0 , t 2 = t + 1 , t 3 = t + 2 , . . . . Then t j+1 -t j ≤ D(2A) 1/α1 M (t j ) -1/α1 , M (t j+1 ) = 2M (t j ), j = 0, 1, 2, . . . . Consequently,

T * -t 0 = ∞ j=0 (t j+1 -t j ) ≤ D(2A) 1/α1 ∞ j=0 M (t j ) -1/α1 = D(2A) 1/α1 M (t 0 ) -1/α1 ∞ j=0 2 -j/α1 .
Finally, we conclude that

u(x, t 0 ) ≤ M (t 0 ) ≤ C(T * -t 0 ) -α1 , ∀ t 0 ∈ (0, T * )
where

C = 2A   D ∞ j=0 2 -j/α1   α1 ; so sup R N u(• , t) ≤ C(T * -t) -α1 , ∀ t ∈ (0, T * ).
• The lower blow-up rate estimate. If we repeat the proof of the local existence of Theorem 3.2, by taking u 1 ≤ θ instead of u 1 ≤ 2 u 0 ∞ in the space E T for all positive constant θ > 0 and all 0 < t < T, then the condition (3.2) of T will be:

(5.11)

u 0 ∞ + CT 2-γ θ p ≤ θ,
and then, like before, we infer that u(t) ∞ ≤ θ for (almost) all 0 < t < T. Consequently, if u 0 ∞ + Ct 2-γ θ p ≤ θ, then u(t) ∞ ≤ θ. Applying this to any point in the trajectory, we see that if 0 ≤ s < t and

(5.12) (t -s) 2-γ ≤ θ -u(s) ∞ Cθ p , then u(t) ∞ ≤ θ, for all 0 < t < T. Moreover, if 0 ≤ s < T * and u(s) ∞ < θ, then:

(5.13) (T * -s) 2-γ > θ -u(s) ∞ Cθ p .
Indeed, arguing by contradiction and assuming that for some θ > u(s) ∞ and all t ∈ (s, T * ) we have

(t -s) 2-γ ≤ θ -u(s) ∞ Cθ p .
Then, using (5.12), we infer that u(t) ∞ ≤ θ for all t ∈ (s, T * ); this contradicts the fact that u(t) ∞ → ∞ as t → T * .

Next, for example, by setting θ = 2 u(s) ∞ in (5.13), we see that for 0 < s < T * we have: (T * -s) 2-γ > C u(s) 1-p ∞ , and by the positivity and the continuity of u we get (5.14) c(T * -s) -α1 < sup x∈R N u(x, s), ∀ s ∈ (0, T * ).

Global existence

In this section, we prove the existence of global solutions of (1.1) with initial data small enough. We give a similar proof as that in [START_REF] Cazenave | An equation whose Fujita critical exponent is not given by scaling[END_REF] just for the seek of completness. In the following, we use the notation p sc := N (p -1)/β(2 -γ). As p * > 1 + β(2 -γ)/N, we note that p > p * ⇒ p sc > 1.

Theorem 6.1. Let u 0 ∈ C 0 (R N ) ∩ L psc (R N ) and 0 < β ≤ 2. If (6.1) p > max{ 1 γ ; p * },
and u 0 L psc is sufficiently small, then u exists globally. Note that we can take |u 0 (x)| ≤ C|x| -β(2-γ)/(p-1) instead of u 0 ∈ L psc (R N ).

Proof. As p > (1/γ), then we have the possibility to take a positive constant q > 0 so that:

(6.2) 2 -γ p -1 - 1 p < N βq < 1 p -1 , q ≥ p.
It follows, using (6.1), that

(6.3) q > N (p -1) β > p sc > 1. Let (6.4) b := N βp sc - N βq = 2 -γ p -1 - N βq .
Then, using (6.2)-(6.4), we conclude that

(6.5) b > 1 -γ p -1 > 0, pb < 1, N (p -1) βq + (p -1)b + γ = 2.
As u 0 ∈ L psc , using (2.4) and (6.4), we get, for all t > 0, (6.6) sup

t>0 t b e -t(-∆) β/2 u 0 L q ≤ C u 0 L psc = η < ∞. Set (6.7) Ξ := u ∈ L ∞ ((0, ∞), L q (R N )); sup t>0 t b u(t) L q ≤ δ ,
where δ > 0 is to be chosen sufficiently small. If we define (6.8)

d Ξ (u, v) := sup t>0 t b u(t) -v(t) L q , ∀u, v ∈ Ξ, then (Ξ, d) is a complete metric space. Given u ∈ Ξ, let's set: (6.9) Φ(u)(t) := e -t(-∆) β/2 u 0 + 1 Γ(1 -γ) t 0 e -(t-s)(-∆) β/2 s 0 (s-σ) -γ |u| p-1 u(σ) dσ ds,
for all t ≥ 0. We have by (2.4), (6.6) and (6.7)

t b Φ(u)(t) L q ≤ η + Ct b t 0 (t -s) -N β ( p q -1 q ) s 0 (s -σ) -γ u p (σ) L q p dσ ds ≤ η + Cδ p t b t 0 s 0 (t -s) -N (p-1)
βq (s -σ) -γ σ -bp dσ ds. (6.10) Next, using (6.2) and pb < 1, we get

t 0 s 0 (t -s) -N βq (p-1) (s -σ) γ σ -bp dσ ds = 1 0 (1 -σ) -γ σ -bp dσ t 0 (t -s) -N (p-1) βq s bp+γ-1 ds = Ct -N (p-1)

βq

-bp-γ+2 = Ct -b , (6.11) for all t ≥ 0. So, we deduce from (6.10)-(6.11) that (6.12)

t b Φ(u)(t) L q ≤ η + Cδ p .
Therefore, if η and δ are chosen small enough so that η + Cδ p ≤ δ, we see that Φ : Ξ → Ξ. Similar calculations show that (assuming η and δ small enough) Φ is a strict contraction, so it has a unique fixed point u ∈ Ξ which is a solution of (1.1). Now, we show that u ∈ C([0, ∞), C 0 (R N )). First, we show that u ∈ C([0, T ], C 0 (R N )) if T > 0 is sufficiently small. Indeed, note that the above argument shows uniqueness in Ξ T , where, for any T > 0,

Ξ T := u ∈ L ∞ ((0, T ), L q (R N )); sup 0<t<T t b u(t) L q ≤ δ .
Let ũ be the local solution of (1.1) constructed in Theorem 3.2. Since u 0 ∈ C 0 (R N ) ∩ L psc (R N ), then, using the fact that u 0 ∈ L q (R N ) and (6.3), we have ũ

∈ C([0, T max ), L q (R N )) by Theorem 3.2. It follows that sup 0<t<T t b ũ(t) L q ≤ δ if T > 0 is sufficiently small. Therefore, by uniqueness, u = ũ on [0, T ], so that u ∈ C([0, T ], C 0 (R N )).
Next, we show that u ∈ C([T, ∞), C 0 (R N )) by a bootstrap argument. Indeed, for t > T, we write

u(t) -e -t(-∆) β/2 u 0 = t 0 e -(t-s)(-∆) β/2 T 0 (s -σ) -γ |u| p-1 u(σ) dσ ds + t 0 e -(t-s)(-∆) β/2 s T (s -σ) -γ |u| p-1 u(σ) dσ ds ≡ I 1 (t) + I 2 (t). Since u ∈ C([0, T ], C 0 (R N )), it follows that I 1 ∈ C([T, ∞), C 0 (R N ))
. Also, by the calculations used to construct the fixed point, using the fact that t -b ≤ T -b < ∞ and pq > q, I 1 ∈ C([T, ∞), L q (R N )). Next, note that N (p/q -1/q)/β < 1 by (6.3); therefore, there exists r ∈ (q, ∞] such that (6.13)

N β ( p q - 1 r ) < 1. Let T < s < t (the case of s ≤ T ≤ t is obvious). Since u ∈ L ∞ ((0, ∞), L q (R N )), we have |u| p-1 u ∈ L ∞ ((T, s), L q/p (R N
)), and it easily follows, using (2.4) and (6.13), that

I 2 ∈ C([T, ∞), L r (R N )). As e -•(-∆) β/2 u 0 and I 1 both belong to C([T, ∞), C 0 (R N ))∩ C([T, ∞), L q (R N )), we see that u ∈ C([T, ∞), L r (R N )).
Iterating this procedure a finite number of times, we deduce that u ∈ C([T, ∞), C 0 (R N )). This completes the proof.

Necessary conditions for local or global existence

In this section, we establish necessary conditions for the existence of local or global weak solutions to the problem (1.1); these conditions depend on the behavior of the initial data for large x. for some positive constant C > 0. Note that, if A := lim inf |x|→∞ u 0 (x), then we obtain a similar estimate as that found in (3.4), T 2-γ A p-1 C p-1 ≤ 1.

Proof. We take here, for R > 0 sufficiently large, ϕ(x, t) := D α t|T φ(x, t) := D α t|T (ϕ 1 (x/R)ϕ 2 (t)) where ϕ 2 (t) := (1 -t/T ) + instead of the one chosen in Theorem 7.1. Then, as (7.2), we obtain 

  where pp = p + p, a > 0, b > 0, p > 1, p > 1, with a = u(x, t) φ1/p , b = φ-1/p (ϕ 1 (x)) D 1+αt|T ϕ 2 (t) , in the first integral of the right hand side of (4.16), and Hölder's inequality

  [START_REF] Kobayashi | On some semilinear evolution equations with time-lag[END_REF] whereC T := [0, T ]×C for C := x ∈ R N ; |x| ≤ 2R , Young's inequality (4.10) with a = u(x, t) ϕ 1/p , b = ϕ -1/p (ϕ 3 (x)) D 1+αt|T ϕ 4 (t) in the first integral of the right hand side of (4.20) and with

Theorem 7 . 1 ( 1 ) 2 D 2 D 2 1 1 p- 1 (ϕ 1 ( 2 D ϕ 1 2 D ϕ 1

 7112221112121 Necessary conditions for global existence). Let u 0 ∈ L ∞ Loc (R N ), u 0 ≥ 0, 0 < β ≤ 2 and p > 1. If u is a global weak solution to problem (1.1), then there is a positive constant C > 0 such that ≤ C.Proof. Let u be a global weak solution to (1.1), then u ∈ L p ((0, R β ), L ∞ (B 2R )) for all R > 0, where B 2R stands for the closed ball of center 0 and radius 2R. So, we repeat the same calculation as in the proof of Theorem 3.2 (here in bounded domain) by taking ϕ(x, t) := D α t|T φ(x, t) := D α t|T (ϕ 1 (x/R)ϕ 2 (t)) instead of the one chosen in Theorem 3.2, where 0 ≤ ϕ 1 ∈ D(∆ β/) is the first eigenfunction of the fractional Laplacian operator ∆ β/in B 2 , with the homogeneous Dirichlet boundary condition (2.6), associated to the first eigenvalue λ := λ β/, and ϕ 2 (t) := 1 -t/R β + for 1 large enough. Then, as for the estimate (4.11), we obtain, with Σ:= [0, R β ] × B 2R , Σ u p φ dx dt + C R -αβ |x|≤2R u 0 (x)ϕ 1 (x/R) dx ≤ C Σ ϕ 1 (x/R) (ϕ 2 (t)) -D 1+α t|R β ϕ 2 (t) p dx dt +C Σ (x/R)D α t|R β ϕ 2 (t) p dx dt,(7.2)where α := 1 -γ and p := p/(p -1). If we take the scaled variables τ = t/R β , ξ = x/R and use the fact that ∆ β/(x/R) = R -β λϕ 1 (x/R) in the right-hand side of (7.2), take into account the positivity of u, we infer thatC R -αβ |ξ|≤2 u 0 (Rξ)ϕ 1 (ξ) dξ ≤ C(R) |ξ|≤2 ϕ 1 (ξ) dξ = C(R) |ξ|≤2 |Rξ| β(1+α)( p-1) |Rξ| β(1+α)(1-p) ϕ 1 (ξ) dξ ≤ C(R)(2R) β(1+α)( p-1) |ξ|≤2 |Rξ| β(1+α)(1-p) ϕ 1 (ξ) dξwhere C(R) = R β-(1+α)β p(C + Cλ), and so(7.3) |ξ|≤2 u 0 (Rξ)ϕ 1 (ξ) dξ ≤ C |ξ|≤2 |Rξ| β(1+α)(1-p) ϕ 1 (ξ) dξ. Using the estimate inf |ξ|>1 (u 0 (Rξ)|Rξ| β(1+α)( p-1) ) |ξ|≤2 |Rξ| β(1+α)(1-p) ϕ 1 (ξ) dξ ≤ 1<|ξ|≤2 u 0 (Rξ)ϕ 1 (ξ) dξ ≤ |ξ|≤2 u 0 (Rξ)ϕ 1 (ξ) dξin the left-hand side of (7.3), we conclude, after dividing by |ξ|≤2 |Rξ| β(1+α)(1-p) ϕ 1 (ξ) dξ that (7.4) inf |ξ|>1 (u 0 (Rξ)|Rξ| β(1+α)( p-1) ) ≤ C. Passing to the limit in (7.4), as R → ∞, we obtain lim inf |x|→∞ (u 0 (x)|x| β(1+α)( p-1) ) ≤ C. Corolary 1. (Sufficient conditions for the nonexistence of global solutions) Let u 0 ∈ L ∞ Loc (R N ), u 0 ≥ 0, 0 < β ≤ 2 and p > 1. If lim inf |x|→∞ (u 0 (x)|x| β(2-γ) p-1 ) = +∞, then the problem (1.1) cannot admit a global weak solution. Next, we give a necessary condition for local existence where we obtain a similar estimate of T found in the proof of Theorem 3.2, as |x| goes to infinity. Theorem 7.2 (Necessary conditions for local existence). Let u 0 ∈ L ∞ Loc (R N ), u 0 ≥ 0, β ∈ (0, 2] and p > 1. If u is a local weak solution to problem (1.1) on [0, T ] where 0 < T < +∞, then we have (7.5) lim inf |x|→∞ u 0 (x) ≤ C T -2-γ p-1 ,
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 111212112121 p φ dx dt + C T -α |x|≤2R u 0 (x)ϕ 1 (x/R) dx ≤ C Σ1 ϕ 1 (x/R) (ϕ 2 (t)) -D 1+α t|T ϕ 2 (t) p dx dt +C Σ1 (x/R)) -(x/R)D α t|T ϕ 2 (t) p dx dt, (7.6) where Σ 1 := [0, T ] × x ∈ R N ; |x| ≤ 2R , α := 1 -γ and p := p/(p -1). Now, in the right-hand side of (7.6), we take the scaled variables τ = T -1 t, ξ = R -1 x and use the fact that ∆ β/(x/R) = R -β λϕ 1 (x/R), while in the left-side we use the positivity of u, then we getC T -α |ξ|≤2 u 0 (Rξ)ϕ 1 (ξ) dξ ≤ C T 1-(1+α) p + Cλ T 1-α pR -β p |ξ|≤2 ϕ 1 (ξ) dξ;and so (7.7) |ξ|≤2 u 0 (Rξ)ϕ 1 (ξ) dξ ≤ C(R, T ) |ξ|≤2 ϕ 1 (ξ) dξ

where C(R, T ) = C T (1+α)(1-p) + C T 1+α(1-p) R -β p. Using the estimate inf |ξ|>1 (u 0 (Rξ))

in the left-hand side of (7.7), we conclude, after dividing by |ξ|≤2 ϕ 1 (ξ) dξ, that (7.8) inf

Passing to the limit in (7.8), as R → ∞, we obtain

Appendix

In this appendix, we give a proof of Ju's inequality (see Proposition 3.3 in [START_REF] Ju | The Maximum Principle and the Global Attractor for the Dissipative 2-D Quasi-Geostrophic Equations[END_REF]), in dimension N ≥ 1 where δ ∈ [0, 2] and q ≥ 1, for all nonnegative Schwartz function ψ (in the general case) (-∆) δ/2 ψ q ≤ qψ q-1 (-∆) δ/2 ψ.

The cases δ = 0 and δ = 2 are obvious, as well as q = 1. If δ ∈ (0, 2) and q > 1, using [5, Definition 3.2], we have

By Young's inequality we have

Therefore, (ψ(x)) q-1 (-∆) δ/2 ψ(x) ≥ -c N (δ) q R N (ψ(x + z)) q -(ψ(x)) q |z| N +δ dz = 1 q (-∆) δ/2 (ψ(x)) q .