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QUALITATIVE PROPERTIES OF SOLUTIONS TO A
TIME-SPACE FRACTIONAL EVOLUTION EQUATION

AHMAD Z. FINO AND MOKHTAR KIRANE

Abstract. In this article, we analyze a spatio-temporally nonlocal nonlinear

parabolic equation. First, we valid the equation by an existence-uniqueness
result. Then, we show that blowing-up solutions exist and study their time

blow-up profile. Also, a result on the existence of global solutions is presented.

Furthermore, we establish necessary conditions for local or global existence.

1. Introduction

In this paper, we investigate the spatio-temporally nonlinear parabolic equation

(1.1)


ut + (−∆)β/2u =

1
Γ(1− γ)

∫ t

0

(t− s)−γ |u|p−1u(s) ds x ∈ RN , t > 0,

u(x, 0) = u0(x) x ∈ RN ,

where u0 ∈ C0(RN ), N ≥ 1, 0 < β ≤ 2, 0 < γ < 1, p > 1 and the nonlocal operator
(−∆)β/2 is defined by

(−∆)β/2v(x) := F−1
(
|ξ|βF(v)(ξ)

)
(x)

for every v ∈ D((−∆)β/2) = Hβ(RN ), where Hβ(RN ) is the homogeneous Sobolev
space of order β defined by

Hβ(RN ) =
{
u ∈ S ′; (−∆)β/2u ∈ L2(RN )

}
if β 6∈ N,

Hβ(RN ) =
{
u ∈ L2(RN ); (−∆)β/2u ∈ L2(RN )

}
if β ∈ N,

where S ′ is the space of Schwartz distributions; F stands for the Fourier transform
and F−1 for its inverse, Γ is the Euler gamma function and C0(RN ) denotes the
space of all continuous functions tending to zero at infinity.
When Eq. (1.1) is considered with a nonlinearity of the form up, it reads

ut + (−∆)β/2u = up.

This equation has been considered by Nagasawa and Sirao [24], Kobayashi [20],
Guedda and Kirane [14], Kirane and Qafsaoui [19], Eidelman and Kochubei [10]
and by Fino and Karch [12].
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The fractional Laplacian (−∆)β/2 is related to Lévy flights in physics. Many ob-
servations and experiments related to Lévy flights (super-diffusion), e.g., collective
slip diffusion on solid surfaces, quantum optics or Richardson turbulent diffusion,
have been performed in recent years. The symmetric β−stable processes (β ∈ (0, 2))
are the basic characteristics for a class of jumping Lévy’s processes. Compared with
the continuous Brownian motion (β = 2), symmetric β−stable processes have infi-
nite jumps in an arbitrary time interval. The large jumps of these processes make
their variances and expectations infinite according to β ∈ (0, 2) or β ∈ (0, 1], respec-
tively (see [17]). Let us also mention that when β = 3/2, the symmetric β−stable
processes appear in the study of stellar dynamics (see [9]).

As a physical motivation, the problem (1.1) describes a diffusion in a super-
diffusive medium coupled to a classically diffusive medium. The right-side of (1.1)
might be interpreted as the effect of a classically diffusive medium that is nonlinearly
linked to a super-diffusive medium. Such a link might come in the form of a
porous material with reactive properties that is partially insulated by contact with
a classically diffusive material (thanks to Olmstead [25]). For more informations
see the recent paper of Roberts and Olmstead [26].
Our article is motivated mathematically by the recent and very interesting paper
[8] which deals with the global existence and blow-up for the parabolic equation
with nonlocal in time nonlinearity

(1.2) ut −∆u =
∫ t

0

(t− s)−γ |u|p−1u(s) ds x ∈ RN , t > 0,

where 0 ≤ γ < 1, p > 1 and u0 ∈ C0(RN ), which is a particular case of (1.1); it
corresponds to β = 2.
If we set

pγ = 1 +
2(2− γ)

(N − 2 + 2γ)+

and
p∗ = max

{ 1
γ
, pγ

}
∈ (0,+∞],

where (· )+ is the positive part, they proved that
(i): If γ 6= 0, p ≤ p∗, and u0 ≥ 0, u0 6≡ 0, then u blows up in finite time.
(ii): If γ 6= 0, p > p∗, and u0 ∈ Lqsc(RN ) (where qsc = N(p− 1)/(4− 2γ))

with ‖u0‖Lqsc sufficiently small, then u exists globally.
If γ = 0 then all nontrivial positive solutions blow-up as proved by Souplet in
[29]. The study in [8] reveals the surprising fact that for equation (1.2) the critical
exponent in Fujita’s sense p∗ is not the one predicted by scaling.
This can be explained by the fact that their equation can be formally converted
into

(1.3) Dα
0|tut −D

α
0|t∆u = |u|p−1u,

where Dα
0|t is the left-sided Riemann-Liouville fractional derivative of order α ∈

(0, 1) defined in (2.8) below (we have set in (1.3), α = 1− γ ∈ (0, 1)).
Eq. (1.3) is a pseudo-parabolic equation and as it is well known scaling is efficient
for detecting the Fujita exponent only for equations of parabolic type.
Needless to say that the equation considered in [8] is a genuine extension of the one
considered by Fujita in his pioneering work [13].
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In this article, concerning blowing-up solutions, we present a different proof from
the one presented in [8], and for the more general equation (1.1). Our proof is
more versatile and can be applied to more nonlinear equations (see the Remarks in
Section 4).
Our analysis is based on the observation that the nonlinear differential equation
(1.1) can be written in the form:

(1.4) ut + (−∆)β/2u = Jα0|t
(
|u|p−1u

)
,

where α := 1 − γ ∈ (0, 1) and Jα0|t is the Riemann-Liouville fractional integral de-
fined in (2.10).
We will show that:

(1) For u0 ∈ C0(RN ), u0 ≥ 0, u0 6≡ 0, if

p ≤ 1 +
β(2− γ)

(N − β + βγ)+
or p <

1
γ
,

then all solutions of problem (1.1) blow-up in finite time.

(2) For u0 ∈ C0(RN ) ∩ Lpsc(RN ), where psc := N(p− 1)/β(2− γ), if

p > max
{

1 +
β(2− γ)

(N − β + βγ)+
;

1
γ

}
,

and ‖u0‖Lpsc is sufficiently small, then u exists globally.

The method used to prove the blow-up theorem is the test function method of
Mitidieri and Pohozaev [23], Kirane et al. [14, 18]; it was also used by Baras and
Kersner [2] for the study of the necessary conditions for the local existence.

Furthermore, in the case β = 2, we derive the blow-up rate estimates for the para-
bolic equation (1.1). We shall prove that, if u0 ∈ C0(RN )∩L2(RN ), u0 ≥ 0, u0 6≡ 0
and if u is the blowing-up solution of (1.1) at the finite time T ∗ > 0, then there
are constants c, C > 0 such that c(T ∗ − t)−α1 ≤ supRN u(· , t) ≤ C(T ∗ − t)−α1 for
1 < p ≤ 1 + 2(2 − γ)/(N − 2 + 2γ)+ or 1 < p < 1/γ and all t ∈ (0, T ∗), where
α1 := (2−γ)/(p−1). We use a scaling argument to reduce the problems of blow-up
rate to Fujita-type theorems (it is similar to blow-up analysis in elliptic problems
to reduce the problems of a priori bounds to Liouville-type theorems). As far as
we know, this method was first applied to parabolic problems by Hu [15], and then
was used in various parabolic equations and systems (see [7, 11]). We notice that
in the limiting case when γ → 0, we obtain the constant rate 2/(p− 1) found by P.
Souplet [30].
For more informations, we refer the reader to the excellent paper of Andreucci and
Tedeev [1] for the blow-up rate by an alternative method

The organization of this paper is as follows. In Section 2, we present some definitions
and properties. In Section 3, we derive the local existence of solutions for the
parabolic equation (1.1). Section 4 contains the blow-up result of solutions for
(1.1). Section 5 is dedicated to the blow-up rate of blowing-up solutions. Global
existence is studied in Section 6. Finally, a necessary condition for local existence
and a necessary condition for global existence are given in Section 7.
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2. Preliminaries

In this section, we present some definitions and results concerning the fractional
laplacian, fractional integrals and fractional derivatives that will be used hereafter.
First, if we take the usual linear fractional diffusion equation

(2.1) ut + (−∆)β/2u = 0, β ∈ (0, 2], x ∈ RN , t > 0,

then, its fundamental solution Sβ can be represented via the Fourier transform by

(2.2) Sβ(t)(x) := Sβ(x, t) =
1

(2π)N/2

∫
RN

eix.ξ−t|ξ|
β

dξ.

It is well-known that this function satisfies

(2.3) Sβ(1) ∈ L∞(RN ) ∩ L1(RN ), Sβ(x, t) ≥ 0,
∫

RN
Sβ(x, t) dx = 1,

for all x ∈ RN and t > 0. Hence, using Young’s inequality for the convolution and
the following self-similar form Sβ(x, t) = t−N/βSβ(xt−1/β , 1), we have

(2.4) ‖Sβ(t) ∗ v‖q ≤ Ct−
N
β ( 1

r−
1
q )‖v‖r,

for all v ∈ Lr(RN ) and all 1 ≤ r ≤ q ≤ ∞, t > 0.
Moreover, as (−∆)β/2 is a self-adjoint operator with D

(
(−∆)β/2

)
= Hβ(RN ), we

have

(2.5)
∫

RN
u(x)(−∆)β/2v(x) dx =

∫
RN

v(x)(−∆)β/2u(x) dx,

for all u, v ∈ Hβ(RN ).
We denote by ∆β/2

D the fractional laplacian in an open bounded domain Ω with
homogeneous Dirichlet boundary condition. We have the following facts:
If λk (k = 1, ...,+∞) is the eigenvalues for the laplacian operator in L2(Ω) with
homogeneous Dirichlet boundary condition and ϕk its corresponding eigenfunction,
then

(2.6)
{

∆β/2
D ϕk = λ

β/2
k ϕk in Ω,

ϕk = 0 on RN \ ∂Ω,

and

D(∆β/2
D ) =

{
u ∈ L2(Ω) s.t. u|∂Ω = 0 ; ‖∆β/2

D u‖L2(Ω) :=
k=+∞∑
k=1

|λβ/2k < u,ϕk >|2 < +∞

}
.

So, for u ∈ D(∆β/2
D ) we have

∆β/2
D u =

k=+∞∑
k=1

λ
β/2
k < u,ϕk > ϕk.

The following integration by parts formula

(2.7)
∫

Ω

u(x)∆β/2
D v(x) dx =

∫
Ω

v(x)∆β/2
D u(x) dx,

holds for all u, v ∈ D(∆β/2
D ).

Next, if AC[0, T ] is the space of all functions which are absolutely continuous on
[0, T ] with 0 < T < ∞, then, for f ∈ AC[0, T ], the left-handed and right-handed
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Riemann-Liouville fractional derivatives Dα
0|tf(t) and Dα

t|T f(t) of order α ∈ (0, 1)
are defined by (see [17])

Dα
0|tf(t) := DJ1−α

0|t f(t),(2.8)

Dα
t|T f(t) := − 1

Γ(1− α)
D

∫ T

t

(s− t)−αf(s) ds,(2.9)

for all t ∈ [0, T ], where D := d/dt is the usual time derivative and

(2.10) Jα0|tf(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds

is the Riemann-Liouville fractional integral defined for all f ∈ Lq(0, T ) (1 ≤ q ≤ ∞).
Now, for every f, g ∈ C([0, T ]), such that Dα

0|tf(t), Dα
t|T g(t) exist and are continu-

ous, for all t ∈ [0, T ], 0 < α < 1, we have the formula of integration by parts (see
[28, (2.64) p. 46])

(2.11)
∫ T

0

(
Dα

0|tf
)

(t)g(t) dt =
∫ T

0

f(t)
(
Dα
t|T g

)
(t) dt.

Note also that, for any f ∈ AC2[0, T ], we have (see (2.2.30) in [17])

(2.12) −D.Dα
t|T f = D1+α

t|T f,

where
AC2[0, T ] := {f : [0, T ]→ R such that Df ∈ AC[0, T ]} .

Moreover, for all 1 ≤ q ≤ ∞, the following equality (see [17, Lemma 2.4 p.74])

(2.13) Dα
0|tJ

α
0|t = IdLq(0,T )

holds almost everywhere on [0, T ].
Later on, we will use the following results.
• If w1(t) = (1− t/T )σ+ , t ≥ 0, T > 0, σ � 1, then

Dα
t|Tw1(t) =

(1− α+ σ)Γ(σ + 1)
Γ(2− α+ σ)

T−α
(

1− t

T

)σ−α
+

,(2.14)

Dα+1
t|T w1(t) =

(1− α+ σ)(σ − α)Γ(σ + 1)
Γ(2− α+ σ)

T−(α+1)

(
1− t

T

)σ−α−1

+

,(2.15)

for all α ∈ (0, 1); so

(2.16)
(
Dα
t|Tw1

)
(T ) = 0 ;

(
Dα
t|Tw1

)
(0) = C T−α,

where C = (1− α+ σ)Γ(σ + 1)/Γ(2− α+ σ).
• If w2(t) =

(
1− t2/T 2

)`
+
, T > 0, `� 1, we have

Dα
t|Tw2(t) =

T−α

Γ(1− α)

∑̀
k=0

C1(`, k, α)
(

1− t

T

)`+k−α
,(2.17)

D1+α
t|T w2(t) =

T−α−1

Γ(1− α)

∑̀
k=0

C2(`, k, α)
(

1− t

T

)`+k−α−1

,(2.18)
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for all −T ≤ t ≤ T, α ∈ (0, 1), where
C1(`, k, α) := ck` (1− α+ `+ k)2`−k(−1)k Γ(k+`+1)Γ(1−α)

Γ(k+`+2−α) ,

C2(`, k, α) := (`+ k − α)C1(`, k, α),
ck` := `!

(`−k)!k! ;

so

(2.19)
(
Dα
t|Tw2

)
(T ) = 0 ;

(
Dα
t|Tw2

)
(−T ) = C3(`, k, α) T−α,

where

C3(`, k, α) :=
22`−α(−1)`

Γ(1− α)

∑̀
k=0

ck` (1− α+ `+ k)
Γ(k + `+ 1)Γ(1− α)

Γ(k + `+ 2− α)
.

3. Local existence

This section is dedicated to proving the local existence and uniqueness of mild
solutions to the problem (1.1). Let T (t) := e−t(−∆)β/2 . As (−∆)β/2 is a positive
definite self-adjoint operator in L2(RN ), T (t) is a strongly continuous semigroup
on L2(RN ) generated by the fractional power −(−∆)β/2 (see Yosida [31]). It holds
T (t)v = Sβ(t) ∗ v, where Sβ is given by (2.2) and u ∗ v is the convolution of u and
v. We start by giving the

Definition 3.1 (Mild solution). Let u0 ∈ C0(RN ), 0 < β ≤ 2, p > 1 and T > 0. We
say that u ∈ C([0, T ], C0(RN )) is a mild solution of the problem (1.1) if u satisfies
the following integral equation

(3.1) u(t) = T (t)u0 +
∫ t

0

T (t− s)Jα0|s
(
|u|p−1u

)
ds, t ∈ [0, T ].

Theorem 3.2 (Local existence). Given u0 ∈ C0(RN ) and p > 1, there exist a maxi-
mal time Tmax > 0 and a unique mild solution u ∈ C([0, Tmax), C0(RN )) to the prob-
lem (1.1). Furthermore, either Tmax =∞ or else Tmax <∞ and ‖u‖L∞((0,t)×RN ) →
∞ as t→ Tmax. In addition, if u0 ≥ 0, u0 6≡ 0, then u(t) > 0 for all 0 < t < Tmax.
Moreover, if u0 ∈ Lr(RN ), for 1 ≤ r <∞, then u ∈ C([0, Tmax), Lr(RN )).

Proof. For arbitrary T > 0, we define the Banach space

ET :=
{
u ∈ L∞((0, T ), C0(RN )); ‖u‖1 ≤ 2‖u0‖L∞

}
,

where ‖· ‖1 := ‖· ‖L∞((0,T ),L∞(RN )). Next, for every u ∈ ET , we define

Ψ(u) := T (t)u0 +
∫ t

0

T (t− s)Jα0|s
(
|u|p−1u

)
ds.
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We prove the local existence by the Banach fixed point theorem.
• Ψ : ET → ET: Let u ∈ ET , using (2.4), we obtain with ‖· ‖∞ := ‖· ‖L∞(RN ),

‖Ψ(u)‖1 ≤ ‖u0‖∞ +
1

Γ(1− γ)
‖
∫ t

0

∫ s

0

(s− σ)−γ‖u(σ)‖p∞ dσ ds‖L∞(0,T )

= ‖u0‖∞ +
1

Γ(1− γ)
‖
∫ t

0

∫ t

σ

(s− σ)−γ‖u(σ)‖p∞ ds dσ‖L∞(0,T )

≤ ‖u0‖∞ +
T 2−γ

(1− γ)(2− γ)Γ(1− γ)
‖u‖p1

≤ ‖u0‖∞ +
T 2−γ2p‖u0‖p−1

L∞

Γ(3− γ)
‖u0‖∞.

Now, if we choose T small enough such that

(3.2)
T 2−γ2p‖u0‖p−1

∞
Γ(3− γ)

≤ 1,

we conclude that ‖Ψ(u)‖1 ≤ 2‖u0‖∞, and then Ψ(u) ∈ ET .

• Ψ is a contraction: For u, v ∈ ET , taking account of (2.4), we have

‖Ψ(u)−Ψ(v)‖1 ≤ 1
Γ(1− γ)

‖
∫ t

0

∫ s

0

(s− σ)−γ‖|u|p−1u(σ)− |v|p−1v(σ)‖∞ dσ ds‖L∞(0,T )

=
1

Γ(1− γ)
‖
∫ t

0

∫ t

σ

(s− σ)−γ‖|u|p−1u(σ)− |v|p−1v(σ)‖∞ ds dσ‖L∞(0,T )

≤ T 2−γ

Γ(3− γ)
‖|u|p−1u− |v|p−1v‖1

≤ C(p)2p‖u0‖p−1
∞ T 2−γ

Γ(3− γ)
‖u− v‖1

≤ 1
2
‖u− v‖1,

thanks to the following inequality

(3.3) ||u|p−1u− |v|p−1v| ≤ C(p)|u− v|(|u|p−1 + |v|p−1);

T is chosen such that

(3.4)
T 2−γ2p‖u0‖p−1

∞ max(2C(p), 1)
Γ(3− γ)

≤ 1.

Then, by the Banach fixed point theorem, there exists a mild solution u ∈ ΠT ,
where ΠT := L∞((0, T ), C0(RN )), to the problem (1.1).
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• Uniqueness: If u, v are two mild solutions in ET for some T > 0, using (2.4)
and (3.3), we obtain

‖u(t)− v(t)‖∞ ≤ C(p)2p‖u0‖p−1
∞

Γ(1− γ)

∫ t

0

∫ s

0

(s− σ)−γ‖u(σ)− v(σ)‖∞ dσ ds

=
C(p)2p‖u0‖p−1

∞
Γ(1− γ)

∫ t

0

∫ t

σ

(s− σ)−γ‖u(σ)− v(σ)‖∞ ds dσ

=
C(p)2p‖u0‖p−1

∞
Γ(2− γ)

∫ t

0

(t− σ)1−γ‖u(σ)− v(σ)‖∞ dσ.

So the uniqueness follows from Gronwall’s inequality (cf. [6]).
Next, using the uniqueness of solutions, we conclude the existence of a solution

on a maximal interval [0, Tmax) where

Tmax := sup {T > 0 ; there exist a mild solution u ∈ ΠT to (1.1)} ≤ +∞.

Note that, using the continuity of the semigroup T (t), we can easily conclude that

u ∈ C([0, Tmax), C0(RN )).

Moreover, if 0 ≤ t ≤ t+ τ < Tmax, using (3.1), we can write

u(t+ τ) = T (τ)u(t) +
1

Γ(1− γ)

∫ τ

0

T (τ − s)
∫ s

0

(s− σ)−γ |u|p−1u(t+ σ) dσ ds

+
1

Γ(1− γ)

∫ τ

0

T (τ − s)
∫ t

0

(t+ s− σ)−γ |u|p−1u(σ) dσ ds.(3.5)

To prove that ‖u(t)‖L∞(RN ) → ∞ as t → Tmax, whenever Tmax < ∞, we proceed
by contradiction. Suppose that u is a solution of (3.1) on some interval [0, T ) with
‖u‖L∞((0,T )×RN ) < ∞ and Tmax < ∞. Using the fact that the last term in (3.5)
depends only on the values of u in the interval (0, t) and using again a fixed-point
argument, we conclude that u can be extended to a solution on some interval [0, T ′)
with T ′ > T. If we repeat this iteration, we obtain a contradiction with the fact
that the maximal time Tmax is finite.

• Positivity of solutions: If u0 ≥ 0 and u0 6≡ 0, then we can construct a nonneg-
ative solution on some interval [0, T ] by applying the fixed point argument in the set
E+
T = {u ∈ ET ; u ≥ 0}. In particular, it follows from (3.1) that u(t) ≥ T (t)u0 > 0

on (0, T ]. It is not difficult by uniqueness to deduce that u stays positive on (0, Tmax).

• Regularity: If u0 ∈ Lr(RN ) ∩ C0(RN ), for 1 ≤ r < ∞, then by repeating the
fixed point argument in the space

ET,r := {u ∈ L∞((0, T ), C0(RN ) ∩ Lr(RN )); ‖u‖1 ≤ 2‖u0‖L∞ , ‖u‖∞,r ≤ 2‖u0‖Lr},

instead of ET , where ‖· ‖∞,r := ‖· ‖L∞((0,T ),Lr(RN )), and by estimating ‖up‖Lr(RN )

by ‖u‖p−1
L∞(RN )

‖u‖Lr(RN ) in the contraction mapping argument, using (2.4), we ob-
tain a unique solution in ET,r; we conclude then that

u ∈ C([0, Tmax), C0(RN ) ∩ Lr(RN )).

�
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We say that u is a global solution if Tmax =∞; when Tmax <∞, u is said to blow
up in a finite time and in this case we have ‖u(· , t)‖L∞(RN ) →∞ as t→ Tmax.

Remark. We note that classical or strong solution do not exist due to the singu-
larity in time in the nonlinear term.

4. Blow-up of solutions

Now, we want to derive a blow-up result for Eq. (1.1). Our argument uses weak
solutions.

Definition 4.1 (Weak solution). Let u0 ∈ L∞Loc(RN ), 0 < β ≤ 2 and T > 0. We
say that u is a weak solution of the problem (1.1) if u ∈ Lp((0, T ), L∞Loc(RN )) and
verifies the equation

∫
RN

u0(x)ϕ(x, 0) +
∫ T

0

∫
RN

Jα0|t(|u|
p−1u)(x, t)ϕ(x, t) =

∫ T

0

∫
RN

u(x, t)(−∆)β/2ϕ(x, t)

−
∫ T

0

∫
RN

u(x, t)ϕt(x, t),(4.1)

for all compactly supported ϕ ∈ C1([0, T ], Hβ(RN )) such that ϕ(· , T ) = 0, where
α := 1− γ ∈ (0, 1).

Lemma 4.2. Consider u0 ∈ C0(RN ) and let u ∈ C([0, T ], C0(RN )) be a mild
solution of (1.1), then u is a weak solution of (1.1), for all 0 < β ≤ 2 and all T > 0.

Proof. Let T > 0, 0 < β ≤ 2, u0 ∈ C0(RN ) and let u ∈ C([0, T ], C0(RN )) be a
solution of (3.1). Given ϕ ∈ C1([0, T ], Hβ(RN )) such that suppϕ is compact with
ϕ(· , T ) = 0. Then after multiplying (3.1) by ϕ and integrating over RN , we have

∫
RN

u(x, t)ϕ(x, t) =
∫

RN
T (t)u0(x)ϕ(x, t)+

∫
RN

(∫ t

0

T (t− s)Jα0|s
(
|u|p−1u

)
(x, t) ds

)
ϕ(x, t).

We differentiate to obtain

d

dt

∫
RN

u(x, t)ϕ(x, t) =
∫

RN

d

dt
(T (t)u0(x)ϕ(x, t))

+
∫

RN

d

dt

∫ t

0

T (t− s)Jα0|s
(
|u|p−1u

)
(x, s) dsϕ(x, t).(4.2)

Now, using (2.5) and a property of the semigroup T (t) ([6, Chapter 3]), we have:∫
RN

d

dt
(T (t)u0(x)ϕ(x, t)) =

∫
RN

A (T (t)u0(x))ϕ(x, t) +
∫

RN
T (t)u0(x)ϕt(x, t)

=
∫

RN
T (t)u0(x)Aϕ(x, t) +

∫
RN

T (t)u0(x)ϕt(x, t),(4.3)
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and∫
RN

d

dt

∫ t

0

T (t− s)f(x, s) dsϕ(x, t) =
∫

RN
f(x, t)ϕ(x, t) +

∫
RN

∫ t

0

A (T (t− s)f(x, s)) dsϕ(x, t)

+
∫

RN

∫ t

0

T (t− s)f(x, s) dsϕt(x, t)

=
∫

RN
f(x, t)ϕ(x, t) +

∫
RN

∫ t

0

T (t− s)f(x, s) dsAϕ(x, t)

+
∫

RN

∫ t

0

T (t− s)f(x, s) dsϕt(x, t),(4.4)

where f := Jα0|t
(
|u|p−1u

)
∈ C([0, T ];L2(RN )).

Thus, using (3.1), (4.3) and (4.4), we conclude that (4.2) implies
d

dt

∫
RN

u(x, t)ϕ(x, t) =
∫

RN
u(x, t)Aϕ(x, t) +

∫
RN

u(x, t)ϕt(x, t) +
∫

RN
f(x, t)ϕ(x, t).

We conclude by integrating in time over [0, T ] and using the fact that ϕ(· , T ) =
0. �

Theorem 4.3. Let u0 ∈ C0(RN ) be such that u0 ≥ 0 and u0 6≡ 0. If

(4.5) p ≤ 1 +
β(2− γ)

(N − β + βγ)+
:= p∗ or p <

1
γ
,

for all β ∈ (0, 2], then the mild solution to (1.1) blows-up in a finite time.
Note that in the case where p = p∗ and β ∈ (0, 2) we take p > N/(N − β) with
N > β.

Proof. The proof is by contradiction. Suppose that u is a global mild solution to
(1.1), then u is a solution of (1.1) in C([0, T ], C0(RN )) for all T � 1 such that
u(t) > 0 for all t ∈ [0, T ].
Then, using Lemma 4.2, we have∫

RN
u0(x)ϕ(x, 0) +

∫ T

0

∫
RN

Jα0|t(u
p)(x, t)ϕ(x, t) =

∫ T

0

∫
RN

u(x, t)(−∆)β/2ϕ(x, t)

−
∫ T

0

∫
RN

u(x, t)ϕt(x, t),

for all test function ϕ ∈ C1([0, T ], Hβ(RN )) such that suppϕ is compact with
ϕ(· , T ) = 0, where α := 1− γ ∈ (0, 1).
Now we take ϕ(x, t) = Dα

t|T (ϕ̃(x, t)) := Dα
t|T

(
(ϕ1(x))` ϕ2(t)

)
with ϕ1(x) :=

Φ
(
|x|/T 1/β

)
, ϕ2(t) := (1− t/T )η+ , where ` ≥ p/(p − 1), η ≥ max{(αp + 1)/(p −

1);α+ 1} and Φ a smooth nonnegative non-increasing function such that

Φ(r) =
{

1 if 0 ≤ r ≤ 1,
0 if r ≥ 2,

0 ≤ Φ ≤ 1, |Φ′(r)| ≤ C1/r, for all r > 0. Using (2.16), we then obtain∫
Ω

u0(x)Dα
t|T ϕ̃(x, 0) +

∫
ΩT

Jα0|t(u
p)(x, t)Dα

t|T ϕ̃(x, t)

=
∫ T

0

∫
RN

u(x, t)(−∆)β/2Dα
t|T ϕ̃(x, t)−

∫
ΩT

u(x, t)DDα
t|T ϕ̃(x, t),(4.6)
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where

ΩT := [0, T ]×Ω for Ω =
{
x ∈ RN ; |x| ≤ 2T 1/β

}
,

∫
Ω

=
∫

Ω

dx and
∫

ΩT

=
∫

ΩT

dx dt.

Furthermore, using (2.11) and (2.16) in the left hand side of (4.6), and (2.12) in
the right hand side, we obtain

C T−α
∫

Ω

u0(x)ϕ`1(x) +
∫

ΩT

Dα
0|tJ

α
0|t(u

p)(x, t)ϕ̃(x, t)

=
∫ T

0

∫
RN

u(x, t)(−∆)β/2Dα
t|T ϕ̃(x, t) +

∫
ΩT

u(x, t)D1+α
t|T ϕ̃(x, t).(4.7)

Moreover, using (2.13), we may write∫
ΩT

up(x, t) ϕ̃(x, t) + C T−α
∫

Ω

u0(x)ϕ`1(x)

=
∫ T

0

∫
RN

u(x, t)(−∆)β/2ϕ`1(x)Dα
t|Tϕ2(t) +

∫
ΩT

u(x, t)D1+α
t|T ϕ̃(x, t).(4.8)

So, Ju’s inequality (−∆)β/2
(
ϕ`1
)
≤ `ϕ`−1

1 (−∆)β/2 (ϕ1) (see the Appendix) allows
to write: ∫

ΩT

up(x, t) ϕ̃(x, t) + C T−α
∫

Ω

u0(x)ϕ`1(x)

≤ C
∫

ΩT

u(x, t) ϕ`−1
1 (x)

∣∣∣(−∆)β/2ϕ1(x)Dα
t|Tϕ2(t)

∣∣∣
+
∫

ΩT

u(x, t) ϕ`1(x)
∣∣∣D1+α

t|T ϕ2(t)
∣∣∣

= C

∫
ΩT

u(x, t) ϕ̃1/pϕ̃−1/pϕ`−1
1 (x)

∣∣∣(−∆)β/2ϕ1(x)Dα
t|Tϕ2(t)

∣∣∣
+
∫

ΩT

u(x, t) ϕ̃1/pϕ̃−1/pϕ`1(x)
∣∣∣D1+α

t|T ϕ2(t)
∣∣∣ .(4.9)

Therefore, using Young’s inequality

(4.10) ab ≤ 1
2p
a p +

2p̃−1

p̃
b p̃ where pp̃ = p+ p̃, a > 0, b > 0, p > 1, p̃ > 1,

with {
a = u(x, t) ϕ̃1/p,

b = ϕ̃−1/pϕ`−1
1 (x)

∣∣∣(−∆)β/2ϕ1(x)Dα
t|Tϕ2(t)

∣∣∣
in the first integral of the right hand side of (4.9), and with{

a = u(x, t) ϕ̃1/p,

b = ϕ̃−1/pϕ`1(x)
∣∣∣D1+α

t|T ϕ2(t)
∣∣∣
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in the second integral of the right hand side of (4.9), we obtain

(1− 1
p

)
∫

ΩT

up(x, t) ϕ̃(x, t)

≤ C
∫

ΩT

(ϕ1(x))`−p̃ (ϕ2(t))−
1
p−1

∣∣∣(−∆x)β/2ϕ1(x)Dα
t|Tϕ2(t)

∣∣∣p̃
+C

∫
ΩT

(ϕ1(x))` (ϕ2(t))−
1
p−1

∣∣∣D1+α
t|T ϕ2(t)

∣∣∣p̃(4.11)

as u0 ≥ 0. At this stage, we introduce the scaled variables: τ = T−1t, ξ = T−1/βx,
use formulas (2.14) and (2.15) in the right hand-side of (4.11), to obtain:

(4.12)
∫

ΩT

up(x, t) ϕ̃(x, t) ≤ C T−δ,

where δ := (1 + α)p̃− 1− (N/β), C = C(|Ω1| , |Ω2|), (|Ωi| stands for the measure
of Ωi, for i = 1, 2), with

Ω1 :=
{
ξ ∈ RN ; |ξ| ≤ 2

}
, Ω2 := {τ ≥ 0 ; τ ≤ 1} .

Now, noting that, as

(4.13) p ≤ p∗ or p <
1
γ
⇐⇒ δ ≥ 0 or p <

1
γ
,

we have to distinguish three cases:

• The case p < p∗ (δ > 0): we pass to the limit in (4.12), as T goes to ∞; we get

lim
T→∞

∫ T

0

∫
|x|≤2T 1/β

up(x, t) ϕ̃(x, t) dx dt = 0.

Using the Lebesgue dominated convergence theorem, the continuity in time and
space of u and the fact that ϕ̃(x, t)→ 1 as T →∞, we infer that∫ ∞

0

∫
RN

up(x, t) dx dt = 0 =⇒ u ≡ 0.

Contradiction.

• The case p = p∗ (δ = 0): using inequality (4.12) with T → ∞ and taking into
account the fact that p = p∗, we have on one hand

(4.14) u ∈ Lp((0,∞), Lp(RN ));

on the other hand, repeating the same calculation as above by taking this time
ϕ1(x) := Φ

(
|x|/(B−1/βT 1/β)

)
, where 1 ≤ B < T is large enough such that when

T →∞ we don’t have B →∞ at the same time, we arrive at

(4.15)
∫

ΣT

up(x, t) ϕ̃(x, t) ≤ C B−N/β + C B−N/β+p̃,

thanks to the following rescaling: τ = T−1t, ξ = (T/B)−1/β
x, where

ΣT := [0, T ]×
{
x ∈ RN ; |x| ≤ 2B−1/βT 1/β

}
and

∫
ΣT

=
∫

ΣT

dx dt.
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Thus, using p > N/(N − β) and taking the limits when T →∞ and then B →∞,
we get: ∫ ∞

0

∫
RN

up(x, t) dx dt = 0 =⇒ u ≡ 0,

which is a contradiction.
Note that, in the case β = 2 it is not necessary to take the condition p > N/(N−β)
with N > β. Indeed, from (4.9) with the new function ϕ1, we may write∫

ΣT

up(x, t) ϕ̃(x, t)

≤ C
∫

ΣT

u(x, t) ϕ̃1/pϕ̃−1/p (ϕ1(x))`
∣∣∣D1+α

t|T ϕ2(t)
∣∣∣

+ C

∫
∆B

u(x, t) ϕ̃1/pϕ̃−1/p (ϕ1(x))`−1
∣∣∣∆xϕ1(x) Dα

t|Tϕ2(t)
∣∣∣ ,(4.16)

where

∆B = [0, T ]×
{
x ∈ RN ; B−1/2T 1/2 ≤ |x| ≤ 2B−1/2T 1/2

}
⊂ ΣT and

∫
∆B

=
∫

∆B

dx dt.

Moreover, using Young’s inequality

(4.17) ab ≤ 1
p
a p +

1
p̃
b p̃ where pp̃ = p+ p̃, a > 0, b > 0, p > 1, p̃ > 1,

with {
a = u(x, t) ϕ̃1/p,

b = ϕ̃−1/p (ϕ1(x))`
∣∣∣D1+α

t|T ϕ2(t)
∣∣∣ ,

in the first integral of the right hand side of (4.16), and Hölder’s inequality∫
∆B

ab ≤
(∫

∆B

a p
)1/p (∫

∆B

b p̃
)1/p̃

, where pp̃ = p+p̃, a > 0, b > 0, p > 1, p̃ > 1,

with {
a = u(x, t) ϕ̃1/p,

b = ϕ̃−1/p (ϕ1(x))`−1
∣∣∣∆xϕ1(x) Dα

t|Tϕ2(t)
∣∣∣ ,

in the second integral of the right hand side of (4.16), we obtain

(1− 1
p

)
∫

ΣT

up(x, t) ϕ̃(x, t)

≤ C
∫

ΣT

(ϕ1(x))` (ϕ2(t))−
1
p−1

∣∣∣D1+α
t|T ϕ2(t)

∣∣∣p̃
+C

(∫
∆B

up ϕ̃

)1/p(∫
∆B

(ϕ1(x))`−p̃ (ϕ2(t))−
1
p−1

∣∣∣∆xϕ1(x)Dα
t|Tϕ2(t)

∣∣∣p̃)1/p̃

.(4.18)

Taking account of the scaled variables: τ = T−1t, ξ = (T/B)−1/2
x, and the fact

that δ = 0, we get

(4.19)
∫

ΣT

up(x, t) ϕ̃(x, t) ≤ C B−N/2 + C B−
N
2ep+1

(∫
∆B

up ϕ̃

)1/p

.
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Now, as

lim
T→∞

(∫
∆B

up ϕ̃

)1/p

= 0
(

from (4.14)
)
,

passing to the limit in (4.19), as T →∞, we get∫ ∞
0

∫
RN
up(x, t) dx dt ≤ C B−N/2.

We conclude that u ≡ 0 by taking the limit when B goes to infinity; contradiction.

• For the case p < 1/γ, we repeat the same argument as in the case p < p∗ by choos-
ing this time the test function as follows: ϕ(x, t) = Dα

t|Tϕ(x, t) := Dα
t|T
(
ϕ`3(x)ϕ4(t)

)
where ϕ3(x) = Φ (|x|/R) , ϕ4(t) = (1− t/T )η+ and R ∈ (0, T ) large enough such
that when T → ∞ we don’t have R → ∞ at the same time; the function Φ is the
same as above. We then obtain∫

CT
up(x, t) ϕ(x, t) + C T−α

∫
C

(ϕ3(x))` u0(x)

≤ C

∫
CT
u(x, t) ϕ1/pϕ−1/p (ϕ3(x))`

∣∣∣D1+α
t|T ϕ4(t)

∣∣∣
+ C

∫
CT
u(x, t) ϕ1/pϕ−1/p(ϕ3(x))`−1

∣∣∣(−∆x)β/2ϕ3(x) Dα
t|Tϕ4(t)

∣∣∣ ,(4.20)

where

CT := [0, T ]×C for C :=
{
x ∈ RN ; |x| ≤ 2R

}
,

∫
C

=
∫
C
dx and

∫
CT

=
∫
CT

dx dt.

Now, by Young’s inequality (4.10) with{
a = u(x, t) ϕ1/p,

b = ϕ−1/p (ϕ3(x))`
∣∣∣D1+α

t|T ϕ4(t)
∣∣∣

in the first integral of the right hand side of (4.20) and with{
a = u(x, t) ϕ1/p,

b = ϕ−1/p(ϕ3(x))`−1
∣∣∣(−∆x)β/2ϕ3(x) Dα

t|Tϕ4(t)
∣∣∣

in the second integral of the right hand side of (4.20) and using the positivity of
u0, we get

(1− 1
p

)
∫
CT
up(x, t) ϕ(x, t) ≤ C

∫
CT

(ϕ3(x))` (ϕ4(t))−
1
p−1

∣∣∣D1+α
t|T ϕ4(t)

∣∣∣p̃
+ C

∫
CT

(ϕ3(x))`−p̃ (ϕ4(t))−
1
p−1

∣∣∣(−∆x)β/2ϕ3D
α
t|Tϕ4

∣∣∣p̃ .
Then, the new variables ξ = R−1x, τ = T−1t and (2.14)-(2.15) allow us to obtain
the estimate∫

CT
up(x, t) ϕ(x, t) dx dt ≤ C T 1−(1+α)p̃ RN + C T 1−αp̃ RN−βp̃.

Taking the limit as T →∞, we infer, as p < 1/γ ⇐⇒ 1− αp̃ < 0, that∫ ∞
0

∫
C
u(x, t)p (ϕ3(x))` dx dt = 0.
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Finally, by taking R → ∞, we get a contradiction as u(x, t) > 0 for all x ∈ RN ,
t > 0. �

Remarks.
(1) If we take β = 2 and v(x, t) = (Γ(1− γ))(1−γ)/(p−1)

u(Γ(1− γ)1/2x,Γ(1− γ)t)
where u is a solution of (1.1), we recover the result in [8] as a particular case.

(2) We can extend our analysis to the equation

(4.21) ut = −(−∆)β/2u+
1

Γ(1− γ)

∫ t

0

ψ(x, s)|u(s)|p−1u(s)
(t− s)γ

ds, x ∈ RN ,

where p > 1, β ∈ (0, 2], 0 < γ < 1 and ψ ∈ L1
Loc(RN × (0,∞)), ψ(· , t) > 0 for all

t > 0, {
ψ(B−1/βT 1/βξ, T τ) ≥ C > 0 if p ≤ p∗
ψ(Rξ, Tτ) ≥ C > 0 if p < 1/γ,

for any 0 < R,B < T, τ ∈ [0, 1] and ξ ∈ [0, 2].

(3) In Theorem 4.3, we use precisely the weak solution, but in this case we obtain
a nonexistence of global weak solutions. Therefore, to obtain blow-up results, we
use the mild solution and the alternative: either Tmax = ∞ or else Tmax < ∞ and
‖u‖L∞((0,t)×RN ) →∞ as t→ Tmax.

(4) We can take the nonlocal porous-medium spatio-fractional problem which is
our first motivation to extend the results of [8]:

ut + (−∆)β/2|u|m−1u =
1

Γ(1− γ)

∫ t

0

(t− s)−γ |u|p−1u(s) ds x ∈ RN , t > 0,

u(x, 0) = u0(x) x ∈ RN ,

where β ∈ (0, 2], 0 < γ < 1, 1 ≤ m < p, u0 ≥ 0 and u0 6≡ 0.
The threshold on p will be

p ≤ 1 +
(2− γ)(N(m− 1) + β)

(N − β + βγ)+
or p <

m

γ
.

5. Blow-up Rate in the case β = 2

In this section, we present the blow-up rate for the blowing-up solutions to the
parabolic problem (1.1).
We take the solution of (1.1) with an initial condition satisfying

(5.1) u0 ∈ C0(RN ) ∩ L2(RN ), u(· , 0) = u0 ≥ 0, u0 6≡ 0.

The following lemma will be used in the proof of Theorem 5.2 below.

Lemma 5.1. Let ϕ be a nonnegative classical solution of

(5.2) ϕt = ∆ϕ+ J1−γ
−∞|t(ϕ

p) in RN × R,

where γ ∈ (0, 1), p > 1 and

J1−γ
−∞|t(ϕ

p)(t) :=
1

Γ(1− γ)

∫ t

−∞
(t− s)−γϕp(s) ds.
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Then ϕ ≡ 0 whenever

(5.3) p ≤ p∗ or p <
1
γ
.

Proof. We repeat the same computations as in Theorem 4.3 with
(
1− t2/T 2

)η
+

instead of (1− t/T )η+ for η � 1, use (2.17)-(2.19) and take account of the inequality

J1−γ
−∞|t(ϕ

p) ≥ J1−γ
−T |t(ϕ

p).

Moreover, we take ϕ`/p1 ϕ
−`/p
1 instead of ϕ̃1/pϕ̃−1/p (resp. ϕ1/pϕ−1/p) in (4.9),(4.16)

(resp. in (4.20)) for `� 1 to use the Young and Hölder’s inequality.
Note that here, we rather use the ε−Young inequality

ab ≤ ε

2
ap + C(ε)b ep,

for 0 < ε < 1. �

Theorem 5.2. Let u0 satisfy (5.1). For p ≤ p∗ or p < (1/γ), let α1 := (2−γ)/(p−
1) and let u be the blowing-up mild solution of (1.1) in a finite time Tmax := T ∗.
Then there exist two constants c, C > 0 such that

(5.4) c(T ∗ − t)−α1 ≤ sup
RN

u(· , t) ≤ C(T ∗ − t)−α1 , t ∈ (0, T ∗).

Proof. The proof is in two parts:

• The upper blow-up rate estimate. Let

M(t) := sup
RN×(0,t]

u, t ∈ (0, T ∗).

Clearly, M is positive, continuous and nondecreasing in (0, T ∗). As limt→T∗M(t) =
∞, then for all t0 ∈ (0, T ∗), we can define

t+0 := t+(t0) := max{t ∈ (t0, T ∗) : M(t) = 2M(t0)}.

Choose A ≥ 1 and let

(5.5) λ(t0) :=
(

1
2A

M(t0)
)−1/(2α1)

.

we claim that

(5.6) λ−2(t0)(t+0 − t0) ≤ D, t0 ∈
(
T ∗

2
, T ∗

)
,

where D > 0 is a positive constant which does not depend on t0.
We proceed by contradiction. If (5.6) were false, then there would exist a sequence
tn → T ∗ such that

λ−2
n (t+n − tn) −→∞,

where λn = λ(tn) and t+n = t+(tn). For each tn choose

(5.7) (x̂n, t̂n) ∈ RN × (0, tn] such that u(x̂n, t̂n) ≥ 1
2
M(tn).

Obviously, M(tn)→∞; hence, t̂n → T ∗. Next, re-scale the function u as

(5.8) ϕλn(y, s) := λ2α1
n u(λny + x̂n, λ

2
ns+ t̂n), (y, s) ∈ RN × In(T ∗),
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where In(t) := (−λ−2
n t̂n, λ

−2
n (t− t̂n)) for all t > 0. Then ϕλn is a mild solution of

(5.9) ϕs = ∆ϕ+ Jα−λ−2
n t̂n|s

(ϕp) in RN × In(T ∗),

i.e., for G(t) := G(x, t) := (4πt)−N/2e−|x|
2/4t and ∗ being the space convolution,

we have
(5.10)

ϕλn(s) = G(s+ λ−2
n t̂n) ∗ ϕλn(−λ−2

n t̂n) +
∫ s

−λ−2
n t̂n

G(s− σ) ∗ Jα−λ−2
n t̂n|σ

((ϕλn)p) dσ

in RN × In(T ∗); whereupon, as ϕλn(0, 0) ≥ A,

0 ≤ ϕλn ≤ λ2α1
n M(t+n ) = λ2α1

n 2M(tn) = 4A in RN × In(t+n ),

thanks to (5.5) and the definition of t+n .
Moreover, as

ϕλn ∈ C([−λ−2
n t̂n, T ], C0(RN ) ∩ L2(RN )) for all T ∈ In(T ∗),

so, as in Lemma 4.2, ϕλn is a weak solution of (5.9).
On the other hand, if we write ϕλn as ϕλn(s) = v(s) + w(s) for all s ∈ In(T ∗),
where

v(s) := G(s+λ−2
n t̂n)∗ϕλn(−λ−2

n t̂n) and w(s) :=
∫ s

−λ−2
n t̂n

G(s−σ)∗Jα−λ−2
n t̂n|σ

((ϕλn)p) dσ,

we have, see [6, Chapter 3], for T ∈ In(T ∗)

v ∈ C((−λ−2
n t̂n, T );H2(RN ))∩C1((−λ−2

n t̂n, T );L2(RN )) ⊂ L2((−λ−2
n t̂n, T );H1(RN ))

and, using the fact that f(s) := Jα−λ−2
n t̂n|s

((ϕλn)p) ∈ L2((−λ−2
n t̂n, T );L2(RN )) and

the maximal regularity theory, we have

w ∈W 1,2((−λ−2
n t̂n, T );L2(RN ))∩L2((−λ−2

n t̂n, T );H2(RN )) ⊂ L2((−λ−2
n t̂n, T );H1(RN )).

It follows that

ϕλn ∈ C([−λ−2
n t̂n, T ], L2(RN )) ∩ L2((−λ−2

n t̂n, T ),W 1,2(RN ));

so from the parabolic interior regularity theory (cf. [22, Theorem 10.1 p. 204]) there
is µ ∈ (0, 1) such that the sequence ϕλn is bounded in the Cµ,µ/2loc (RN×R)-norm by a

constant independent of n, where Cµ,µ/2loc (RN×R) is the locally Hölder space defined
in [22]. Similar uniform estimates for Jα−λ−2

n t̂n|s
(ϕp) follow if µ is sufficiently small.

The parabolic interior Schauder’s estimates (see [21, Th. 8.11.1 p. 130]), using
the existence theorems in Hölder’s space, imply now that the C2+µ,1+µ/2

loc (RN ×R)-
norm of ϕλn is uniformly bounded. Hence, we obtain a subsequence converging in
C

2+µ,1+µ/2
loc (RN × R) to a solution ϕ of

ϕs = ∆ϕ+ Jα−∞|s(ϕ
p) in RN × (−∞,+∞),

such that ϕ(0, 0) ≥ A and 0 ≤ ϕ ≤ 4A in RN × R. Whereupon, using Lemma
5.1, we infer that ϕ ≡ 0 in RN × (−∞,+∞). Contradiction with the fact that
ϕ(0, 0) ≥ A > 1. This proves (5.6).
Next we use an idea from Hu [15]. From (5.5) and (5.6) it follows that

(t+0 − t0) ≤ D(2A)1/α1M(t0)−1/α1 for any t0 ∈
(
T ∗

2
, T ∗

)
.
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Fix t0 ∈ (T ∗/2, T ∗) and denote t1 = t+0 , t2 = t+1 , t3 = t+2 , . . . . Then

tj+1 − tj ≤ D(2A)1/α1M(tj)−1/α1 ,

M(tj+1) = 2M(tj),

j = 0, 1, 2, . . . . Consequently,

T ∗ − t0 =
∞∑
j=0

(tj+1 − tj) ≤ D(2A)1/α1

∞∑
j=0

M(tj)−1/α1

= D(2A)1/α1M(t0)−1/α1

∞∑
j=0

2−j/α1 .

Finally, we conclude that

u(x, t0) ≤M(t0) ≤ C(T ∗ − t0)−α1 , ∀ t0 ∈ (0, T ∗)

where

C = 2A

D ∞∑
j=0

2−j/α1

α1

;

so
sup
RN

u(· , t) ≤ C(T ∗ − t)−α1 , ∀ t ∈ (0, T ∗).

• The lower blow-up rate estimate. If we repeat the proof of the local existence of
Theorem 3.2, by taking ‖u‖1 ≤ θ instead of ‖u‖1 ≤ 2‖u0‖∞ in the space ET for all
positive constant θ > 0 and all 0 < t < T, then the condition (3.2) of T will be:

(5.11) ‖u0‖∞ + CT 2−γθp ≤ θ,
and then, like before, we infer that ‖u(t)‖∞ ≤ θ for (almost) all 0 < t < T.
Consequently, if ‖u0‖∞ + Ct2−γθp ≤ θ, then ‖u(t)‖∞ ≤ θ. Applying this to any
point in the trajectory, we see that if 0 ≤ s < t and

(5.12) (t− s)2−γ ≤ θ − ‖u(s)‖∞
Cθp

,

then ‖u(t)‖∞ ≤ θ, for all 0 < t < T.
Moreover, if 0 ≤ s < T ∗ and ‖u(s)‖∞ < θ, then:

(5.13) (T ∗ − s)2−γ >
θ − ‖u(s)‖∞

Cθp
.

Indeed, arguing by contradiction and assuming that for some θ > ‖u(s)‖∞ and all
t ∈ (s, T ∗) we have

(t− s)2−γ ≤ θ − ‖u(s)‖∞
Cθp

.

Then, using (5.12), we infer that ‖u(t)‖∞ ≤ θ for all t ∈ (s, T ∗); this contradicts
the fact that ‖u(t)‖∞ →∞ as t→ T ∗.
Next, for example, by setting θ = 2‖u(s)‖∞ in (5.13), we see that for 0 < s < T ∗

we have:
(T ∗ − s)2−γ > C ′‖u(s)‖1−p∞ ,

and by the positivity and the continuity of u we get

(5.14) c(T ∗ − s)−α1 < sup
x∈RN

u(x, s), ∀ s ∈ (0, T ∗).

�
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6. Global existence

In this section, we prove the existence of global solutions of (1.1) with initial
data small enough. We give a similar proof as that in [8] just for the seek of
completness. In the following, we use the notation psc := N(p − 1)/β(2 − γ). As
p∗ > 1 + β(2− γ)/N, we note that p > p∗ ⇒ psc > 1.

Theorem 6.1. Let u0 ∈ C0(RN ) ∩ Lpsc(RN ) and 0 < β ≤ 2. If

(6.1) p > max{ 1
γ

; p∗},

and ‖u0‖Lpsc is sufficiently small, then u exists globally.
Note that we can take |u0(x)| ≤ C|x|−β(2−γ)/(p−1) instead of u0 ∈ Lpsc(RN ).

Proof. As p > (1/γ), then we have the possibility to take a positive constant q > 0
so that:

(6.2)
2− γ
p− 1

− 1
p
<
N

βq
<

1
p− 1

, q ≥ p.

It follows, using (6.1), that

(6.3) q >
N(p− 1)

β
> psc > 1.

Let

(6.4) b :=
N

βpsc
− N

βq
=

2− γ
p− 1

− N

βq
.

Then, using (6.2)-(6.4), we conclude that

(6.5) b >
1− γ
p− 1

> 0, pb < 1,
N(p− 1)

βq
+ (p− 1)b+ γ = 2.

As u0 ∈ Lpsc , using (2.4) and (6.4), we get, for all t > 0,

(6.6) sup
t>0

tb‖e−t(−∆)β/2u0‖Lq ≤ C‖u0‖Lpsc = η <∞.

Set

(6.7) Ξ :=
{
u ∈ L∞((0,∞), Lq(RN )); sup

t>0
tb‖u(t)‖Lq ≤ δ

}
,

where δ > 0 is to be chosen sufficiently small. If we define

(6.8) dΞ(u, v) := sup
t>0

tb‖u(t)− v(t)‖Lq , ∀u, v ∈ Ξ,

then (Ξ, d) is a complete metric space. Given u ∈ Ξ, let’s set:
(6.9)

Φ(u)(t) := e−t(−∆)β/2u0+
1

Γ(1− γ)

∫ t

0

e−(t−s)(−∆)β/2
∫ s

0

(s−σ)−γ |u|p−1u(σ) dσ ds,

for all t ≥ 0. We have by (2.4), (6.6) and (6.7)

tb‖Φ(u)(t)‖Lq ≤ η + Ctb
∫ t

0

(t− s)−
N
β ( pq−

1
q )

∫ s

0

(s− σ)−γ‖up(σ)‖
L
q
p
dσ ds

≤ η + Cδptb
∫ t

0

∫ s

0

(t− s)−
N(p−1)
βq (s− σ)−γσ−bp dσ ds.(6.10)



20 AHMAD Z. FINO AND MOKHTAR KIRANE

Next, using (6.2) and pb < 1, we get∫ t

0

∫ s

0

(t− s)−
N
βq (p−1)

(s− σ)γ
σ−bp dσ ds =

(∫ 1

0

(1− σ)−γσ−bp dσ
)∫ t

0

(t− s)−
N(p−1)
βq

sbp+γ−1
ds

= Ct−
N(p−1)
βq −bp−γ+2 = Ct−b,(6.11)

for all t ≥ 0. So, we deduce from (6.10)-(6.11) that

(6.12) tb‖Φ(u)(t)‖Lq ≤ η + Cδp.

Therefore, if η and δ are chosen small enough so that η + Cδp ≤ δ, we see that
Φ : Ξ→ Ξ. Similar calculations show that (assuming η and δ small enough) Φ is a
strict contraction, so it has a unique fixed point u ∈ Ξ which is a solution of (1.1).
Now, we show that u ∈ C([0,∞), C0(RN )).

First, we show that u ∈ C([0, T ], C0(RN )) if T > 0 is sufficiently small. Indeed,
note that the above argument shows uniqueness in ΞT , where, for any T > 0,

ΞT :=
{
u ∈ L∞((0, T ), Lq(RN )); sup

0<t<T
tb‖u(t)‖Lq ≤ δ

}
.

Let ũ be the local solution of (1.1) constructed in Theorem 3.2. Since u0 ∈
C0(RN ) ∩ Lpsc(RN ), then, using the fact that u0 ∈ Lq(RN ) and (6.3), we have
ũ ∈ C([0, Tmax), Lq(RN )) by Theorem 3.2. It follows that sup0<t<T t

b‖ũ(t)‖Lq ≤ δ
if T > 0 is sufficiently small. Therefore, by uniqueness, u = ũ on [0, T ], so that
u ∈ C([0, T ], C0(RN )).

Next, we show that u ∈ C([T,∞), C0(RN )) by a bootstrap argument. Indeed,
for t > T, we write

u(t)− e−t(−∆)β/2u0 =
∫ t

0

e−(t−s)(−∆)β/2
∫ T

0

(s− σ)−γ |u|p−1u(σ) dσ ds

+
∫ t

0

e−(t−s)(−∆)β/2
∫ s

T

(s− σ)−γ |u|p−1u(σ) dσ ds

≡ I1(t) + I2(t).

Since u ∈ C([0, T ], C0(RN )), it follows that I1 ∈ C([T,∞), C0(RN )). Also, by the
calculations used to construct the fixed point, using the fact that t−b ≤ T−b < ∞
and pq > q, I1 ∈ C([T,∞), Lq(RN )). Next, note that N(p/q− 1/q)/β < 1 by (6.3);
therefore, there exists r ∈ (q,∞] such that

(6.13)
N

β
(
p

q
− 1
r

) < 1.

Let T < s < t (the case of s ≤ T ≤ t is obvious). Since u ∈ L∞((0,∞), Lq(RN )), we
have |u|p−1u ∈ L∞((T, s), Lq/p(RN )), and it easily follows, using (2.4) and (6.13),
that I2 ∈ C([T,∞), Lr(RN )).As e−·(−∆)β/2u0 and I1 both belong to C([T,∞), C0(RN ))∩
C([T,∞), Lq(RN )), we see that u ∈ C([T,∞), Lr(RN )). Iterating this procedure a
finite number of times, we deduce that u ∈ C([T,∞), C0(RN )). This completes the
proof. �

7. Necessary conditions for local or global existence

In this section, we establish necessary conditions for the existence of local or
global weak solutions to the problem (1.1); these conditions depend on the behavior
of the initial data for large x.
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Theorem 7.1 (Necessary conditions for global existence). Let u0 ∈ L∞Loc(RN ),
u0 ≥ 0, 0 < β ≤ 2 and p > 1. If u is a global weak solution to problem (1.1), then
there is a positive constant C > 0 such that

(7.1) lim inf
|x|→∞

(u0(x)|x|
β(2−γ)
p−1 ) ≤ C.

Proof. Let u be a global weak solution to (1.1), then u ∈ Lp((0, Rβ), L∞(B2R)) for
all R > 0, where B2R stands for the closed ball of center 0 and radius 2R. So, we
repeat the same calculation as in the proof of Theorem 3.2 (here in bounded domain)
by taking ϕ(x, t) := Dα

t|T ϕ̃(x, t) := Dα
t|T (ϕ1(x/R)ϕ2(t)) instead of the one chosen

in Theorem 3.2, where 0 ≤ ϕ1 ∈ D(∆β/2
D ) is the first eigenfunction of the fractional

Laplacian operator ∆β/2
D in B2, with the homogeneous Dirichlet boundary condition

(2.6), associated to the first eigenvalue λ := λ
β/2
1 , and ϕ2(t) :=

(
1− t/Rβ

)`
+

for
`� 1 large enough.
Then, as for the estimate (4.11), we obtain, with Σ := [0, Rβ ]×B2R,∫

Σ

up ϕ̃ dx dt+ C R−αβ
∫
|x|≤2R

u0(x)ϕ1(x/R) dx

≤ C
∫

Σ

ϕ1(x/R) (ϕ2(t))−
1
p−1

∣∣∣D1+α
t|Rβϕ2(t)

∣∣∣p̃ dx dt
+C

∫
Σ

(ϕ1(x/R))−
1
p−1 (ϕ2(t))−

1
p−1

∣∣∣∆β/2
D ϕ1(x/R)Dα

t|Rβϕ2(t)
∣∣∣p̃ dx dt,(7.2)

where α := 1 − γ and p̃ := p/(p − 1). If we take the scaled variables τ = t/Rβ ,

ξ = x/R and use the fact that ∆β/2
D ϕ1(x/R) = R−βλϕ1(x/R) in the right-hand

side of (7.2), take into account the positivity of u, we infer that

C R−αβ
∫
|ξ|≤2

u0(Rξ)ϕ1(ξ) dξ

≤ C(R)
∫
|ξ|≤2

ϕ1(ξ) dξ

= C(R)
∫
|ξ|≤2

|Rξ|β(1+α)(p̃−1)|Rξ|β(1+α)(1−p̃)ϕ1(ξ) dξ

≤ C(R)(2R)β(1+α)(p̃−1)

∫
|ξ|≤2

|Rξ|β(1+α)(1−p̃)ϕ1(ξ) dξ

where C(R) = Rβ−(1+α)βp̃(C + Cλ), and so

(7.3)
∫
|ξ|≤2

u0(Rξ)ϕ1(ξ) dξ ≤ C
∫
|ξ|≤2

|Rξ|β(1+α)(1−p̃)ϕ1(ξ) dξ.

Using the estimate

inf
|ξ|>1

(u0(Rξ)|Rξ|β(1+α)(p̃−1))
∫
|ξ|≤2

|Rξ|β(1+α)(1−p̃)ϕ1(ξ) dξ ≤
∫

1<|ξ|≤2

u0(Rξ)ϕ1(ξ) dξ

≤
∫
|ξ|≤2

u0(Rξ)ϕ1(ξ) dξ
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in the left-hand side of (7.3), we conclude, after dividing by
∫
|ξ|≤2
|Rξ|β(1+α)(1−p̃)ϕ1(ξ) dξ

that

(7.4) inf
|ξ|>1

(u0(Rξ)|Rξ|β(1+α)(p̃−1)) ≤ C.

Passing to the limit in (7.4), as R→∞, we obtain

lim inf
|x|→∞

(u0(x)|x|β(1+α)(p̃−1)) ≤ C.

�

Corolary 1. (Sufficient conditions for the nonexistence of global solutions)
Let u0 ∈ L∞Loc(RN ), u0 ≥ 0, 0 < β ≤ 2 and p > 1. If

lim inf
|x|→∞

(u0(x)|x|
β(2−γ)
p−1 ) = +∞,

then the problem (1.1) cannot admit a global weak solution.
Next, we give a necessary condition for local existence where we obtain a similar

estimate of T found in the proof of Theorem 3.2, as |x| goes to infinity.

Theorem 7.2 (Necessary conditions for local existence). Let u0 ∈ L∞Loc(RN ), u0 ≥
0, β ∈ (0, 2] and p > 1. If u is a local weak solution to problem (1.1) on [0, T ] where
0 < T < +∞, then we have

(7.5) lim inf
|x|→∞

u0(x) ≤ C T−
2−γ
p−1 ,

for some positive constant C > 0.
Note that, if A := lim inf |x|→∞ u0(x), then we obtain a similar estimate as that
found in (3.4),

T 2−γAp−1

Cp−1
≤ 1.

Proof. We take here, forR > 0 sufficiently large, ϕ(x, t) := Dα
t|T ϕ̃(x, t) := Dα

t|T (ϕ1(x/R)ϕ2(t))

where ϕ2(t) := (1− t/T )`+ instead of the one chosen in Theorem 7.1. Then, as (7.2),
we obtain∫

Σ1

up ϕ̃ dx dt+ C T−α
∫
|x|≤2R

u0(x)ϕ1(x/R) dx

≤ C
∫

Σ1

ϕ1(x/R) (ϕ2(t))−
1
p−1

∣∣∣D1+α
t|T ϕ2(t)

∣∣∣p̃ dx dt
+C

∫
Σ1

(ϕ1(x/R))−
2
p−1 (ϕ2(t))−

1
p−1

∣∣∣∆β/2
D ϕ1(x/R)Dα

t|Tϕ2(t)
∣∣∣p̃ dx dt,(7.6)

where Σ1 := [0, T ]×
{
x ∈ RN ; |x| ≤ 2R

}
, α := 1− γ and p̃ := p/(p− 1). Now, in

the right-hand side of (7.6), we take the scaled variables τ = T−1t, ξ = R−1x and
use the fact that ∆β/2

D ϕ1(x/R) = R−βλϕ1(x/R), while in the left-side we use the
positivity of u, then we get

C T−α
∫
|ξ|≤2

u0(Rξ)ϕ1(ξ) dξ ≤
(
C T 1−(1+α)p̃ + Cλ T 1−αp̃R−βp̃

)∫
|ξ|≤2

ϕ1(ξ) dξ;

and so

(7.7)
∫
|ξ|≤2

u0(Rξ)ϕ1(ξ) dξ ≤ C(R, T )
∫
|ξ|≤2

ϕ1(ξ) dξ
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where C(R, T ) = C T (1+α)(1−p̃) + C T 1+α(1−p̃)R−βp̃.
Using the estimate

inf
|ξ|>1

(u0(Rξ))
∫
|ξ|≤2

ϕ1(ξ) dξ ≤
∫

1<|ξ|≤2

u0(Rξ)ϕ1(ξ) dξ

≤
∫
|ξ|≤2

u0(Rξ)ϕ1(ξ) dξ

in the left-hand side of (7.7), we conclude, after dividing by
∫
|ξ|≤2

ϕ1(ξ) dξ, that

(7.8) inf
|ξ|>1

u0(Rξ) ≤ C T (1+α)(1−p̃) + C T 1+α(1−p̃)R−βp̃.

Passing to the limit in (7.8), as R→∞, we obtain

lim inf
|x|→∞

u0(x) ≤ C T (1+α)(1−p̃) = C T−
2−γ
p−1 .

�

Appendix

In this appendix, we give a proof of Ju’s inequality (see Proposition 3.3 in [16]),
in dimension N ≥ 1 where δ ∈ [0, 2] and q ≥ 1, for all nonnegative Schwartz
function ψ (in the general case)

(−∆)δ/2ψq ≤ qψq−1(−∆)δ/2ψ.

The cases δ = 0 and δ = 2 are obvious, as well as q = 1. If δ ∈ (0, 2) and q > 1,
using [5, Definition 3.2], we have

(−∆)δ/2ψ(x) = −cN (δ)
∫

RN

ψ(x+ z)− ψ(x)
|z|N+δ

dz, for all x ∈ RN ,

where cN (δ) = 2δΓ((N + δ)/2)/(πN/2Γ(1− δ/2)). Then

(ψ(x))q−1(−∆)δ/2ψ(x) = −cN (δ)
∫

RN

(ψ(x))q−1ψ(x+ z)− (ψ(x))q

|z|N+δ
dz.

By Young’s inequality we have

(ψ(x))q−1ψ(x+ z) ≤ q − 1
q

(ψ(x))q +
1
q

(ψ(x+ z))q.

Therefore,

(ψ(x))q−1(−∆)δ/2ψ(x) ≥ −cN (δ)
q

∫
RN

(ψ(x+ z))q − (ψ(x))q

|z|N+δ
dz =

1
q

(−∆)δ/2(ψ(x))q.
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