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On certain time-space fractional evolution equations

Ahmad Z. FINO†∗ and Mokhtar KIRANE†

Abstract

In this article, we present first a new technique to prove, in a general case, the
recent result of Cazenave, Dickstein and Weissler (Nonlinear Analysis, 2008) on the
blowing-up solutions to a temporally nonlocal nonlinear parabolic equation. Then,
we study the blow-up rate, and the existence of global solutions. Furthermore, we
establish necessary conditions for local or global existence.
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1 Introduction

In this paper, we investigate the nonlinear parabolic equation with a nonlocal in time
nonlinearity

ut + (−∆)β/2u =
1

Γ(1− γ)

∫ t

0
(t− s)−γ |u|p−1u(s) ds x ∈ RN , t > 0,

u(x, 0) = u0(x) x ∈ RN ,

(1.1)

where u0 ∈ C0(RN ), N ≥ 1, 0 < β ≤ 2, 0 < γ < 1, p > 1 and the nonlocal operator
(−∆)β/2 is defined by

(−∆)β/2v(x) := F−1
(
|ξ|βF(v)(ξ)

)
(x)
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for every v ∈ D((−∆)β/2) = Hβ(RN ), where Hβ(RN ) is the homogeneous Sobolev space
of order β defined by

Hβ(RN ) =
{
u ∈ S ′; (−∆)β/2u ∈ L2(RN )

}
if β 6∈ N,

Hβ(RN ) =
{
u ∈ L2(RN ); (−∆)β/2u ∈ L2(RN )

}
if β ∈ N,

where S ′ is the space of Schwartz distributions. F stands for the Fourier transform and
F−1 for its inverse, Γ is the Euler gamma function and C0(RN ) denotes the space of all
continuous functions decaying to zero at infinity.
When Eq. (1.1) is considered with a nonlinearity of the form up, it reads

ut + (−∆)β/2u = up.

This equation has been considered by Nagasawa and Sirao [27], Kobayashi [21], Fino and
Karch [13], Birkner, Lopez-Mimbela and Wakolbinger [6], Guedda and Kirane [15], and by
Kirane and Qafsaoui [20].

The fractional Laplacian (−∆)β/2 is related to Lévy flights in physics. Many observa-
tions and experiments related to Lévy flights (super-diffusion), e.g., collective slip diffusion
on solid surfaces, quantum optics or Richardson turbulent diffusion, have been performed
in recent years. The symmetric β−stable processes (β ∈ (0, 2)) are the basic characteristics
for a class of jumping Lévy’s processes. Compared with the continuous Brownian motion
(β = 2), symmetric β−stable processes have infinite jumps in an arbitrary time interval.
The large jumps of these processes make their variances and expectations infinite according
to β ∈ (0, 2) or β ∈ (0, 1], respectively (see [18]). Let us also mention that when β = 3/2,
the symmetric β−stable processes appear in the study of stellar dynamics (see [11]).

As a physical motivation, the problem (1.1) suggested to us the possibility of a physical
model in which a super-diffusive medium is coupled to a classically diffusive medium. The
right-side of (1.1) might be interpreted as the effect of a classically diffusive medium that
is nonlinearly linked to a super-diffusive medium. Such a link might come in the form
of a porous material with reactive properties that is partially insulated by contact with a
classically diffusive material. For more informations see the recent result of Roberts and
Olmstead [28].
Our article is motivated mathematically by the recent and very interesting paper by
Cazenave, Dickstein and Weissler [10] which deals with the global existence and blow-
up for the parabolic equation with nonlocal in time nonlinearity

ut −∆u =
∫ t

0
(t− s)−γ |u|p−1u(s) ds x ∈ RN , t > 0, (1.2)

where 0 ≤ γ < 1, p > 1 and u0 ∈ C0(RN ), which is a particular case of (1.1); it corresponds
to β = 2.
If we set

pγ = 1 +
2(2− γ)

(N − 2 + 2γ)+
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and
p∗ = max

{1
γ
, pγ

}
∈ (0,+∞],

where (· )+ is the positive part, they proved that

(i) If γ 6= 0, p ≤ p∗, and u0 ≥ 0, u0 6≡ 0, then u blows up in finite time.

(ii) If γ 6= 0, p > p∗, and u0 ∈ Lqsc(RN ) (where qsc = N(p− 1)/(4− 2γ)) with ‖u0‖Lqsc
sufficiently small, then u exists globally.

If γ = 0 then all nontrivial positive solutions blow-up as proved by Souplet in [31]. The
study of Cazenave, Dickstein and Weissler reveals the surprising fact that for equation
(1.2) the critical exponent in Fujita’s sense p∗ is not the one predicted by scaling.
This can be explained by the fact that their equation can be formally converted into

Dα
0|tut −D

α
0|t∆u = |u|p−1u, (1.3)

where Dα
0|t is the left-sided Riemann-Liouville fractional derivative of order α ∈ (0, 1)

defined in (2.8) below (we have set in (1.3), α = 1− γ ∈ (0, 1)).
Eq. (1.3) is pseudo-parabolic equation and as is well known scaling is efficient for detecting
the Fujita exponent only for equations of parabolic type.
Needless to say that the equation considered by Cazenave, Dickstein and Weissler [10] is a
genuine extension of the one considered by Fujita in his pioneering work [14].
In this article, concerning blowing-up solutions, we present a different proof from the one
presented in [10], and for the more general equation (1.1). Our proof is more versatile and
can be applied to more nonlinear equations (see the Remarks in Section 4).
Our analysis is based on the observation that the nonlinear differential equation (1.1) can
be written in the form:

ut + (−∆)β/2u = Jα0|t
(
|u|p−1u

)
, (1.4)

where α := 1 − γ ∈ (0, 1) and Jα0|t is the Riemann-Liouville fractional integral defined in
(2.10).
We will show that:

(1) For u0 ≥ 0, u0 6≡ 0, and u0 ∈ C0(RN ), if

p ≤ 1 +
β(2− γ)

(N − β + βγ)+
or p <

1
γ
,

then all solutions of problem (1.1) blow-up in finite time.

(2) For u0 ∈ C0(RN ) ∩ Lpsc(RN ), where psc := N(p− 1)/β(2− γ), if

p > max
{

1 +
β(2− γ)

(N − β + βγ)+
;

1
γ

}
,

and ‖u0‖Lpsc is sufficiently small, then u exists globally.
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The method used to prove the blow-up theorem is the test function method introduced
by Baras and Pierre [5], Mitidieri and Pohozaev [24, 25], Kirane et al. [15, 19]; it was
also used by Baras and Kersner [4] for the study of the necessary conditions for the local
existence.

Furthermore, in the case β = 2, we derive the blow-up rate estimates for the parabolic
equation (1.1). We shall prove that, if u0 ∈ C0(RN ) ∩ L2(RN ), u0 ≥ 0, u0 6≡ 0 and if u is
the blowing-up solution of (1.1) at the finite time T ∗ > 0, then there are constants c, C > 0
such that c(T ∗−t)−α1 ≤ supRN u(· , t) ≤ C(T ∗−t)−α1 for 1 < p ≤ 1+2(2−γ)/(N−2+2γ)+

or 1 < p < 1/γ and all t ∈ (0, T ∗), where α1 := (2− γ)/(p− 1). We use a scaling argument
to reduce the problems of blow-up rate to Fujita-type theorems (it is similar to blow-up
analysis in elliptic problems to reduce the problems of a priori bounds to Liouville-type
theorems). As far as we know, this method was first applied to parabolic problems by Hu
[16], and then was used in various parabolic equations and systems (see [9, 12]). We notice
that in the limiting case when γ → 0, we obtain the constant rate 2/(p − 1) found by P.
Souplet [32].
For more informations, we refer the reader to the excellent paper of Andreucci and Tedeev
[1] for the blow-up rate by an alternative method

The organization of this paper is as follows. In Section 2, we present some definitions and
properties. In Section 3, we derive the local existence of solutions for the parabolic equation
(1.1). Section 4 contains the blow-up result of solutions for (1.1). Section 5 is dedicated to
the blow-up rate of solutions. Global existence is studied in Section 6. Finally, a necessary
condition for local existence and a necessary condition for global existence are given in
Section 7.

2 Preliminaries

In this section, we present some definitions and results concerning fractional Laplacians,
fractional integrals and fractional derivatives that will be used hereafter.
First, if we take the usual linear fractional diffusion equation

ut + (−∆)β/2u = 0, β ∈ (0, 2], x ∈ RN , t > 0, (2.1)

then, its fundamental solution Sβ can be represented via the Fourier transform by

Sβ(t)(x) := Sβ(x, t) =
1

(2π)N/2

∫
RN

eix.ξ−t|ξ|
β
dξ. (2.2)

It is well-known that this function satisfies

Sβ(1) ∈ L∞(RN ) ∩ L1(RN ), Sβ(x, t) ≥ 0,
∫

RN
Sβ(x, t) dx = 1, (2.3)

for all x ∈ RN and t > 0. Hence, using Young’s inequality for the convolution and the
following self-similar form Sβ(x, t) = t−N/βSβ(xt−1/β, 1), we have

‖Sβ(t) ∗ v‖q ≤ Ct
−N
β

( 1
r
− 1
q

)‖v‖r, (2.4)
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for all v ∈ Lr(RN ) and all 1 ≤ r ≤ q ≤ ∞, t > 0.
Moreover, as (−∆)β/2 is a self-adjoint operator with D

(
(−∆)β/2

)
= Hβ(RN ), we have∫

RN
u(x)(−∆)β/2v(x) dx =

∫
RN

v(x)(−∆)β/2u(x) dx, (2.5)

for all u, v ∈ Hβ(RN ).
In an open bounded domain Ω, we denote by ∆β/2

D the fractional Laplacian in Ω with
homogeneous Dirichlet boundary condition. We have the following facts:
Let λk (k = 1, ...,+∞) be the eigenvalues for the Laplacian operator in L2(Ω) with ho-
mogeneous Dirichlet boundary condition and let ϕk be the eigenfunction corresponding to
λk. Then {

∆β/2
D ϕk = λ

β/2
k ϕk in Ω

ϕk = 0 on ∂Ω
(2.6)

and

D(∆β/2
D ) =

{
u ∈ L2(Ω) s.t. u|∂Ω = 0 ; ‖∆β/2

D u‖L2(Ω) :=
k=+∞∑
k=1

|λβ/2k < u,ϕk > |2 < +∞

}
.

So, for u ∈ D(∆β/2
D ) we have

∆β/2
D u =

k=+∞∑
k=1

λ
β/2
k < u,ϕk > ϕk,

and then we get the following integration by parts∫
Ω
u(x)∆β/2

D v(x) dx =
∫

Ω
v(x)∆β/2

D u(x) dx, (2.7)

for all u, v ∈ D(∆β/2
D ).

Next, if AC[0, T ] is the space of all functions which are absolutely continuous on [0, T ] with
0 < T < ∞, then, for f ∈ AC[0, T ], the left-handed and right-handed Riemann-Liouville
fractional derivatives Dα

0|tf(t) and Dα
t|T f(t) of order α ∈ (0, 1) are defined by (see [18])

Dα
0|tf(t) := DJ1−α

0|t f(t), (2.8)

Dα
t|T f(t) := − 1

Γ(1− α)
D

∫ T

t
(s− t)−αf(s) ds, (2.9)

for all t ∈ [0, T ], where D := d/dt is the usual derivative, and

Jα0|tf(t) :=
1

Γ(α)

∫ t

0
(t− s)α−1f(s) ds (2.10)

is the Riemann-Liouville fractional integral defined in [18], for all f ∈ Lq(0, T ) (1 ≤ q ≤ ∞).
Now, for every f, g ∈ C([0, T ]), such that Dα

0|tf(t), Dα
t|T g(t) exist and are continuous, for
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all t ∈ [0, T ], 0 < α < 1, we have the formula of integration by parts (see (2.64) p. 46 in
[30]) ∫ T

0

(
Dα

0|tf
)

(t)g(t) dt =
∫ T

0
f(t)

(
Dα
t|T g

)
(t) dt. (2.11)

Note also that, for any f ∈ AC2[0, T ], we have (see (2.2.30) in [18])

−D.Dα
t|T f = D1+α

t|T f, (2.12)

where
AC2[0, T ] := {f : [0, T ]→ R such that Df ∈ AC[0, T ]} .

Moreover, for all 1 ≤ q ≤ ∞, the following equality (see [18, Lemma 2.4 p.74])

Dα
0|tJ

α
0|t = IdLq(0,T ) (2.13)

holds almost everywhere on [0, T ].
Later on, we will use the following results.
• If w1(t) = (1− t/T )σ+ , t ≥ 0, T > 0, σ � 1, then

Dα
t|Tw1(t) =

(1− α+ σ)Γ(σ + 1)
Γ(2− α+ σ)

T−α
(

1− t

T

)σ−α
+

, (2.14)

Dα+1
t|T w1(t) =

(1− α+ σ)(σ − α)Γ(σ + 1)
Γ(2− α+ σ)

T−(α+1)

(
1− t

T

)σ−α−1

+

, (2.15)

for all α ∈ (0, 1); so (
Dα
t|Tw1

)
(T ) = 0 ;

(
Dα
t|Tw1

)
(0) = C T−α, (2.16)

where C = (1 − α + σ)Γ(σ + 1)/Γ(2 − α + σ); indeed, using the Euler change of variable
y = (s− t)/(T − t), we get

Dα
t|Tw1(t) := − 1

Γ(1− α)
D

[∫ T

t
(s− t)−α

(
1− s

T

)σ
ds

]
= − T−σ

Γ(1− α)
D

[
(T − t)1−α+σ

∫ 1

0
(y)−α(1− y)σ ds

]
=

(1− α+ σ)B(1− α;σ + 1)
Γ(1− α)

T−σ(T − t)σ−α,

where B(· ; · ) stands for the beta function. Then, (2.14) follows using the relation

B(1− α;σ + 1) =
Γ(1− α)Γ(σ + 1)

Γ(2− α+ σ)
.

Moreover, using (2.12) and (2.14), we obtain (2.15).
• If w2(t) =

(
1− t2/T 2

)`
+
, T > 0, ` � 1, then, using the change of variable y = (s −
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t)/(T − t), we have

Dα
t|Tw2(t) =

T−α

Γ(1− α)

∑̀
k=0

C1(`, k, α)
(

1− t

T

)`+k−α
, (2.17)

D1+α
t|T w2(t) =

T−α−1

Γ(1− α)

∑̀
k=0

C2(`, k, α)
(

1− t

T

)`+k−α−1

, (2.18)

for all −T ≤ t ≤ T, α ∈ (0, 1), where
C1(`, k, α) := ck` (1− α+ `+ k)2`−k(−1)k Γ(k+`+1)Γ(1−α)

Γ(k+`+2−α) ,

C2(`, k, α) := (`+ k − α)C1(`, k, α),
ck` := `!

(`−k)!k! ;

so (
Dα
t|Tw2

)
(T ) = 0 ;

(
Dα
t|Tw2

)
(−T ) = C3(`, k, α) T−α, (2.19)

where

C3(`, k, α) :=
22`−α(−1)`

Γ(1− α)

∑̀
k=0

ck` (1− α+ `+ k)
Γ(k + `+ 1)Γ(1− α)

Γ(k + `+ 2− α)
.

3 Local existence

This section is dedicated to proving the local existence and uniqueness of mild solutions
to the problem (1.1). Let T (t) := e−t(−∆)β/2 . As (−∆)β/2 is a positive definite self-adjoint
operator in L2(RN ), T (t) is a strongly continuous semigroup on L2(RN ) generated by the
fractional power −(−∆)β/2 (see Yosida [33]). It holds T (t)v = Sβ(t) ∗ v, where Sβ is given
by (2.2) and u ∗ v is the convolution of u and v. We start by giving the

Definition 1 (Mild solution)
Let u0 ∈ C0(RN ), 0 < β ≤ 2, p > 1 and T > 0. We say that u ∈ C([0, T ], C0(RN )) is a
mild solution of the problem (1.1) if u satisfies the following integral equation

u(t) = T (t)u0 +
∫ t

0
T (t− s)Jα0|s

(
|u|p−1u

)
ds, t ∈ [0, T ]. (3.1)

Theorem 1 (Local existence)
Given u0 ∈ C0(RN ) and p > 1, there exist a maximal time Tmax > 0 and a unique mild
solution u ∈ C([0, Tmax), C0(RN )) to the problem (1.1). Furthermore, either Tmax =∞ or
else Tmax < ∞ and ‖u‖L∞((0,t)×RN ) → ∞ as t → Tmax. In addition, if u0 ≥ 0, u0 6≡ 0,
then u(t) > 0 for all 0 < t < Tmax. Moreover, if u0 ∈ Lr(RN ), for 1 ≤ r < ∞, then
u ∈ C([0, Tmax), Lr(RN )).

Proof. For arbitrary T > 0, we define the Banach space

ET :=
{
u ∈ L∞((0, T ), C0(RN )); ‖u‖1 ≤ 2‖u0‖L∞

}
,
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where ‖· ‖1 := ‖· ‖L∞((0,T ),L∞(RN )). Next, for every u ∈ ET , we define

Ψ(u) := T (t)u0 +
∫ t

0
T (t− s)Jα0|s

(
|u|p−1u

)
ds.

As usual, we prove the local existence by the Banach fixed point theorem.
• Ψ : ET → ET: Let u ∈ ET , using (2.4), we obtain with ‖· ‖∞ := ‖· ‖L∞(RN )

‖Ψ(u)‖1 ≤ ‖u0‖∞ +
1

Γ(1− γ)
‖
∫ t

0

∫ s

0
(s− σ)−γ‖u(σ)‖p∞ dσ ds‖L∞(0,T )

= ‖u0‖∞ +
1

Γ(1− γ)
‖
∫ t

0

∫ t

σ
(s− σ)−γ‖u(σ)‖p∞ ds dσ‖L∞(0,T )

≤ ‖u0‖∞ +
T 2−γ

(1− γ)(2− γ)Γ(1− γ)
‖u‖p1

≤ ‖u0‖∞ +
T 2−γ2p‖u0‖p−1

L∞

Γ(3− γ)
‖u0‖∞,

thanks to the following formula Γ(x+ 1) = xΓ(x) for all x > 0. Now, if we choose T small
enough such that

T 2−γ2p‖u0‖p−1
∞

Γ(3− γ)
≤ 1, (3.2)

we conclude that ‖Ψ(u)‖1 ≤ 2‖u0‖∞, and then Ψ(u) ∈ ET .

• Ψ is a contracting map: For u, v ∈ ET , taking account of (2.4), we have

‖Ψ(u)−Ψ(v)‖1 ≤ 1
Γ(1− γ)

‖
∫ t

0

∫ s

0
(s− σ)−γ‖|u|p−1u(σ)− |v|p−1v(σ)‖∞ dσ ds‖L∞(0,T )

=
1

Γ(1− γ)
‖
∫ t

0

∫ t

σ
(s− σ)−γ‖|u|p−1u(σ)− |v|p−1v(σ)‖∞ ds dσ||L∞(0,T )

≤ T 2−γ

Γ(3− γ)
‖|u|p−1u− |v|p−1v‖1

≤ C(p)2p‖u0‖p−1
∞ T 2−γ

Γ(3− γ)
‖u− v‖1

≤ 1
2
‖u− v‖1,

thanks to the following inequality

| |u|p−1u− |v|p−1v| ≤ C(p)|u− v|(|u|p−1 + |v|p−1); (3.3)

T is chosen such that
T 2−γ2p‖u0‖p−1

∞ max(2C(p), 1)
Γ(3− γ)

≤ 1. (3.4)
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Then, by the Banach fixed point theorem, there exists a unique mild solution u ∈ ΠT ,
where ΠT := L∞((0, T ), C0(RN )), to the problem (1.1).

• Uniqueness of solution: If u, v are two mild solutions in ET for some T > 0, using
(2.4) and (3.3), we obtain

‖u(t)− v(t)‖∞ ≤ C(p)2p‖u0‖p−1
∞

Γ(1− γ)

∫ t

0

∫ s

0
(s− σ)−γ‖u(σ)− v(σ)‖∞ dσ ds

=
C(p)2p‖u0‖p−1

∞
Γ(1− γ)

∫ t

0

∫ t

σ
(s− σ)−γ‖u(σ)− v(σ)‖∞ ds dσ

=
C(p)2p‖u0‖p−1

∞
Γ(2− γ)

∫ t

0
(t− σ)1−γ‖u(σ)− v(σ)‖∞ dσ.

So the uniqueness follows from Gronwall’s inequality for this type of nonlinearities (cf. [8]).
Next, using the uniqueness of solutions, we conclude the existence of a solution on a

maximal interval [0, Tmax) where

Tmax := sup {T > 0 ; there exist a mild solution u ∈ ΠT to (1.1)} ≤ +∞.

Note that, using the continuity of the semigroup T (t), we can easily conclude that

u ∈ C([0, Tmax), C0(RN )).

Moreover, if 0 ≤ t ≤ t+ τ < Tmax, using (3.1), we obtain

u(t+ τ) = T (τ)u(t) +
1

Γ(1− γ)

∫ τ

0
T (τ − s)

∫ s

0
(s− σ)−γ |u|p−1u(t+ σ) dσ ds

+
1

Γ(1− γ)

∫ τ

0
T (τ − s)

∫ t

0
(t+ s− σ)−γ |u|p−1u(σ) dσ ds. (3.5)

To prove that if Tmax <∞, then ‖u(t)‖L∞(RN ) →∞ as t→ Tmax, we proceed by contradic-
tion. Suppose that u is a solution of (3.1) on some interval [0, T ) with ‖u‖L∞((0,T )×RN ) <∞
and Tmax < ∞. So, using the fact that the last term in (3.5) depends only on the values
of u in the interval (0, t) and using again a fixed-point argument, we conclude that u can
be extended to a solution on some interval [0, T ′) with T ′ > T. If we repeat this iteration,
we obtain a contradiction with the fact that the maximal time Tmax is finite.

• Positivity of solutions: If u0 ≥ 0 and u0 6≡ 0, then we can construct a nonneg-
ative solution on some interval [0, T ] by applying the fixed point argument in the set
E+
T = {u ∈ ET ; u ≥ 0}. In particular, it follows from (3.1) that u(t) ≥ T (t)u0 > 0 on

(0, T ]. It is not difficult by uniqueness to deduce that u stays positive on (0, Tmax).

• Regularity of solutions: If u0 ∈ Lr(RN )∩C0(RN ), for 1 ≤ r <∞, then by repeating
the fixed point argument in the space

ET,r := {u ∈ L∞((0, T ), C0(RN ) ∩ Lr(RN )); ‖u‖1 ≤ 2‖u0‖L∞ , ‖u‖∞,r ≤ 2‖u0‖Lr},

9



instead of ET , where ‖· ‖∞,r := ‖· ‖L∞((0,T ),Lr(RN )), and by estimating ‖up‖Lr(RN ) by
‖u‖p−1

L∞(RN )
‖u‖Lr(RN ) in the contraction mapping argument, using (2.4), we obtain a unique

solution in ET,r; we conclude then that

u ∈ C([0, Tmax), C0(RN ) ∩ Lr(RN )).

�
We say that u is a global solution if Tmax =∞; when Tmax <∞, u is said to blow up in a
finite time and in this case we have ‖u(· , t)‖L∞(RN ) →∞ as t→ Tmax.

Remark. We note that classical or strong solution do not exist due to the singularity in
time in the nonlinear term.

4 Blow-up of solutions

Now, we want to derive a blow-up result for Eq. (1.1). To do this, we show for later use
that a mild solution is a weak solution.

Definition 2 (Weak solution)
Let u0 ∈ L∞Loc(RN ), 0 < β ≤ 2 and T > 0. We say that u is a weak solution of the problem
(1.1) if u ∈ Lp((0, T ), L∞Loc(RN )) and verifies the equation∫

Ω
u0(x)ϕ(x, 0) +

∫ T

0

∫
Ω
Jα0|t(|u|

p−1u)(x, t)ϕ(x, t) =
∫ T

0

∫
Ω
u(x, t)(−∆)β/2ϕ(x, t)

−
∫ T

0

∫
Ω
u(x, t)ϕt(x, t), (4.1)

for all ϕ ∈ C1([0, T ], Hβ(RN )) such that Ω :=suppϕ is compact with ϕ(· , T ) = 0, where
α := 1− γ ∈ (0, 1).

Lemma 1
Consider u0 ∈ C0(RN ) and let u ∈ C([0, T ], C0(RN )) be a mild solution of (1.1), then u is
a weak solution of (1.1), for all 0 < β ≤ 2 and all T > 0.

Proof. Let T > 0, 0 < β ≤ 2, u0 ∈ C0(RN ) and let u ∈ C([0, T ], C0(RN )) be a solution
of (3.1). Given ϕ ∈ C1([0, T ], Hβ(RN )) such that suppϕ =: Ω is compact with ϕ(· , T ) = 0.
Then after multiplying (3.1) by ϕ and integrating over RN , we have∫

Ω
u(x, t)ϕ(x, t) =

∫
Ω
T (t)u0(x)ϕ(x, t) +

∫
Ω

(∫ t

0
T (t− s)Jα0|s

(
|u|p−1u

)
(x, t) ds

)
ϕ(x, t).

So after differentiating in time, we obtain

d

dt

∫
Ω
u(x, t)ϕ(x, t) =

∫
Ω

d

dt
(T (t)u0(x)ϕ(x, t))

+
∫

Ω

d

dt

∫ t

0
T (t− s)Jα0|s

(
|u|p−1u

)
(x, s) dsϕ(x, t). (4.2)
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Now, using (2.5) and a property of the semigroup T (t) ([8, Chapter 3]), we have:∫
Ω

d

dt
(T (t)u0(x)ϕ(x, t)) =

∫
Ω
A (T (t)u0(x))ϕ(x, t) +

∫
Ω
T (t)u0(x)ϕt(x, t)

=
∫

Ω
T (t)u0(x)Aϕ(x, t) +

∫
Ω
T (t)u0(x)ϕt(x, t), (4.3)

and∫
Ω

d

dt

∫ t

0
T (t− s)f(x, s) dsϕ(x, t) =

∫
Ω
f(x, t)ϕ(x, t) +

∫
Ω

∫ t

0
A (T (t− s)f(x, s)) dsϕ(x, t)

+
∫

Ω

∫ t

0
T (t− s)f(x, s) dsϕt(x, t)

=
∫

Ω
f(x, t)ϕ(x, t) +

∫
Ω

∫ t

0
T (t− s)f(x, s) dsAϕ(x, t)

+
∫

Ω

∫ t

0
T (t− s)f(x, s) dsϕt(x, t), (4.4)

where f := Jα0|t
(
|u|p−1u

)
∈ C([0, T ];L2(Ω)).

Thus, using (3.1), (4.3) and (4.4), we conclude that (4.2) imply

d

dt

∫
Ω
u(x, t)ϕ(x, t) =

∫
Ω
u(x, t)Aϕ(x, t) +

∫
Ω
u(x, t)ϕt(x, t) +

∫
Ω
f(x, t)ϕ(x, t).

Finally, we conclude by integrating in time over [0, T ] and use the fact that ϕ(· , T ) = 0. �

Theorem 2 Let u0 ∈ C0(RN ) be such that u0 ≥ 0 and u0 6≡ 0. If

p ≤ 1 +
β(2− γ)

(N − β + βγ)+
:= p∗ or p <

1
γ
, (4.5)

for all β ∈ (0, 2], then any mild solution to (1.1) blows-up in a finite time.
Note that in the case where p = p∗ and β ∈ (0, 2) we take p > N/(N − β) with N > β.

Proof. The proof is by contradiction. Suppose that u is a global mild solution to (1.1),
then u is a solution of (1.1) in C([0, T ], C0(RN )) for all T � 1 such that u(t) > 0 for all
t ∈ [0, T ].
Then, using Lemma 1, we have∫
suppϕ

u0(x)ϕ(x, 0) +
∫ T

0

∫
suppϕ

Jα0|t(u
p)(x, t)ϕ(x, t) =

∫ T

0

∫
suppϕ

u(x, t)(−∆)β/2ϕ(x, t)

−
∫ T

0

∫
suppϕ

u(x, t)ϕt(x, t),

for all test function ϕ ∈ C1([0, T ], Hβ(RN )) such that suppϕ is compact with ϕ(· , T ) = 0,
where α := 1− γ ∈ (0, 1).
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Now we take ϕ(x, t) = Dα
t|T (ϕ̃(x, t)) := Dα

t|T

(
(ϕ1(x))` ϕ2(t)

)
with ϕ1(x) := Φ

(
|x|/T 1/β

)
,

ϕ2(t) := (1− t/T )η+ , where ` ≥ p/(p − 1), η ≥ max{(αp + 1)/(p − 1);α + 1} and Φ a
smooth nonnegative non-increasing function such that

Φ(r) =
{

1 if 0 ≤ r ≤ 1,
0 if r ≥ 2,

0 ≤ Φ ≤ 1, |Φ′(r)| ≤ C1/r, for all r > 0. Using (2.16), we then obtain∫
Ω
u0(x)Dα

t|T ϕ̃(x, 0) +
∫

ΩT

Jα0|t(u
p)(x, t)Dα

t|T ϕ̃(x, t)

=
∫

ΩT

u(x, t)(−∆)β/2Dα
t|T ϕ̃(x, t)−

∫
ΩT

u(x, t)DDα
t|T ϕ̃(x, t), (4.6)

where

ΩT := [0, T ]×Ω for Ω =
{
x ∈ RN ; |x| ≤ 2T 1/β

}
,

∫
Ω

=
∫

Ω
dx and

∫
ΩT

=
∫

ΩT

dx dt.

Furthermore, using (2.11) and (2.16) in the left hand side of (4.6), and (2.12) in the right
hand side, we conclude that

C T−α
∫

Ω
u0(x)ϕ`1(x) +

∫
ΩT

Dα
0|tJ

α
0|t(u

p)(x, t)ϕ̃(x, t)

=
∫

ΩT

u(x, t)(−∆)β/2Dα
t|T ϕ̃(x, t) +

∫
ΩT

u(x, t)D1+α
t|T ϕ̃(x, t). (4.7)

Moreover, using (2.13), we may write∫
ΩT

up(x, t) ϕ̃(x, t) + C T−α
∫

Ω
u0(x)ϕ`1(x)

=
∫

ΩT

u(x, t)(−∆)β/2ϕ`1(x)Dα
t|Tϕ2(t) +

∫
ΩT

u(x, t)D1+α
t|T ϕ̃(x, t). (4.8)

So, Ju’s inequality (−∆)β/2
(
ϕ`1
)
≤ `ϕ`−1

1 (−∆)β/2 (ϕ1) (see the Appendix) allows us to
write: ∫

ΩT

up(x, t) ϕ̃(x, t) + C T−α
∫

Ω
u0(x)ϕ`1(x)

≤ C
∫

ΩT

u(x, t) ϕ`−1
1 (x)

∣∣∣(−∆)β/2ϕ1(x)Dα
t|Tϕ2(t)

∣∣∣
+
∫

ΩT

u(x, t) ϕ`1(x)
∣∣∣D1+α

t|T ϕ2(t)
∣∣∣

= C

∫
ΩT

u(x, t) ϕ̃1/pϕ̃−1/pϕ`−1
1 (x)

∣∣∣(−∆)β/2ϕ1(x)Dα
t|Tϕ2(t)

∣∣∣
+
∫

ΩT

u(x, t) ϕ̃1/pϕ̃−1/pϕ`1(x)
∣∣∣D1+α

t|T ϕ2(t)
∣∣∣ (4.9)
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Therefore, using Young’s inequality

ab ≤ 1
2p
a p +

2ep−1

p̃
b ep where pp̃ = p+ p̃, a > 0, b > 0, p > 1, p̃ > 1, (4.10)

with {
a = u(x, t) ϕ̃1/p,

b = ϕ̃−1/pϕ`−1
1 (x)

∣∣∣(−∆)β/2ϕ1(x)Dα
t|Tϕ2(t)

∣∣∣ ,
in the first integral of the right hand side of (4.9), and with{

a = u(x, t) ϕ̃1/p,

b = ϕ̃−1/pϕ`1(x)
∣∣∣D1+α

t|T ϕ2(t)
∣∣∣ ,

in the second integral of the right hand side of (4.9), we obtain

(1− 1
p

)
∫

ΩT

up(x, t) ϕ̃(x, t)

≤ C
∫

ΩT

(ϕ1(x))`−ep (ϕ2(t))−
1
p−1

∣∣∣(−∆x)β/2ϕ1(x)Dα
t|Tϕ2(t)

∣∣∣ep
+C

∫
ΩT

(ϕ1(x))` (ϕ2(t))−
1
p−1

∣∣∣D1+α
t|T ϕ2(t)

∣∣∣ep , (4.11)

as u0 ≥ 0. At this stage, we introduce the scaled variables: τ = T−1t, ξ = T−1/βx, use
formula (2.14) and (2.15) in the right hand-side of (4.11), to obtain:∫

ΩT

up(x, t) ϕ̃(x, t) ≤ C T−δ, (4.12)

where δ := (1 + α)p̃ − 1 − (N/β), C = C(|Ω1| , |Ω2|), (|Ωi| stands for the measure of Ωi,
for i = 1, 2), with

Ω1 :=
{
ξ ∈ RN ; |ξ| ≤ 2

}
, Ω2 := {τ ≥ 0 ; τ ≤ 1} .

Now, noting that, as

p ≤ p∗ or p <
1
γ
⇐⇒ δ ≥ 0 or p <

1
γ
, (4.13)

we have to distinguish three cases:

• The case p < p∗ (δ > 0): we pass to the limit in (4.12), as T goes to ∞; we get

lim
T→∞

∫ T

0

∫
|x|≤2T 1/β

up(x, t) ϕ̃(x, t) dx dt = 0.
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Using the Lebesgue dominated convergence theorem, the continuity in time and space of
u and the fact that ϕ̃(x, t)→ 1 as T →∞, we infer that∫ ∞

0

∫
RN

up(x, t) dx dt = 0 =⇒ u ≡ 0.

Contradiction.

• The case p = p∗ (δ = 0): using inequality (4.12) with T → ∞, taking into account the
fact that p = p∗, we have on one hand

u ∈ Lp((0,∞), Lp(RN )); (4.14)

on the other hand, we repeat the same calculation as above by taking this time ϕ1(x) :=
Φ
(
|x|/(B−1/βT 1/β)

)
, where 1 ≤ B < T is large enough such that when T →∞ we don’t

have B →∞ at the same time, so we arrive at∫
ΣT

up(x, t) ϕ̃(x, t) ≤ C B−N/β + C B−N/β+ep, (4.15)

thanks to the following rescaling: τ = T−1t, ξ = (T/B)−1/β x, where

ΣT := [0, T ]×
{
x ∈ RN ; |x| ≤ 2B−1/βT 1/β

}
and

∫
ΣT

=
∫

ΣT

dx dt.

Thus, using p > N/(N − β) and taking the limit when T →∞ and then B →∞, we get:∫ ∞
0

∫
RN

up(x, t) dx dt = 0 =⇒ u ≡ 0,

which is a contradiction.
Note that, in the case β = 2 it is not necessary to take the condition p > N/(N − β) with
N > β. Indeed, from (4.9) with the new function ϕ1, we may write∫

ΣT

up(x, t) ϕ̃(x, t)

≤ C
∫

ΣT

u(x, t) ϕ̃1/pϕ̃−1/p (ϕ1(x))`
∣∣∣D1+α

t|T ϕ2(t)
∣∣∣

+ C

∫
∆B

u(x, t) ϕ̃1/pϕ̃−1/p (ϕ1(x))`−1
∣∣∣∆xϕ1(x) Dα

t|Tϕ2(t)
∣∣∣ , (4.16)

where

∆B = [0, T ]×
{
x ∈ RN ; B−1/2T 1/2 ≤ |x| ≤ 2B−1/2T 1/2

}
⊂ ΣT and

∫
∆B

=
∫

∆B

dx dt.

Moreover, using the following Young’s inequality

ab ≤ 1
p
a p +

1
p̃
b ep where pp̃ = p+ p̃, a > 0, b > 0, p > 1, p̃ > 1, (4.17)
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with {
a = u(x, t) ϕ̃1/p,

b = ϕ̃−1/p (ϕ1(x))`
∣∣∣D1+α

t|T ϕ2(t)
∣∣∣ ,

in the first integral of the right hand side of (4.16), and using Hölder’s inequality∫
∆B

ab ≤
(∫

∆B

a p
)1/p (∫

∆B

b ep)1/ep
, where pp̃ = p+p̃, a > 0, b > 0, p > 1, p̃ > 1,

with {
a = u(x, t) ϕ̃1/p,

b = ϕ̃−1/p (ϕ1(x))`−1
∣∣∣∆xϕ1(x) Dα

t|Tϕ2(t)
∣∣∣ ,

in the second integral of the right hand side of (4.16), we obtain

(1− 1
p

)
∫

ΣT

up(x, t) ϕ̃(x, t)

≤ C
∫

ΣT

(ϕ1(x))` (ϕ2(t))−
1
p−1

∣∣∣D1+α
t|T ϕ2(t)

∣∣∣ep
+C

(∫
∆B

up ϕ̃

)1/p(∫
∆B

(ϕ1(x))`−ep (ϕ2(t))−
1
p−1

∣∣∣∆xϕ1(x)Dα
t|Tϕ2(t)

∣∣∣ep)1/ep
. (4.18)

Taking account of the scaled variables: τ = T−1t, ξ = (T/B)−1/2 x, and the fact that
δ = 0, we get ∫

ΣT

up(x, t) ϕ̃(x, t) ≤ C B−N/2 + C B
−N

2ep+1
(∫

∆B

up ϕ̃

)1/p

. (4.19)

Now, as

lim
T→∞

(∫
∆B

up ϕ̃

)1/p

= 0 (from (4.14)) ,

then, passing to the limit in (4.19), as T →∞, we get∫ ∞
0

∫
RN
up(x, t) dx dt ≤ C B−N/2.

We conclude that u ≡ 0 by taking the limit when B goes to infinity, contradiction.

• For the case p < (1/γ), we repeat the same argument as in the case p < p∗ by choosing
the test function as follows: ϕ(x, t) = Dα

t|Tϕ(x, t) := Dα
t|T
(
ϕ`3(x)ϕ4(t)

)
where ϕ3(x) =

Φ (|x|/R) , ϕ4(t) = (1− t/T )η+ and R ∈ (0, T ) large enough such that in the case when
T →∞ we don’t have R→∞ at the same time, with the same functions Φ as above. We
then obtain ∫

CT
up(x, t) ϕ(x, t) + C T−α

∫
C

(ϕ3(x))` u0(x)
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≤ C

∫
CT
u(x, t) ϕ1/pϕ−1/p (ϕ3(x))`

∣∣∣D1+α
t|T ϕ4(t)

∣∣∣
+ C

∫
CT
u(x, t) ϕ1/pϕ−1/p(ϕ3(x))`−1

∣∣∣(−∆x)β/2ϕ3(x) Dα
t|Tϕ4(t)

∣∣∣ , (4.20)

where

CT := [0, T ]× C for C :=
{
x ∈ RN ; |x| ≤ 2R

}
,

∫
C

=
∫
C
dx and

∫
CT

=
∫
CT

dx dt.

Now, by Young’s inequality (4.10), with{
a = u(x, t) ϕ1/p,

b = ϕ−1/p (ϕ3(x))`
∣∣∣D1+α

t|T ϕ4(t)
∣∣∣ ,

in the first integral of the right hand side of (4.20) and with{
a = u(x, t) ϕ1/p,

b = ϕ−1/p(ϕ3(x))`−1
∣∣∣(−∆x)β/2ϕ3(x) Dα

t|Tϕ4(t)
∣∣∣ ,

in the second integral of the right hand side of (4.20) and using the positivity of u0, we get

(1− 1
p

)
∫
CT
up(x, t) ϕ(x, t) ≤ C

∫
CT

(ϕ3(x))` (ϕ4(t))−
1
p−1

∣∣∣D1+α
t|T ϕ4(t)

∣∣∣ep
+ C

∫
CT

(ϕ3(x))`−ep (ϕ4(t))−
1
p−1

∣∣∣(−∆x)β/2ϕ3D
α
t|Tϕ4

∣∣∣ep .
Then, the new variables ξ = R−1x, τ = T−1t and (2.14) − (2.15) allow us to write the
estimate ∫

CT
up(x, t) ϕ(x, t) dx dt ≤ C T 1−(1+α)ep RN + C T 1−αep RN−βep.

Taking the limit as T →∞, we infer, as p < 1/γ ⇐⇒ 1− αp̃ < 0, that∫ ∞
0

∫
C
u(x, t)p (ϕ3(x))` dx dt = 0.

Finally, by taking R→∞, we get a contradiction as u(x, t) > 0 for all x ∈ RN , t > 0. �

Remarks.
(1) We can extend our analysis to the equation

ut = −(−∆)β/2u+
1

Γ(1− γ)

∫ t

0

ψ(x, s)|u(s)|p−1u(s)
(t− s)γ

ds, x ∈ RN , (4.21)

where p > 1, β ∈ (0, 2], 0 < γ < 1 and ψ ∈ L1
Loc(RN × (0,∞)), ψ(· , t) > 0 for all t > 0,{

ψ(B−1/βT 1/βξ, T τ) ≥ C > 0 if p ≤ p∗
ψ(Rξ, Tτ) ≥ C > 0 if p < 1/γ,
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for any 0 < R,B < T, τ ∈ [0, 1] and ξ ∈ [0, 2].

(2) If we take β = 2 and v(x, t) = (Γ(1− γ))(1−γ)/(p−1) u(Γ(1 − γ)1/2x,Γ(1 − γ)t) where
u is a solution of (1.1), we recover the result in [10] as a particular case.

(3) In Theorem 2, we use precisely the weak solution, but in this case we say that we have a
nonexistence of global weak solutions. Therefore, to obtain blow-up results, we use the mild
solution and the fact that: either Tmax = ∞ or else Tmax < ∞ and ‖u‖L∞((0,t)×RN ) → ∞
as t→ Tmax [3].

(4) We can take the nonlocal porous-medium spatio-fractional problem which is our real
motivation to extend the results of [10] :

ut + (−∆)β/2|u|m−1u =
1

Γ(1− γ)

∫ t

0
(t− s)−γ |u|p−1u(s) ds x ∈ RN , t > 0,

u(x, 0) = u0(x) x ∈ RN ,

where β ∈ (0, 2], 0 < γ < 1, 1 ≤ m < p, u0 ≥ 0 and u0 6≡ 0.
The threshold on p will be

p ≤ 1 +
(2− γ)(N(m− 1) + β)

(N − β + βγ)+
or p <

m

γ
.

5 Blow-up Rate

In this section, we present the blow-up rate for the blowing-up solutions to the parabolic
problem (1.1) in the case β = 2.
We take the solution of (1.1) with an initial condition satisfying

u0 ∈ C0(RN ) ∩ L2(RN ), u(· , 0) = u0 ≥ 0, u0 6≡ 0. (5.1)

The following lemma will be used in the proof of Theorem 3 below.

Lemma 2 Let ϕ be a nonnegative classical solution of

ϕt = ∆ϕ+ J1−γ
−∞|t(ϕ

p) in RN × R, (5.2)

where γ ∈ (0, 1), p > 1 and

J1−γ
−∞|t(ϕ

p)(t) :=
1

Γ(1− γ)

∫ t

−∞
(t− s)−γϕp(s) ds.

Then ϕ ≡ 0 whenever

p ≤ p∗ or p <
1
γ
. (5.3)
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Proof. We repeat the same computations as in Theorem 2 with
(
1− t2/T 2

)η
+
instead of

(1− t/T )η+ for η � 1, using (2.17)− (2.19) and taking account of the following inequality

J1−γ
−∞|t(ϕ

p) ≥ J1−γ
−T |t(ϕ

p).

Moreover, we take ϕ`/p1 ϕ
−`/p
1 instead of ϕ̃1/pϕ̃−1/p (resp. ϕ1/pϕ−1/p) in (4.9), (4.16) (resp.

in (4.20)) for `� 1 to use the Young and Hölder’s inequality.
Note that here, we use rather the ε−Young inequality

ab ≤ ε

2
ap + C(ε)b ep,

for 0 < ε < 1. �

Theorem 3 Let u0 satisfies (5.1). For p ≤ p∗ or p < (1/γ), let α1 := (2− γ)/(p− 1) and
let u be the blowing-up mild solution of (1.1) in a finite time Tmax := T ∗. Then there exist
two constants c, C > 0 such that

c(T ∗ − t)−α1 ≤ sup
RN

u(· , t) ≤ C(T ∗ − t)−α1 , t ∈ (0, T ∗). (5.4)

Proof. The proof is split into two parts:

• The upper blow-up rate estimate. Let

M(t) := sup
RN×(0,t]

u, t ∈ (0, T ∗).

Clearly, M is positive, continuous and nondecreasing in (0, T ∗). As limt→T ∗M(t) = ∞,
then for all t0 ∈ (0, T ∗), we can define

t+0 := t+(t0) := max{t ∈ (t0, T ∗) : M(t) = 2M(t0)}.

Choose A ≥ 1 and let

λ(t0) :=
(

1
2A

M(t0)
)−1/(2α1)

. (5.5)

we claim that
λ−2(t0)(t+0 − t0) ≤ D, t0 ∈

(
T ∗

2
, T ∗

)
, (5.6)

where D > 0 is a positive constant which does not depend on t0.
We proceed by contradiction. If (5.6) were false, then there would exist a sequence tn → T ∗

such that
λ−2
n (t+n − tn) −→∞,

where λn = λ(tn) and t+n = t+(tn). For each tn choose

(x̂n, t̂n) ∈ RN × (0, tn] such that u(x̂n, t̂n) ≥ 1
2
M(tn). (5.7)
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Obviously, M(tn)→∞; hence, t̂n → T ∗. Next, rescale the function u as

ϕλn(y, s) := λ2α1
n u(λny + x̂n, λ

2
ns+ t̂n), (y, s) ∈ RN × In(T ∗), (5.8)

where In(t) := (−λ−2
n t̂n, λ

−2
n (t− t̂n)) for all t > 0. Then ϕλn is a mild solution of

ϕs = ∆ϕ+ Jα−λ−2
n btn|s(ϕp) in RN × In(T ∗), (5.9)

i.e., for G(t) := G(x, t) := (4πt)−N/2e−|x|
2/4t and ∗ being the space convolution, we have

ϕλn(s) = G(s+ λ−2
n t̂n) ∗ ϕλn(−λ−2

n t̂n) +
∫ s

−λ−2
n btn G(s− σ) ∗ Jα−λ−2

n btn|σ((ϕλn)p) dσ (5.10)

in RN × In(T ∗); whereupon, as ϕλn(0, 0) ≥ A,

0 ≤ ϕλn ≤ λ2α1
n M(t+n ) = λ2α1

n 2M(tn) = 4A in RN × In(t+n ),

thanks to (5.5) and the definition of t+n .
Moreover, as

ϕλn ∈ C([−λ−2
n t̂n, T ], C0(RN ) ∩ L2(RN )) for all T ∈ In(T ∗),

so, as in Lemma 1, ϕλn is a weak solution of (5.9).
On the other hand, if we write ϕλn as ϕλn(s) = v(s) + w(s) for all s ∈ In(T ∗), where

v(s) := G(s+λ−2
n t̂n)∗ϕλn(−λ−2

n t̂n) and w(s) :=
∫ s

−λ−2
n btn G(s−σ)∗Jα−λ−2

n btn|σ((ϕλn)p) dσ,

we have, see [8, Chapter 3], for T ∈ In(T ∗)

v ∈ C((−λ−2
n t̂n, T );H2(RN )) ∩ C1((−λ−2

n t̂n, T );L2(RN )) ⊂ L2((−λ−2
n t̂n, T );H1(RN ))

and, using the fact that f(s) := Jα−λ−2
n btn|s((ϕλn)p) ∈ L2((−λ−2

n t̂n, T );L2(RN )) and the
maximal regularity theory, we have

w ∈W 1,2((−λ−2
n t̂n, T );L2(RN )) ∩ L2((−λ−2

n t̂n, T );H2(RN )) ⊂ L2((−λ−2
n t̂n, T );H1(RN )).

It follows that

ϕλn ∈ C([−λ−2
n t̂n, T ], L2(RN )) ∩ L2((−λ−2

n t̂n, T ),W 1,2(RN ));

so from the parabolic interior regularity theory (cf. [23, Theorem 10.1 p. 204]) there is
µ ∈ (0, 1) such that the sequence ϕλn is bounded in the Cµ,µ/2loc (RN×R)-norm by a constant

that does not depend on n, where Cµ,µ/2loc (RN×R) is the locally Hölder space defined in [23].
Similar uniform estimates for Jα−λ−2

n btn|s(ϕp) follow if µ is sufficiently small. The parabolic
interior Schauder’s estimates (see [22, Th. 8.11.1 p. 130]), using the existence theorems in
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Hölder’s space, imply now that the C2+µ,1+µ/2

loc (RN×R)-norm of ϕλn is uniformly bounded.

Hence, we obtain a subsequence converging in C2+µ,1+µ/2
loc (RN × R) to a solution ϕ of

ϕs = ∆ϕ+ Jα−∞|s(ϕ
p) in RN × (−∞,+∞),

such that ϕ(0, 0) ≥ A and 0 ≤ ϕ ≤ 4A in RN × R. Wherefrom, using Lemma 2, we infer
that ϕ ≡ 0 in RN × (−∞,+∞). Contradiction with the fact that ϕ(0, 0) ≥ A > 1. This
proves (5.6).
Next we use an idea from Hu [16]. From (5.5) and (5.6) it follows that

(t+0 − t0) ≤ D(2A)1/α1M(t0)−1/α1 for any t0 ∈
(
T ∗

2
, T ∗

)
.

Fix t0 ∈ (T ∗/2, T ∗) and denote t1 = t+0 , t2 = t+1 , t3 = t+2 , .... Then

tj+1 − tj ≤ D(2A)1/α1M(tj)−1/α1 ,

M(tj+1) = 2M(tj),

j = 0, 1, 2, .... Consequently,

T ∗ − t0 =
∞∑
j=0

(tj+1 − tj) ≤ D(2A)1/α1

∞∑
j=0

M(tj)−1/α1

= D(2A)1/α1M(t0)−1/α1

∞∑
j=0

2−j/α1 .

Finally, we conclude that

u(x, t0) ≤M(t0) ≤ C(T ∗ − t0)−α1 , ∀ t0 ∈ (0, T ∗)

where

C = 2A

D ∞∑
j=0

2−j/α1

α1

;

consequently
sup
RN

u(· , t) ≤ C(T ∗ − t)−α1 , ∀ t ∈ (0, T ∗).

• The lower blow-up rate estimate. If we repeat the proof of the local existence of Theorem
1, by taking ‖u‖1 ≤ θ instead of ‖u‖1 ≤ 2‖u0‖∞ in the space ET for all positive constant
θ > 0 and all 0 < t < T, then the condition (3.2) of T will be:

‖u0‖∞ + CT 2−γθp ≤ θ, (5.11)

and then, like before, we infer that ‖u(t)‖∞ ≤ θ for (almost) all 0 < t < T. Consequently,
if ‖u0‖∞ + Ct2−γθp ≤ θ, then ‖u(t)‖∞ ≤ θ. Applying this to any point in the trajectory,
we see that if 0 ≤ s < t and

(t− s)2−γ ≤ θ − ‖u(s)‖∞
Cθp

, (5.12)
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then ‖u(t)‖∞ ≤ θ, for all 0 < t < T.
Moreover, if 0 ≤ s < T ∗ and ‖u(s)‖∞ < θ, then:

(T ∗ − s)2−γ >
θ − ‖u(s)‖∞

Cθp
. (5.13)

Indeed, arguing by contradiction and assume that for some θ > ‖u(s)‖∞ and all t ∈ (s, T ∗)
we have

(t− s)2−γ ≤ θ − ‖u(s)‖∞
Cθp

,

then, using (5.12), we infer that ‖u(t)‖∞ ≤ θ for all t ∈ (s, T ∗); this contradicts the fact
that ‖u(t)‖∞ →∞ as t→ T ∗.
Next, for example, by setting θ = 2‖u(s)‖∞ in (5.13), we see that for 0 < s < T ∗ we have:

(T ∗ − s)2−γ > C
′‖u(s)‖1−p∞ ,

and by the positivity and the continuity of u we get

c(T ∗ − s)−α1 < sup
x∈RN

u(x, s), ∀ s ∈ (0, T ∗). (5.14)

�

6 Global existence

In this section, we prove the existence of global solutions of (1.1) with initial data small
enough. We give a similar proof as that in [10] just for the seek of completness. In the
following, we use the notation psc := N(p− 1)/β(2− γ). As p∗ > 1 + β(2− γ)/N, we note
that p > p∗ ⇒ psc > 1.

Theorem 4 Let u0 ∈ C0(RN ) ∩ Lpsc(RN ) and 0 < β ≤ 2. If

p > max{1
γ

; p∗}, (6.1)

and ‖u0‖Lpsc is sufficiently small, then u exists globally.
Note that we can take |u0(x)| ≤ C|x|−β(2−γ)/(p−1) instead of u0 ∈ Lpsc(RN ).

Proof. As p > (1/γ), then we have the possibility to take a positive constant q > 0 so
that:

2− γ
p− 1

− 1
p
<
N

βq
<

1
p− 1

, q ≥ p. (6.2)

It follows, using (6.1), that

q >
N(p− 1)

β
> psc > 1. (6.3)

Let
b :=

N

βpsc
− N

βq
=

2− γ
p− 1

− N

βq
. (6.4)
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Then, using (6.2)− (6.4), we conclude that

b >
1− γ
p− 1

> 0, pb < 1,
N(p− 1)

βq
+ (p− 1)b+ γ = 2. (6.5)

As u0 ∈ Lpsc , using (2.4) and (6.4), we get, for all t > 0,

sup
t>0

tb‖e−t(−∆)β/2u0‖Lq ≤ C‖u0‖Lpsc = η <∞. (6.6)

Set
Ξ :=

{
u ∈ L∞((0,∞), Lq(RN )); sup

t>0
tb‖u(t)‖Lq ≤ δ

}
, (6.7)

where δ > 0 is to be chosen sufficiently small. If we define

dΞ(u, v) := sup
t>0

tb‖u(t)− v(t)‖Lq , ∀u, v ∈ Ξ, (6.8)

then (Ξ, d) is a complete metric space. Given u ∈ Ξ, let’s set:

Φ(u)(t) := e−t(−∆)β/2u0 +
1

Γ(1− γ)

∫ t

0
e−(t−s)(−∆)β/2

∫ s

0
(s− σ)−γ |u|p−1u(σ) dσ ds, (6.9)

for all t ≥ 0. We have by (2.4), (6.6) and (6.7)

tb‖Φ(u)(t)‖Lq ≤ η + Ctb
∫ t

0
(t− s)−

N
β

( p
q
− 1
q

)
∫ s

0
(s− σ)−γ‖up(σ)‖

L
q
p
dσ ds

≤ η + Cδptb
∫ t

0

∫ s

0
(t− s)−

N(p−1)
βq (s− σ)−γσ−bp dσ ds. (6.10)

Next, using (6.2) and pb < 1, we get∫ t

0

∫ s

0

(t− s)−
N
βq

(p−1)

(s− σ)γ
σ−bp dσ ds =

(∫ 1

0
(1− σ)−γσ−bp dσ

)∫ t

0

(t− s)−
N(p−1)
βq

sbp+γ−1
ds

= Ct
−N(p−1)

βq
−bp−γ+2 = Ct−b, (6.11)

for all t ≥ 0. So, we deduce from (6.10)− (6.11) that

tb‖Φ(u)(t)‖Lq ≤ η + Cδp. (6.12)

Therefore, if η and δ are chosen small enough so that η+Cδp ≤ δ, we see that Φ : Ξ→ Ξ.
Similar calculations show that (assuming η and δ small enough) Φ is a strict contraction,
so it has a unique fixed point u ∈ Ξ which is a solution of (1.1). Now, we show that
u ∈ C([0,∞), C0(RN )).

First, we show that u ∈ C([0, T ], C0(RN )) if T > 0 is sufficiently small. Indeed, note
that the above argument shows uniqueness in ΞT , where, for any T > 0,

ΞT :=
{
u ∈ L∞((0, T ), Lq(RN )); sup

0<t<T
tb‖u(t)‖Lq ≤ δ

}
.
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Let ũ be the local solution of (1.1) constructed in Theorem 1. Since u0 ∈ C0(RN )∩Lpsc(RN ),
then, using the fact that u0 ∈ Lq(RN ) and (6.3), we have ũ ∈ C([0, Tmax), Lq(RN )) by
Theorem 1. It follows that sup0<t<T t

b‖ũ(t)‖Lq ≤ δ if T > 0 is sufficiently small. Therefore,
by uniqueness, u = ũ on [0, T ], so that u ∈ C([0, T ], C0(RN )).

Next, we show that u ∈ C([T,∞), C0(RN )) by a bootstrap argument. Indeed, for
t > T, we write

u(t)− e−t(−∆)β/2u0 =
∫ t

0
e−(t−s)(−∆)β/2

∫ T

0
(s− σ)−γ |u|p−1u(σ) dσ ds

+
∫ t

0
e−(t−s)(−∆)β/2

∫ s

T
(s− σ)−γ |u|p−1u(σ) dσ ds

≡ I1(t) + I2(t).

Since u ∈ C([0, T ], C0(RN )), it follows that I1 ∈ C([T,∞), C0(RN )). Also, by the calcula-
tions used to construct the fixed point, using the fact that t−b ≤ T−b < ∞ and pq > q,
I1 ∈ C([T,∞), Lq(RN )). Next, note that N(p/q − 1/q)/β < 1 by (6.3). Therefore, there
exists r ∈ (q,∞] such that

N

β
(
p

q
− 1
r

) < 1. (6.13)

Let T < s < t (the case of s ≤ T ≤ t is obvious). Since u ∈ L∞((0,∞), Lq(RN )), we have
|u|p−1u ∈ L∞((T, s), Lq/p(RN )), and it easily follows, using (2.4) and (6.13), that I2 ∈
C([T,∞), Lr(RN )). As the terms e−·(−∆)β/2u0 and I1 both belong to C([T,∞), C0(RN ))∩
C([T,∞), Lq(RN )), we see that u ∈ C([T,∞), Lr(RN )). Iterating this procedure a finite
number of times, we deduce that u ∈ C([T,∞), C0(RN )). This completes the proof.

7 Necessary conditions for local and global existence

In this section, we establish necessary conditions for the existence of local or global weak
solutions to the problem (1.1); these conditions depend on the behavior of the initial
condition for large x.

Theorem 5 (Necessary conditions for global existence)
Let u0 ∈ L∞Loc(RN ), u0 ≥ 0, 0 < β ≤ 2 and p > 1. If u is a global weak solution to problem
(1.1), then there is a positive constant C > 0 such that

lim inf
|x|→∞

(u0(x)|x|
β(2−γ)
p−1 ) ≤ C. (7.1)

Proof. Let u be a global weak solution to (1.1), then u ∈ Lp((0, Rβ), L∞(B2R)) for
all R > 0, where B2R stands for the closed ball of center 0 and radius 2R. So, we repeat
the same calculation as in the proof of Theorem 1 (here in bounded domain) by taking
ϕ(x, t) := Dα

t|T ϕ̃(x, t) := Dα
t|T (ϕ1(x/R)ϕ2(t)) instead of the one chosen in Theorem 1,

where 0 ≤ ϕ1 ∈ D(∆β/2
D ) is the first eigenfunction of the fractional Laplacian operator

∆β/2
D in B2, with homogeneous Dirichlet boundary condition (2.6), associated to the first
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eigenvalue λ := λ
β/2
1 , and ϕ2(t) :=

(
1− t/Rβ

)`
+
for `� 1 large enough.

Then, as for the estimate (4.11), we obtain, with Σ := [0, Rβ]×B2R,∫
Σ
up ϕ̃ dx dt+ C R−αβ

∫
|x|≤2R

u0(x)ϕ1(x/R) dx

≤ C
∫

Σ
ϕ1(x/R) (ϕ2(t))−

1
p−1

∣∣∣D1+α
t|Rβϕ2(t)

∣∣∣ep dx dt
+C

∫
Σ

(ϕ1(x/R))−
1
p−1 (ϕ2(t))−

1
p−1

∣∣∣∆β/2
D ϕ1(x/R)Dα

t|Rβϕ2(t)
∣∣∣ep dx dt, (7.2)

where α := 1 − γ and p̃ := p/(p − 1). If we take the scaled variables τ = t/Rβ, ξ = x/R

and use the fact that ∆β/2
D ϕ1(x/R) = R−βλϕ1(x/R) in the right-hand side of (7.2), take

into account the positivity of u, we infer that

C R−αβ
∫
|ξ|≤2

u0(Rξ)ϕ1(ξ) dξ

≤ C(R)
∫
|ξ|≤2

ϕ1(ξ) dξ

= C(R)
∫
|ξ|≤2

|Rξ|β(1+α)(ep−1)|Rξ|β(1+α)(1−ep)ϕ1(ξ) dξ

≤ C(R)(2R)β(1+α)(ep−1)

∫
|ξ|≤2

|Rξ|β(1+α)(1−ep)ϕ1(ξ) dξ

where C(R) = Rβ−(1+α)βep(C + Cλ), and so∫
|ξ|≤2

u0(Rξ)ϕ1(ξ) dξ ≤ C
∫
|ξ|≤2

|Rξ|β(1+α)(1−ep)ϕ1(ξ) dξ. (7.3)

Using the estimate

inf
|ξ|>1

(u0(Rξ)|Rξ|β(1+α)(ep−1))
∫
|ξ|≤2

|Rξ|β(1+α)(1−ep)ϕ1(ξ) dξ ≤
∫

1<|ξ|≤2
u0(Rξ)ϕ1(ξ) dξ

≤
∫
|ξ|≤2

u0(Rξ)ϕ1(ξ) dξ

in the left-hand side of (7.3), we conclude, after dividing by
∫
|ξ|≤2 |Rξ|

β(1+α)(1−ep)ϕ1(ξ) dξ
that

inf
|ξ|>1

(u0(Rξ)|Rξ|β(1+α)(ep−1)) ≤ C. (7.4)

Passing to the limit in (7.4), as R→∞, we obtain

lim inf
|x|→∞

(u0(x)|x|β(1+α)(ep−1)) ≤ C.

�
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Corollary 1 (sufficient conditions for the nonexistence of global solutions)
Let u0 ∈ L∞Loc(RN ), u0 ≥ 0, 0 < β ≤ 2 and p > 1. If

lim inf
|x|→∞

(u0(x)|x|
β(2−γ)
p−1 ) = +∞,

then the problem (1.1) cannot admit a global weak solution. �

Next, we give a necessary condition for local existence where we obtain a similar estimate
of T founded in the proof of Theorem 1, as |x| goes to infinity.

Theorem 6 (Necessary conditions for local existence)
Let u0 ∈ L∞Loc(RN ), u0 ≥ 0, β ∈ (0, 2] and p > 1. If u is a local weak solution to problem
(1.1) on [0, T ] where 0 < T < +∞, then we have

lim inf
|x|→∞

u0(x) ≤ C T
− 2−γ
p−1 , (7.5)

for some positive constant C > 0.
Note that, if A := lim inf |x|→∞ u0(x), then we obtain a similar estimate as that found in
(3.4),

T 2−γAp−1

Cp−1
≤ 1.

Proof. We take here, forR > 0 sufficiently large, ϕ(x, t) := Dα
t|T ϕ̃(x, t) := Dα

t|T (ϕ1(x/R)ϕ2(t))

where ϕ2(t) := (1− t/T )`+ instead of the one chosen in Theorem 5. Then, as (7.2), we ob-
tain ∫

Σ1

up ϕ̃ dx dt+ C T−α
∫
|x|≤2R

u0(x)ϕ1(x/R) dx

≤ C
∫

Σ1

ϕ1(x/R) (ϕ2(t))−
1
p−1

∣∣∣D1+α
t|T ϕ2(t)

∣∣∣ep dx dt
+C

∫
Σ1

(ϕ1(x/R))−
2
p−1 (ϕ2(t))−

1
p−1

∣∣∣∆β/2
D ϕ1(x/R)Dα

t|Tϕ2(t)
∣∣∣ep dx dt, (7.6)

where Σ1 := [0, T ] ×
{
x ∈ RN ; |x| ≤ 2R

}
, α := 1 − γ and p̃ := p/(p − 1). Now, in the

right-hand side of (7.6), we take the following scale of variables τ = T−1t, ξ = R−1x and we
use the fact that ∆β/2

D ϕ1(x/R) = R−βλϕ1(x/R), while in the left-side we use the positivity
of u, then we get

C T−α
∫
|ξ|≤2

u0(Rξ)ϕ1(ξ) dξ ≤
(
C T 1−(1+α)ep + Cλ T 1−αepR−βep)∫

|ξ|≤2
ϕ1(ξ) dξ;

and so ∫
|ξ|≤2

u0(Rξ)ϕ1(ξ) dξ ≤ C(R, T )
∫
|ξ|≤2

ϕ1(ξ) dξ (7.7)
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where C(R, T ) = C T (1+α)(1−ep) + C T 1+α(1−ep)R−βep.
Using the estimate

inf
|ξ|>1

(u0(Rξ))
∫
|ξ|≤2

ϕ1(ξ) dξ ≤
∫

1<|ξ|≤2
u0(Rξ)ϕ1(ξ) dξ

≤
∫
|ξ|≤2

u0(Rξ)ϕ1(ξ) dξ

in the left-hand side of (7.7), we conclude, after dividing by
∫
|ξ|≤2 ϕ1(ξ) dξ, that

inf
|ξ|>1

u0(Rξ) ≤ C(R, T ). (7.8)

Passing to the limit in (7.8), as R→∞, we obtain

lim inf
|x|→∞

u0(x) ≤ C T (1+α)(1−ep) = C T
− 2−γ
p−1 .

�

Appendix

In this appendix, we give a proof of Ju’s inequality (see Proposition 3.3 in [17]), in dimension
N ≥ 1 where δ ∈ [0, 2] and q ≥ 1, for all nonnegative Schwartz function ψ (in the general
case)

(−∆)δ/2ψq ≤ qψq−1(−∆)δ/2ψ. (7.9)

The cases δ = 0 and δ = 2 are obvious, as well as q = 1. If δ ∈ (0, 2) and q > 1, using [7,
Definition 3.2], we have

(−∆)δ/2ψ(x) = −cN (δ)
∫

RN

ψ(x+ z)− ψ(x)
|z|N+δ

dz, ∀ x ∈ RN , (7.10)

where cN (δ) = 2δΓ((N + δ)/2)/(πN/2Γ(1− δ/2)). Then

(ψ(x))q−1(−∆)δ/2ψ(x) = −cN (δ)
∫

RN

(ψ(x))q−1ψ(x+ z)− (ψ(x))q

|z|N+δ
dz.

By Young’s inequality we have

(ψ(x))q−1ψ(x+ z) ≤ q − 1
q

(ψ(x))q +
1
q

(ψ(x+ z))q.

Therefore,

(ψ(x))q−1(−∆)δ/2ψ(x) ≥ −cN (δ)
q

∫
RN

(ψ(x+ z))q − (ψ(x))q

|z|N+δ
dz =

1
q

(−∆)δ/2(ψ(x))q.
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