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On certain time-and space-fractional
evolution equations
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LaMA-Liban, Lebanese University, P.O. Box 826, Tripoli, Liban

Abstract

In this article, we present first a short proof of the Cazenave, Dickstein
and Weissler result [3] on the blowing-up solutions to a temporally nonlo-
cal nonlinear parabolic equation. We then apply our technique of proof to
tackle nonlinear systems of temporally nonlocal coupled fractional parabolic
equations. Furthermore, we consider hyperbolic nonlocal equation and system.

Keywords: Parabolic equation, hyperbolic equation, blow-up, critical exponent,
fractional integrals and derivatives.

1 Introduction

The aim of this paper is two fold:
First, we investigate the nonlinear parabolic equation with a nonlocal in time non-

linearity

Opu+ (=AY u|™ = [{(t—s)u(s)|Pds,, x€RN, >0, u>0,
(NLDE)
uw(0,2) = up(z), =RV,

(1.1)
where 0 < < 2,0 <7< 1,1<m < p and the nonlocal operator (—A)?%? defined
by

(=A)Po(x,t) = F ([P F(0)(E,1)) (1)



where F stands for the Fourier transform and F~! its inverse.
Then, we extend our analysis to the system

t
ut—Au:/ (t —s)vfPds, x € RN, ¢t >0,
0
(NLDS) (1.2)
t
v — Av = / (t —s)"°|ul?ds,
0
supplemented with the initial conditions
u(z,0) = uolx), v(x,0) = vola), = € RY.

Here 0 <y < 1,0 < 6§ <1, 1< pq are real numbers.

In system (NLDS), we take —Aw and —Av rather than (—A)%2|u|™ and (—A)*/?|u|”
just for clarity. It will be clear that analysis can handle such diffusion terms.

In the second part, we extend our analysis to the nonlocal nonlinear hyperbolic
equation

t
Uy + (—A)?|u| = / (t —s)|ulPds, € RN, t>0,

(NLWE) ;
u(z,0) = up(x) , u(x,0) =ui(x), r € RY,

(1.3)

where 0 < a <2, 0<vy<landp>1
We then naturally, present results concerning the system
t
e+ (—A)2]u| = / (t—s)HlofPds, zeRY, >0,
0
(NLWS)
t
vy + (—A)Y2|y| = / (t—s)"|ul?ds, ze€RY, t>0,
0

subject to the initial data

u(z,0) = wuo(z) , w(z,0)
v(z,0) = wvo(x) , wv(z,0)

1(z),

vi(x).

In all the equations above, I' is the gamma function of Euler.
Our article is motivated by the recent and very interesting article of Cazenave,

Dickstein and Weissler which deals with the global existence and blow-up for the
parabolic equation with nonlocal in time nonlinearity

t
Ou — Au = / (t —s)Tu(s)Pds, xRN t>0, (1.4)
0
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where 0 < v < 1, p > 1 and ug € Co(RY).
They proved that, if we set

4 — 2y

=1+
" (N—2+27);

and 1
Dy = max{;,pW} € (0, +o0],

(i) Ifp <p.,
and ug > 0, ug Z 0, then u blows up in finite time.

(ii) If p > p.,
and ug € L (RY) <Where Qoo = %) with ||ug||pese sufficiently small, then

u exists globally.

Their study reveals that for equation (1.4) the critical exponent in Fujita’s sense p,
is not the one predicted by scaling.

They also consider Eq. (1.4) in a smooth bounded domain Q@ C R¥ and showed
that for ug € Cp(2)

(i) fpy <1,
and ug > 0, ug #Z 0, then u blows up in finite time.

(ii) If py > 1,
and ||ug||r~ sufficiently small, then u exists globally.

Needless to say that the equation considered by Cazenave, Dickstein and Weissler
is a genuine extension to the one considered by Fujita in his pioneering work [5].
In this article, concerning blowing-up solutions, we present a different proof that
the one presented by Cazenave, Dickstein and Weissler, and for the more general
equation (NLDE) when considered with a nonlinearity of the form u?, reads

up + (=A™ = P

This equation has been considered by Nagasawa and Sirao [| for m = 1, and then
by Kirane and Qafsaoui [| in the general case.
Observe that the equation without the reaction term u” :

up + (=A™ =0 (1.5)

has been considered by Bologna, Tsallis and Grigolini in [| in one space dimension
but for —co < 3 < 2 and —1 < m. The operator (—A)%? describes anomalous



diffusion; this a superdiffusion equation in the termenology of Zaslavsky [].
At this stage, let us observe that Eq. (1.4) can be written formally in the form:

o + D&t(—A)B/Zu =uP, (1.6)

where Dfj, is the left-sided Riemann-Liouville fractional derivative of order o € (0, 1)
defined by (see (2.30) p.37 [19])

Dg f(t) == %/0 F(oz)({;(j)s)l—a ds (1.7)

for every absolutely continuous function f(t); we have set in (1.6) « = 1—~ € (0, 1).
The Eq. (1.6) without the nonlinearity u?, i.e.,

ot + D(‘ﬁt(—A)ﬁ/Qu =0

is not an usual one.

In [], Sokolov and Klafter discussed modern extensions of the usual heat equation
ur — Au = 0 to include heavy tailed particle jumps (in the case of random walk
model of particle motion)and random waiting times, leading to fractional diffusion
equations, the simplest of which is

Dgju= — D(—A)?u.

(u(z,t) is the probability distribution).

The fractional Laplacian reflects heavy tailed waiting times, where the probability
of waiting longer than ¢ falls like . Heavy tails in space lead to superdiffusion,
where a plume of particles spreads faster that the classical v/t rate associated with
Brownian motion. Heavy tails in time lead to subdiffusion, since long waiting times
retard particle motion.

Much more can be said; see the valuable contributions of Zaslavsky ||, Baleseu ||,
Sokolov, Klafter and Blumen]].

It transpires then clearly that either Eq. (1.6) (and hence Eq. (1.4)) doesn’t fit
in its diffusive part in the existing models derived in Physical-Chemistry or a pure
diffusive term in space is missing like —Awu or alike one.

At this stage, we mention some literature exists on equations of the form

u = Au™ + f(u(z,t), /tg(x,t, s,u(zx, s))ds)
0

t >0,z € Q C RN, which serve as models for nonlinear diffusion phenomena with
memory effects. In population dynamics, for example, one encounters

g(z,t,s,u(z,s)) = K(t — s)h(u(zx, s))
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but with regular kernels K (t — s), and so usually

f(u,/O g(x,t,s,u(z,s))ds) = (a — bu)u — /0 K(t — s)u(z, s) ds.

Other works concern the nonlocal in time equation
t
up — Au = uq/ uP(z,s)ds
0

which for p = ¢ = 1 plays a role in the theory of nuclear reactor kinetics as reported
by Kastenberg in ||.

More close to our equation, we can mention the article of Miao and Yang || which
is concerned with the problem

Dérgau:Aquf(u), r RN >0,

u(z,0) = up(r), v € RY.
The article of Kirane, Laskri and Tatar || treats the more general equation
Dgju+ (=AY = bz, t)uP, z€RY, t>0,

u(z,0) = up(w), v € RY.

Let us notice that in [|, systems of equations of the latter equation are also consid-
ered.
Concerning our results, we will show that

- For [y uo(x)dx >0, if

1, 2=9)(N(m—1)+p) m
l<p<pp =1+ (N—B+567): or p<7,

then solutions to Eq. (NLDE) blow-up in finite time.

- For [on ug(x)de > 0, [on vo(x)dz >0, if

N Smax{(2—5)p+(1—7)pq+1. (2—7)q+(1—5)pq+1}’

2 pg—1 ’ pg—1
or
1 1
p< — and q< -,
v )

then solutions to the system (NLDS) blow-up in finite time.
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- For [on uo(x)dx > 0, if

or

then (NLWE) doesn’t admit global solutions other than the trivial one.
- For [pn uo(x)de >0, [pnvo(z)dr >0, [pn u(x,0)dr >0, [on vi(z,0)de >0, if

N < max{Y;; Yo},

or

1 1
p< — and q< —,
1 v
where
(B =v)+pg2—p)+1a (qB=p)+pe2—v)+ 1)
T, = T, =

2(pq — 1) ’ 2(pg — 1) ’

then no global solution to system (NLWS) do exist.

Our method of proof is the test function method of Pohozaev, Mitidieri, Tesei and
Véron |[|.

2  Preliminaries

In this section, we present some definitions and results concerning fractional deriv-
atives that will be used in the sequel.
If T stands for the usual gamma function of Euler, for f € L'(R,), we define, for
O<a<l,

D, f(t) = DJg;“ f(2),

where D := % and
1 t
Jg‘tf(t) = m/o (t —5)* "1 f(s)ds.
If

Tl ®) = s [ 5= 0 p(s) ds



then, for every f,g € C([0,T7), such that Dg, f(t), Dfj;g(t) exist and are continuous
for all t € [0,7], 0 < a < 1, we have the formula of integration by parts (see (2.64)

p. 46 in [19])
[ ) 0utras = [ 1) (Diea) ) s

14+a
t\Tf Dt|T .

Note also that

3  The Case of a Parabolic Equation

In this section, we consider the nonlocal porous-medium fractional problem

vy = (A2l o [ e Ry
L= (—A)2y +/O<t_)d ERY, ¢ >0, 51)
u(z,0) = uo(x), z € RY,

where ug € Co(RY), 0 <y <1,0<3<2,and 1 <m < p.
Our analysis is based on the observation that the differential Equation (3.1) can be
written in the form:

ur = (=) ul™ + () Jg, (Jul?). (3.2)
where a := 1 — v € (0,1). We have Dg,Jg, = Id.
Applying Dg, to (3.2), we obtain
Dy + (=AY DGy |ul™ = T(a)ul’. (3.3)

Now, we want to derive a nonexistence result for Eq.(3.3). We start with

Definition 1 We say that u is a weak solution of (2.1), if
u € C([0, Traz), Co(RY))

/ /RN (/ o 7|U|pds> pdedt =~ /OT/RN“Ddet - /RN uo(2)p(0) dx
* /OT /RN u™ (=A) P d dt, (3.4)

for any nonnegative test function o € C=([0,T], C=(RYN)), with ¢(T,x) = 0, for all
0 < T < Thaz, where Thqy is the mazimal time of local existence proved in [3].



Definition 2 We say that u is a weak solution of (2.5), if
u € C([0, Traz), Co(RY))

and
T T
F(a)/ / lulP pdxdt = / / u Dtlﬁ;agp dx dt — / up () (Dchp) (0) dz
o JrN 0o JRrN RN

T
+ // |u|m(—A)ﬁ/2Df|‘T<pdxdt, (3.5)
0 JRN

for any nonnegative test function ¢ € C>([0,T], C2(RY)), with Dfjp(T,x) = 0,
for all0 < T < Thae-

Theorem 1 Let
u € C([0, Thnaz), Co(RY)).

Then the following assertions are equivalent:

1. w is a weak solution of (3.1),
2. w is a weak solution of (3.3).

Proof. Necessity. Let u be a weak solution of (2.1) and ¢ € C*([0,T], C*RY) be
such that D;TTgo(T, x) =0, for all 0 < T < T}q0- If we take Df“Tgp as a test function
in (3.4) and use (77), we obtain

T T
F(a)/ / Jolul” Dijrpdrdt = / / u Dtlﬁo‘go dx dt — / uo () Dyjrp(0) d
0o JrN 0o JrN RN

T
+/ / u[™ (=A)?Dil o da dt.
0 RN

Using the formula of integration by parts for fractional derivatives (?7?) and the fact

that Dg,J5, = Id, we deduce that u is a weak solution of (3.3).
Sufficiency. As DjrJir¢ = ¢ and Dtll;aJﬁ‘Tgo = —DDjrJyrp = =Dy, we can
take Jii; ¢ as a test function in (3.5).

Using the formula for fractional integration by parts (see (2.20) p.34 in [19])

/O F(t) (Jg9) (0 dt = / (Jarf) (Da(t) dt. (3.6)

for every f € LP(0,T), g € L%(0,T), such that 1/p + 1/g < 1 + a,p>1,¢>1,
with p # 1, ¢ # 1 in the case 1/p + 1/¢ = 1 + «, for all T > 0, we obtain (3.4)
and this for every o € C*([0,T], C®RY) with o(T,z) =0, for all 0 < T < Tyaz;

this completes the proof. 0



Theorem 2 Let [ uo(x)dz > 0. If

(2= -1) + B)

p<1+ (N— 3+ 37 = Dpr (3.7)
or
m
p<—,
Y

then any solution to (3.1), with initial condition ug, blows-up in a finite time.
Note that in the critical case we take only the case pd > Nam and N > f3.

Proof. The proof is by contradiction. Suppose that u is a nonnegative global
weak solution to (3.1).

Later on, we will use the following results.

If (t) = (1 — %)g, o >> 1, then

t\T¢( ) = F(‘UFEJQ; i)l)T_”(T — )77, forall T >0,a>0. (3.8)
Hence
( t|T¢)( ) ) ( t|T77Z)) ( ) cre,

ol'(o—a)
for ' = T(o—2atl)"

Observe that

T*
[ [ecarmogurenaa = [* [ a0 glurna
RN 0 RN

T*
= [ e 8 eDgp dr
for every test function .

Now, we take o(z,t) = ((pl(x))e o(t) as a test function with ¢;(z) := (IM) )

pa(t) =V (57) , where £ > E ¢ := p*%’(g’i(ll;ra) and ® be a smooth non-increasing
function such that

1 if0<r<i,
éw*:{o it r > 2,

0<®<1,B<T<T* |®(r) <Cy/r forall r>0,and

(@ =r)n if0<r<i,
W“V‘{o ifr>1,

with n > max{aptl, %}.



Here B > 0 is a fixed constant which plays some role in the critical case p = pp, while
in the case p < pr we take B = 1. Then, using the fact that Dy .¢a(t) = Dj¢a(t),
for every p > 0, t € [0, 7] and Ju’s inequality (see Appendix)

(=AY () < LT (=AY (1),

we have

T
/ lul? pdxdt + C'T_O‘/ (p1(2)) ug(x) da:
0 Ql Q1
T
<c [ e \Damo\dm
e / / W™ (1)) (=20 201(2) Diyipa(t)] dv it
= o[ [ e i) | it dea
0 1

T
+C/ : [u " PP (p1(2) (= A0) P o1 (x) Dijripa(t)| dadt, (3.9)
0 1
where
O ={z eR" ; |z| <27°}.
Therefore, using the Young inequality
qlfl ’

]_ / /
ab < 2—aq+ — b9 with a>0,b>0,¢g>1 where q¢ =q+¢q, (3.10)
q q

and taking account of the positivity of the norm in L! of the initial data, we obtain
the estimate

//Ql|u|p90 < C/ /91 1(2) (o)) 77

+ C/ /Q o1(z (QOQ( )~ o |(_Am)ﬂ/QQOl(x)foTSO2(t)|p‘pm,

’

p

Dy ea(t)

At this stage, we introduce the new variables: 7 = T~¢, ¢ = T-%2 and the formula,
(3.8) in the right hand-side of the precedent inequality to obtain:

T
/0 [P pdeat< C T (3.11)
1

where 6 := (14+a)p —1— N0, C = C(|Qs]| , |Qs]), where |Q;] stands for the measure
of Q;, for i = 2,3, with

QQ::{SERN; |§|§2} , Q3={r>0; 7<1}.
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Now, we choose

C=)WNm=-D+5) _
(N=B+pr

As we want to let 1" goes to infinity in (3.11), we have to distinguish two cases:
e The sub-critical case p < pp: As fRN uo(z) dx > 0, We have from (3.11)

0>0 <= p<l1l+ (3.12)

T
QA j£|uvgxx¢)dxdtg cT, (3.13)

therefore

T
lim / / lu|Po(z,t) de dt = 0.
T—+oo Jo  Jjx|<210 |

Using the dominated convergence theorem, we infer

+oo
/ / |ulP dx dt =0 — u=0 (ae.).
0 RN
Contradiction.
e The critical case p = pp: From (3.13), we obtain

/ /hmwm<0<m (3.14)
RN

On the other hand, we recall here that B # 1 sufficiently large. Then from inequality
(3.9) and using the Young inequality (3.10), we have

BT BT ,
| [ ureaa < o[ [ e il da
0 Ql Q1

BT
+ C/ /gpl
951

Now, by taking the new variables ¢ = 7%z, 7 = (BT)~!'t and using the critical
exponent pg, into account of (3.14), we obtain

BT ) ,
/ / lulP ¢ < CB=0telr o CB'TYm
0 Q1

Using that pf > %e’g, N > 3 and taking the limit when B — oo, into account the

dominated convergence theorem, leads to:

/ /hMMﬁ:O (3.15)
0 RN

11

p " |( A:c)ﬁ/QSOl DﬁBT(ﬂﬂﬁ dx dt.



This completes the proof in the critical case.

m

e For the case p < o, we repeat the same technique as in the subcritical case

p < pp by choosing the following test function o (x,t) = (¢1(x))" @2 (t) where ¢ (z) =
@ (%) and @3(t) = W (§) with T < B < T"with the same functions ® and ¥
defined above. We obtain then

B
/ lul? pdxdt + CB_O‘/ (o1 (2)) up () da:
0 1 ¥

B
<o [ e | plie|

+0/0 L (e1(2) " [(—=A2) o1 () Dijpepa(t)| da dt,

where
Spo={zeRY ; |z[<2T}.

Now, by Young’s inequality, (3.10) and the positivity of f ug, we get

/ |U’p90 < C/ / S01 wzt))p/p
21 21

T c/‘L 01(2)) 7T (a(t)) 7 |(— D) 201 D pipa|

Then, the new variables £ = T~ 'z, 7 = B~'t and (3.8) lead to the estimate

p/
Dy5pa(t)

B , )
/ / luP(z,t) p(z,t)dedt < ¢ BY-WHor N 4 ¢ gl=5a
0 Juou
Asp < % — 1- ozprm < 0, then by taking the limit as B — 0o, we get
/ [ul? (2, 1) (1 (x))" dwdt = 0.
o Ju
Finally, by taking T" — oo, we infer the contradiction. 0

Remarks.

- We can extend our analysis to the equation

with ¢ € L} (Ry), ¥(t) > Ofor alltZ 0, w‘f(), Y(rBT) > C > 0, for any
T>07€[0,1],1<m<p,and 0 <~y < 1.

- If we take m = 1 and (3 = 2 we obtain the same result that [3].
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4 The Case of 2 x 2 Parabolic Systems

In this section, we consider the system

t
u — Au = / (t—s) vl ds,
0

(4.1)
t
v — Av = / (t — s)"°|u|?ds,
0
where pg > 1,0 < 7,0 < 1 are real numbers, subject to the initial conditions
u(z,0) = ug(x), v(z,0)=wvo(x), zecRY.
We can write the system (4.1) in the form
Dgjur — ADgu = C(a)|v|?,
(4.2)

Dgyvr — ADg,v = T(B)[ul”.
where « :==1—~ € (0,1) and f:=1—-4 € (0,1).

We start with the

Definition 3 We say that the pair (u,v) is a weak solution of (4.2), if

u € LY

Loc

(R x RY), v € Lh, (R, x RY)

and
T T
F(a)/ / P pdrdt = / / u Dtlﬁago dx dt —/ ug(x) (Dfjre) (0) dz
0o Jr¥ 0 JrN

RN
T
- / / u ADyjrp dx dt,
0o JRN

T'(8) /OT/RN lu|? pdxdt = /OT/RNUDtl&ﬁgoda:dt—/RN vo(z) <Df|Tgo> (0) dx

T
-~ / / v AD} i dx dt,
0 RN

for any nonnegative test function ¢ € C°°([0,T],C=(RY)), with Dirp(T,x) =
DﬁTgp(T, z) =0, for all T > 0.

13



Our result concerning the system (4.1) is the

Theorem 3 (Local ezistence)
If ug,vo € C([0,T], Co(RN)), there exist a time 0 < Tz < +0o and solution (u,v)
of the system (4.1) in C([0, Tinaz), Co(RY) @ Co(RY)).

Proof. usually the proof support to the fixe point theorem. We begin by remem-
bering of the mild solution of the system (4.1) :

t s
u(t) = e®ug —i—/ e(t‘s)A/ (s — o) |P(o) do ds,
0 0
(4.3)

t s
v(t) = ey + / 6(t_s)A/ (s — o) °|u|!(0) do ds.
0 0

Let

Er = {(u,v) € L%((0,T), Co(RY) & Co(R™)); [[l(u, v)[[| < 2 (I[uolloe + [[volloc) }
(4.4)

for arbitrary 7' > 0, where |||.||| is the norm of the compact vectorial space Er define

by:

|| (w, )] := ||UHL°°((O,T)><RN) + HU||L°°((0,T)><RN)-

After that we define a new close space in Ep, as we obtain a nonnegativity solution,
by Pr := {(u,v) € Er; u>0,v>0}. Now we take the new function ¥ (u,v) :=
(\Ijl (U, U) ) \112 (U, U)) > where

and

119 (w, v)]]

t s
Uy (u,v) = ePuy + / e(ts)A/ (s — o) "P(0) do ds,
0 0

t s
Uy (u,v) = ey + / elt=94 / (s — o) °ul(0) do ds.
0 0

Here we mean by @ the following sense: (u,v) € L>®((0,T), Co(RY) ® Co(RY)) <
u,v € L((0,T), Co(RY)).
Either u,v € L>((0,T), Co(RY)), then

_|_

[ W1 (w, )|] oo 0,y xmNY + [[W2(u, V)| oo (0,7 xmNY

t S
Hemu(ﬁ—/ e(tS)A/ (s — o) (o) do ds|| o (0,1)xrN)
0 0
t s
\Ie’*AvoJr/ 6(H)A/ (s — ) u?(0) do ds|| Lo 0,1y xz )
0 0
t s
1€l | o (0.myxm) + | / [lef=% / (s = 0) 70 (0) do]| o= (r) ds] (0.7
0 0

14



t s
+ Hemvo\lm((o,nxm)+H/ He(”m/ (s = 0)u?(0) do| Lo ) ds|| L= ((0,1))
0 0

N

t s
< luollpe + I / / (5 = 0) 1 [07(0) | o) do dsl = (0.1
0 0

t s
+ [vo] | oo ey + 1] /0 /0 (s — @) 0 ||ut(0)|| 1 rv) do ds|| o= (0.1
by using the contraction property for the semi-group of the Laplacian operator
e u|| poomry < [|ul|poo@nyy for all £ > 0.

Hence by change of the Lebesgue theorem, we have
t t
1)l < ol +11 [ [ 5= 0) 0@l dsdollimomy
Ot Ut
+ ||U0||L°°(RN) + H/ / (8 — 0-)76||uq<0')|’Loo(RN) ds dO’HLoo((O,T))
L
= o=y + 7= 1 [ (6= )07 ame dollimcomy

1 ! _
+ ol + 7511 [ (€= )Y at(0)llem) ooy
0
T2

< Jluol|peo@ny + A=9)2 =) V][ Lo 0.2y k)
T276

+ ||U0||L°°(RN) + m“unqw((oj)xRN)

< ([luol|zoe mny =+ [[vol| Loe my)

+ A(([uo]| poo@ry + [|vol | Lo @),

where

) B ) ~ TQ_,Y T2—5
A o= 2l 2 ol )

+
(1=72-7) @1-46(2-9)
Then, if we choose the time 7" small enough such that A < 1, we infer

19w, 0[] < 2 (Juollz + [[vo]| o)

and by using the positivity of the semi-group €2, we obtain ¥ (u,v) € Pr.

Next, we take u,w,v,0 € L®((0,T),Co(RY)) with u(t = 0) = u(t = 0) and v(t =

0) = v(t = 0), we obtain
t S
N (wv) — ¥ @D < | / / (5 — o) |o?(0) — T(0) | o) dor dsl = o.1

15



t S

o / / (5 — o) N|ut(0) — () || gy dor ds| (0.7
Ot Ot

— / / (5 — ) 7|[0?(0) — T(0)| o=y ds do] |0
Ot Ut

o / [ 5= ) ut(o) = Tl d ol oy

_ 1 ' 1=v11,,p ~p

= =l [ =2 0) =Pl dolam oy

1 ! _ ~
4 il [ (€= ) Yat0) = T e dolmomy
0

T2 .
= Gope=pl’ Mhney
T276
- _ 4
- (1—5)(2—5)”“ U1z oe (0,1 )
A - -~
< Sllitw—a), (v -2l

1 ~ ~
< llitw =), (v =)l

Then by the Point fix theorem, the system (5.1) admits a unique solution (u,v) €
L>=((0,T),Co(RY)®Cy(RY)). Note that its easily to proof that the solution (u,v) €
C((0,T), Co(RY) @ Co(RY)). Moreover, we choose the maximal time Tpay as

Tax := sup{T > 0; (u,v) is a solutionn to the system (5.1) in C((0,T), Co(RM)®Co(RM))}.

Theorem 4 Let ug, vy Z 0. If

N 2 — 1— 1 (2- 1— 1
—Smax{( d)p + (L —v)pg + ;( 7)g+ (1= d)pg + } (4.5)
2 pg—1 pg—1
or
1 1
p< — and q< =
¥ 0

and ug,vg > 0, then any nonnegative solution (u,v) (i.e. uw >0 and v > 0) of the
system (4.1) blows-up in a finite time.
For the critical case in (4.5), we need that N > 2 and pq > % > 1.

Proof. Let (u,v) be a nonnegative solution of the system (4.1) with w € L7 ([0, 7*), L}, .(RY))
and v € L ([0,T™), L (RY)) for fixed T* > 0.
Now, if we take as a test function ¢ = (p1())” @a(t), with ¢y (z) == ® (%) and

©o(t) :== U (g5) , where

16



1 ifo<r<l,
0 if r > 2.

non-increasing smooth function, 0 < ® < 1, B < T < T*, |®'(r)| < Cy/r, for all
r >0, and
_ =t ifo<r<l,
r) = { 0 if r > 1,

where ( > W is large enough such that ¥ € C*, we obtain

T T
[ [ edear = / [ wterpire-c [ [ ua@biie
0 Ql Ql 0 Ql

- o [ @) uwds

Note that as in the last section, we assume that B = 1 in this case and B # 1 in
the case of equality in (4.5).
Now, as —Ag? < —2p1Ap; , we may write

/oT /91 v+ T /91 (¢1(2)) uo ()
< C/OT/Qlu(gm(x))z’ Dy )‘+C/OT/Q2US01($)|A(’01($)|‘D?TSOQ(t)}

which via the Hélder inequality leads to

= C(/OT/Qluq w)l/qA,

where we have set

</ / S01<P2q a
Q

Via the scaled variables (£, 7) as above and taking account of (3.8), we obtain

/ / 901902 Ji /e
1951

Ditan, a < O T—(+a)d +1+5

¢ ,

17
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and .
/ / <,0 80 ~d' /q |A1301 |Df|‘T902‘q < C Tf(1+a)q/+1+%.
0

Whereupon

Similarly, we obtain

[ [werer [ auros ([ [ o) s

(951 (951 Q1

1/p T b2

) + (/ / o0 A
0 Qo

For later use, using the non-negativity of initial condition, we may write

where

5= ([ ] e
971

717ﬂ+(1+?)pi,

B
D1t|T902

Dt|T P2

< CT

(T T 1/q
/ / v’ odrdt < (/ / quod:cdt) A,
0 Ql 0 Q1
(4.7)
T T 1/q
/ / u? pdrdt < (/ / 'Upgodxdt) B.
\ 0 Ql 0 Ql
The former estimates can be arranged into:
(T T 1/pq
/ / P pdrdt < (/ / P o dx dt) BY1A,
0 Ql 0 Q1
(4.8)

T T 1/pq
/ / u? pdxdt < (/ / u? <pdxdt) AYPB.
\ 0 Ql 0 Q1

( T I—E
(/ / Upgodxdt> SC’T‘gl,
0o Jo

1

T 1=
(/ / qupdxdt) §C’T62,
\ 0o Jou

18
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with

N\ 1 N 1
0r:=(—q¢—ad +1+—=|5+(-p —0p +1+=)—, (4.10)
2)4q 2 ) qp

and

. N\ 1 S N\ 1
O =(-q¢ —ag +14+— | =+ |-p —0p +1++ | = (4.11)
2 ) pq 2)p

Note that the inequality (4.5) is equivalent to ¢; < 0 or 6 < 0.

e If 6; < 0 or 6, < 0, then by taking the limit as 7" goes to infinity in (4.9), we
conclude that u =0 or v =0 and (4.7) implies that u = v = 0. Contradiction.

e In the critical case, if f; = 0 or 0 = 0, we have from (4.9)

) BT
/ / V(z,t)dedt < +00 = lim / vP(x,t) p(z,t)dedt =0, (4.12)
RN Qs

—00

— 00

0 BT
/ / w!(z,t)drdt < 400 = lim / ul(z,t) p(z,t)dedt =0. (4.13)
RN Q

Here B # 1. Then again by taking the Holder inequality in the right hand-side of
(4.6) and the non-negativity of initial data, we have
)Uq

BT BT BT
/ /v”w < O(/ /uq ) (/ /solsogq/q
0 Ql 0 Ql Q1

1+a
Dt\BTSOQ

BT BT N
e[ o) ([ )
0 Qo Qo

Similarly, we have:

BT BT BT
/ /uqsﬁ < C(/ /v” ) (/ /%%”p
0 (951 0 (951 91
BT BT
([ o) ([ e
0 Qo Qo

Then the new variables £ = 7~'/2z and 7 = (BT)_lt allow us to write

BT AN BT
/ / P < CT(H—N/Q—(H—a)q )?B —(14a)q </ / ol )
0 Q1 Q1

N , L BT 1/q
N CT(HN/%(HQ) )—, 1 aq 5 (/ / ol ) (4.14)
Qo

19
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and

/BT/ ul o < CT<1+N/2*(1+ﬁ)pl)p%B (1-a+8) & (/BT/ y )
0 o - X

BT 1/p
N CT(1+N/2—(1+ﬁ) )% (-0 1(/ / oP ) . (4.15)
Qo

Now, by combination to (4.14) and (4.15) and using the critical exponent (6; =
0 or 0y =0), we infer

BT N1 BT 1/pq
/ /vpgp - o090 L+ (1-0ta)d ) & (/ /vpgp)
Ql Ql
BT 1/pq
L)
Qo

1 (1+a)q i,

L o)

VRS

N C’B( ~(148p') L +(1—aq)ql,(

/ 1 I 1 1/
+ cp(=) g (ied )y (/BT/ P go) : (4.16)
0 Qo

BT AT N o1 BT 1/pq
/ / W < cplimteed) S (-asen) (/ / v g0)
0 Ql 0 Ql
BT 1/pq
o ontr e (17 ] )
Qo
L BT 1/pq
N CB(k(Ha) (1-80") */ / / o 90)
Q
| BT 1/pq
v oplted) () (/ /uq ) . (4.17)
Qo

Moreover, taking the limit as 7' goes to infinity in (4.16) and (4.17) and using
((4.12) and (4.13)) and the Lebesgue dominated convergence theorem we obtain

o 1-1/pg N L /
([ [ wenwa) ™ < coptodeioea;
0 RN

(1—(1+ﬁ)p,)ﬁ+(1_"‘q,)f’ (4.18)

or

+ OB

or
(/ / e t)da:dt>1 /pd < CB( ~(+a)g) Lo (118 )
RN

20



(1—(1+oc) )pq (1 ﬂp)%.

+ CB (4.19)

Again with using the critical exponent (6, = 0 or 6, = 0) and the fact that
pq > %, N > 2 we infer after letting B going to infinity, that

0 1-1/pq
(/ / P p(x,t) de dt) =0
0o JRN
1-1/pq
(/ / ul ¢ xtdxdt) =0.
RN

Then u =0 or v =0 a.e. and by (4.14) and (4.15) we have u = v = 0 a.e.;

or

o If p < % and ¢ < %, by the similar process doing in the subcritical case

and using the following new test function @(x,t) = (p3(x))” 4(t) with @s(z) =
¢ (M) , ¢a(t) == U (%) where ® and ¥ are the same and 7' < B < T, we obtain

T
( T 17$
(/ / P p(x,t) de dt) < cgYT,
0 J%
T -
( / / ul (1) d:z;dt) < I'r7,
\ 0 J%

J 1/d B PP , ~ 1/a
</ / 903904q a D,51|Ea904‘ > + (/ / <P§71902q /4 |Ax903|q ‘Df“ng4‘q )
1 0 Yo
B / 1/17
2 —p /p|1+8 p/p p P
= P3Py Dyp ‘:04 | Asps]
0 31 E2

Now, if we take the new variables £ = T 'z and 7 = B~'t, we get

(4.20)

where

/

and

t|BSO4

T < Bl—(1+a)q'TN i Bl—aq’TN—2q’

and ) ) )
J < Bi-(+8)p PN + Bl=Bp TN=2p

Finally, using the conditions p < % and ¢ < %, and passing to the limit as B going
to infinity, we infer Z and J going to 0 and by consequence u = v = 0 a.e.;

21



this ends the proof.

The same strategy allows us to obtain nonexistence results for nonlocal hyper-
bolic equations and systems.

5 A Fractional Hyperbolic Equation

In this section, we consider the hyperbolic problem

t
uy + (— )“/Qu:/(t—s)”upds, reRY, >0,

0 5.1
) = ) v e RY, o
u(z,0) = fa(z), r e RY,
with a € (0,2], v € (0,1) and p > 1 is a real number. In(5.1), u > 0.
Like in the last sections, we write equation (5.1) in the form
Dg‘t gy + (—A)a/2D§|t = T(B)u?, (5.2)

where 3:=1—+ € (0,1).
The definition for a weak solution for (5.1) we adopt is

Definition 4 We say that u is a very weak solution of (5.1), if

ue Ly, (Ry xRY),

//RN</ (t=9) Vupds)gp - /T/RN“DQSO—/ fi(@)e(0, z)
+ RNf2 x)Dp(0, z) //RN A)*/2

for any nonnegative test function o € C*([0, T], C=®(RN)), with o(T,x) = Dp(T, z) =
0, for allz € RN, T > 0.

Definition 5 We say that u is a weak solution of (5.2), if
CAS Lzzoc (R-f- X RN)

22



and

o) [ [ee = [ [ unie- / () (Dir) (0
-~ [ (P 0 [ [ v-artpiees

for any nonnegative test function ¢ € C*([0,T], C>(RY)), with Dt|T o(T,x) =0
and Dt|Tg0(T, ) =0, forallz € RN, T > 0.

Note that the weak solutions in (5.1) and (5.2) are equivalent.

Now, we are ready to state our theorem for problem (5.1).

Theorem 5 Let fi(x), fa(x) > 0 for all z € RN If

p <1+ (2N<—32_a’yla7a)+ (5.4)

or
1
p<=

then problem (5.1) admits no global nonnegative weak solutions other than the trivial
one.

Note that in the critical case we are interest in the dimensions N > « and p > N

—a’

Proof. The proof proceeds by contradiction. Let u be a nontrivial nonnegative
global weak solution of the equation (5.1). Then wu verifies the weak formulation
(5.3) in L7 ([0,T™), L}, RY) | for T* > 0.

Setting as a test function in (5.3) ¢(z,t) = (p1(2)) @2(t), such that o(z) =
<I>( 2 ) and 902( ) := U (47), where ® is the same function as in the proof of

T2/
theorem 1, ¢ := “£= and

\Il(r):{(l_r)k if0<r<1,

0 if r>1,

with k& > ¢ 2+ﬁ P sufficiently large.

Note that, as above, we take B = 1 in the subcritical case p < 1 + %,
while B # 1 with B < T in the critical case.
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Using Ju’s inequality (see Appendix)
(APt < qui™t (=A)2y, for any 6 €[0,2), ¢ = 1,0 >0, v € CX(RY),

we have

/T/Q6 u? o + CTﬁ/Q6 (or(2)) fulx) + C T /96 (o1(2))" fal)

/ / u dvdt + C / / u gt |(~)"01] | D

dz dt

Dt|T Y2

where

O = {xERN 2| < 273 }

Now, using Young’s inequality (3.10) and the non-negativity of f; and f,, we obtain

[fooe < ef foaslat
QG QG
+ C/ / 107" 7 [(—A) ¢y ‘Dtm@‘ : (5.5)
0o Jas
Setting 7 = T, £ = T~?/2, we deduce that
T
/ / uP pdrdt < CTY, (5.6)
0o Jas
where § := —2p' — Bp' + 1+ %
Note that
3
0 <0 — p <1+ B=7)a =: p*.

- (2N — 20 + ya)*t

e For p < p*, we have

T [}
lim / / u? @(z,t)dedt = 0 :>/ / uP dt dz,
T—0o0Jo Jas 0 JrN

and consequently v = 0 (a.e.). Contradiction.
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N
N—a«a

e For p = p*, we need in this case the constrain (N > o, p > ) and we

recall that B # 1 with B < T. From (5.6), we have

/ / uPdrdt < oo. (5.7)
o Jrv

From the similar estimate in the subcritical case, we obtain

BT BT
/ /upso < 0/ /901902”/”
QG QG

BT p’
+ C/ /solw;”/pI(—A)"‘/Z%\
0 Qg

Then, by setting the new variables ¢ = T~2/%z, A = (BT)~"'t and using the critical
exponent, we conclude

2+B
t|BT902

5 v
Dipres| - (5:8)

BT , ,
/ / W(2,1) ol t) dedt < CB-CH0 4 opioar (5.9)
Q¢

Finally, using (5.9) and the fact that p > N -,
that 1 — Bp’ < 0, we obtain via the dominated convergence theorem, after passing

to the limit as B — oo,
/ / uP dxdt = 0.
0o JrN

This leads to u = 0 a.e.; contradiction.

N > « implies, using critical case,

e For p < %, we take as test function o(z,t) = @1(2)lpe(t) with ¢i(z) =

o ('%') and (t) := ¥ (£) where ® and ¥ are the same function introduced in the
subcritical case, then using Young’s inequality, we obtain

/ /U”s@ < C/ /solsogp/p
23 ES
+ C//goapp/p] a/2 |
33

Yy:={z eRY; |z| <2T}.
As usually, taking a new variables 7 := B!t and u = T 'z, we get

Dh
t|B 902

’
p

t|BSO2 )

where

B ! ’ ’
/ / w? o < CB"EAP TN 4 oplir pN-er
X3
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Then, as p < % <= 1—fp < 0 and by taking the limit when B then after T goes
to infinity, we infer that « = 0 a.e. and completes the proof. 0

Remarks. We may use the same analysis to study the nonlocal hyperbolic equation
with fractional power of the Laplacian
t
gy + (=AM 2™ = / (t — s) Hu” ds, u >0, (5.10)
0

with0 <A <2, 1<m<vand 0 < p<l1.

For equation (5.8), the «criticaly exponent is:

(3= m(NV(m—1) + )

=1
v TN — o ot

(5.11)

6 A Fractional Hyperbolic System

In this section, we extend our analysis to the nonlocal fractional hyperbolic system

t
Uy 4 (—A) Py = / (t —s) "vP ds,
0
(6.1)
t
vy + (—A) 0 = / (t —s) " ulds,
0

with initial conditions

{ u(z,0) = g1 (), ’LL(:L‘,O; =

2(33)7
v(z,0) = hi(z), (2,0 ) (6.2)

The system (6.1) is equivalent to

Dy, e + (—=A)*" Dgu = T(B)?,

(6.3)

Dgu, vy + (—A)/? Dg|tv = I(y)u?,

where §:=1—p € (0,1), v:=1—v € (0,1) and pg > 1.
Noting that (u,v) in (6.1) and (6.3) supposed as a nonnegative solution.

Definition 6 We say that (u,v) is a weak solution of system (6.3) if

u € L%OC(RJr X RN) ) v o€ Lioc(RJr X RN)
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and

co) [ e = [ [ unkie- / 0(@) (Dl ()
- /R (@) (Dtﬁﬁ / /R _u(=A)" D,
J

wo) [ e = [ [ entie- / i) (D1rs) ()
- /R th(fv)< tﬁ?w / /R v (=A)" D,

for any nonnegative test function ¢ € C°°([0,T],C=(RY)), with Dtngo(T,x) =
Dy (T, x) = 0 and D] pp(T, ) = D" o(T,x) = 0, for all T > 0.

Theorem 6 Let gi(x), go(x), hi(x), ha(z) > 0, for each v € RN. If

N < max{Y;; Ts}, (6.4)

or .
and q < —,

1
p<-
7 v

where

(pB—v)+pg(2—p)+1)a (¢B—p)+pe2—v)+1)a
2(pq — 1) 2(pg — 1) ’

then the system (6.1) has no global no trivial nonnegative weak solutions.

For the critical case, we take must impose the constrain N > o and #(Lq) > <.

Tl =

; To=

Proof. Suppose, by contradiction, that u, v is a non-negative nontrivial global weak
solution of the system (6.1) with u € L? ([0,7*), L? ,RY) and v € L? ([0, T*), L} . RY)
for 7" > 0.

Setting as a test function p(z,t) = (p1(x))™ p2(t) with ¢1(x) = <I>< 2] > and

T2/
(2p—1)(2¢9—1)
Ty and

©a(t) := U (Z) , where ® is as before, m =

=) if0<r<i,
‘I’(T)_{o ifr>1,

with n > W large enough and B = 1 in the sub-critical case.
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Then by Ju’s and Hélder’s inequality, and taking into account the nonnegativity of
the initial datum (6.2), we deduce that

( T T 1/q
//ws(//@) 7.
0 Qg 0 Q6

(6.5)
T T 1/p
[ fes ([ fme) o
\ 0 Qg 0 Q¢
where
, q/ 1/‘1/
(/ / (m qd) —q /Q‘(_A)a/2 ‘ t\T902 >
Qe
1/q
+ (/ / 901%02Q/q Dt\T P2 ) ;
Q6
and
g — / / (m— p —p /p‘ a/2 ‘DﬂTSO?‘
Qg
1/p
([ Lot
Qg
Using the scaled variables 7 = T, £ = T_%x, we obtain
F < CT7,
(6.6)
G <Cor,
where C' is a positive constant that may change from line to line and
2N\ 1 / 2N\ 1
O’::( 2+ 3)q +1+—)—, ; (5:2(—(2—}—7)})—1—14——)—,.
q « ) p
Therefore, thanks to (6.5) and (6.6), we have
( T 1—p—1q
(/ / vP w) < CTS,
0 Ja
(6.7)

T -
(/ / u? gp) < CT".
\ \Jo Jas
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Where

/ 2N\ 1 / 2N\ 1

¢= (—(2+v>p +1+—)+ + (—<2+6>q +1+—> o
o /Jpq o/ q
/ 2N\ 1 / 2N\ 1

1= (—(2+ﬂ)q +1+—),— + (—(2+’y)p +1+—) —.
« /Jqgp « ) p

Clearly
CSOOI‘T]SO <~ NﬁTlorNSTg.

eFor N < T;or N < 7Yy From (6.7) and letting 7" goes to oo, we deduce
that u = 0 or v = 0; whereupon (6.5) implies that © = v = 0. Contradiction.

e For the case N = T,or N = Tg,wetakeN>aand1#_d+q)>%. In
other hand, from (6.7), we have
/ / vP < oo,
o JrY

oo
/ /uq<oo.
0 JRN

Finally from (6.5), by elementary computations like in the critical case of section
(5) and by the technique used in the same case of section (4), we get u =v = 0.

or

e For the case p < l% and g < %, we repeat with the same test function used in
the fractional hyperbolic equation case but with the similar process in the parabolic
system case. This end the proof. 0

APPENDIX

We will prove Ju’s inequality (see proposition 3.3 in [10]), in dimension N where
d €]0,2] and ¢ > 1, for all nonnegative Schwartz function ¢ (in general case)

(—A) 2T < qipt™H(—A) 2y, (6.8)

Indeed, the cases 0 = 0 and § = 2 are obvious.
e If§€(0,1), we have (see Th. 1 in [4])

Yl + 2) — ¢(x)

|Z‘N+5

(=A)2ah(z) = —cn(0) dz, VxecRY, (6.9)

RN
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ST (ME0)

Nois s
2r2 HOT(1-9)

where cy(6) = . Then

(@) (z +2) = (@)

|Z|N+(5

(@) (~A) () = —en () /

RN

Z.

The case ¢ = 1 is clear. If ¢ > 1, then by Young’s inequality we have

()T (e + 2) < %Wx))g + gwu L))

Therefore, we infer

(Q/J(I))q—l(_A)&/%b(x) > —cn(9) /RN (V(x +2))7 = (P(x))? d» — 1

q |Z|N+5 = 5(_A)5/2(w(x))q
e If e (1,2), we have (see Th. 1 in [4])

P +2) = P(x) = V()2

(=A)2)(x) = —cn(0) dz, Yz eRY. (6.10)

RN || N+
Then by the similar process, we have
p T+ 2))1— (P(x))?) — (Vi(z).2)((x)) !
(P(2) T (=A)p(x) > —en(d) / qu( +2))" — (W |>>| N)ﬂ( v@)-2) @)
_ —en(@®) [ Wzt )T~ (@)~ V(Y()%2
- =L B i
— 1_ 5/2 2))4
q( A= ()"
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