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Abstract

In this article, we present first a new technique to prove, in a general case, the
recent result of Cazenave, Dickstein and Weissler [6] on the blowing-up solutions to a
temporally nonlocal nonlinear parabolic equation.
Then, we study the blow-up rate and the global existence in time of the solutions.
Furthermore, we show necessary conditions for global existence.
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1 Introduction

In this paper, we investigate the nonlinear parabolic equation with a nonlocal in time
nonlinearity

∂tu+ (−∆)β/2u =
1

Γ(1− γ)

∫ t

0
(t− s)−γ |u|p−1u(s) ds x ∈ RN , t > 0,

u(x, 0) = u0(x) x ∈ RN ,

(1.1)

where u0 ∈ C0(RN ), 0 < β ≤ 2, 0 < γ < 1, 1 < p and the nonlocal operator (−∆)β/2

defined by
(−∆)β/2v(x) := F−1

(
|ξ|βF(v)(ξ)

)
(x)

for every v ∈ D((−∆)β/2) = Hβ(RN ), where Hβ(RN ) is the standard Sobolev space of
order β, F stands for the Fourier transform and F−1 for its inverse, Γ is the Euler gamma
function.
When Eq. (1.1) is considered with a nonlinearity of the form up, it reads

ut + (−∆)β/2u = up.

∗E-mail addresses: ahmadfino01@univ-lr.fr(A.Fino),mokhtar.kirane@univ-lr.fr(M.Kirane)
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This equation has been considered by Nagasawa and Sirao [21], Kobayashi [15], Birkner,
Lopez-Mimbela and Wakolbinger [3], and by Kirane and Qafsaoui [16], in the general case.
At this stage, let us observe that Eq. (1.3) can be converted formally into:

Dα
0|tut +Dα

0|t(−∆)β/2u = up, (1.2)

where Dα
0|t is the left-sided Riemann-Liouville fractional derivative of order α ∈ (0, 1)

defined in (2.7) below; we have set in (1.2) α = 1− γ ∈ (0, 1).
In [22], Sokolov and Klafter discussed modern extensions of the usual heat equation ut −
∆u = 0 to include heavy tailed particle jumps (in the case of random walk model of particle
motion) and random waiting times, leading to fractional diffusion equations, the simplest
of which is

Dα
0|tu = −k(−∆)β/2u.

(u(x, t) is the probability distribution, k is a constant of diffusion).
The fractional Laplacian reflects heavy tailed waiting times, where the probability of wait-
ing longer than t falls like t−α. Heavy tails in space lead to super-diffusion, where a plume
of particles spreads faster that the classical

√
t rate associated with Brownian motion.

Heavy tails in time lead to sub-diffusion, since long waiting times retard particle motion.
Much more can be said; see the valuable contributions of Zaslavsky [28], Balescu [2],
Sokolov, Klafter and Bluman [23].
Let us dwell a moment on some literature concerning equations of the form

ut = ∆um + f(u(x, t),
∫ t

0
g(x, t, s, u(x, s)) ds)

t > 0, x ∈ Ω ⊆ RN , which serve as models for nonlinear diffusion phenomena with memory
effects. In population dynamics, for example, one encounters

g(x, t, s, u(x, s)) = K(t− s)h(u(x, s))

but with regular kernels K(t− s), and so usually

f(u,
∫ t

0
g(x, t, s, u(x, s)) ds) = (a− bu)u−

∫ t

0
K(t− s)u(x, s) ds.

Other works concern the nonlocal in time equation

ut −∆u = uq
∫ t

0
up(x, s) ds

which for p = q = 1 plays a role in the theory of nuclear reactor kinetics as reported by
Kastenberg in [12].

Our article is motivated by the recent and very interesting one of Cazenave, Dick-
stein and Weissler [6] which deals with the global existence and blow-up for the parabolic
equation with nonlocal in time nonlinearity

∂tu−∆u =
∫ t

0
(t− s)−γ |u|p−1u(s) ds x ∈ RN , t > 0, (1.3)
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where 0 ≤ γ < 1, p > 1 and u0 ∈ C0(RN ), which is (1.1) with β = 2.
They proved that, if we set

pγ = 1 +
2(2− γ)

(N − 2 + 2γ)+

and
p∗ = max

{1
γ
, pγ

}
∈ (0,+∞],

(i) If γ 6= 0, p ≤ p∗, and u0 ≥ 0, u0 6≡ 0, then u blows up in finite time.

(ii) If γ 6= 0, p > p∗, and u0 ∈ Lqsc(RN ) (where qsc = N(p− 1)/(4− 2γ)) with ||u0||Lqsc
sufficiently small, then u exists globally.

If γ = 0 then all nontrivial positive solutions blow-up as proved by Souplet in [25]. Their
study reveals the surprising fact that for equation (1.3) the critical exponent in Fujita’s
sense p∗ is not the one predicted by scaling.
Needless to say that the equation considered by Cazenave, Dickstein and Weissler [6] is a
genuine extension of the one considered by Fujita in his pioneering work [8].
In this article, concerning blowing-up solutions, we present a different proof from the one
presented in [6], and for the more general equation (1.1). Our proof is more versatile and
can be applied to more nonlinear equations.
Our analysis is based on the observation that the nonlinear differential Equation (1.1) can
be written in the form:

ut + (−∆)β/2u = Jα0|t
(
|u|p−1u

)
, (1.4)

where α := 1 − γ ∈ (0, 1) and Jα0|t is the Riemann-Liouville fractional integral defined in
(2.9).
we will show that:

(1) For u0 ≥ 0, u0 6≡ 0, and u0 ∈ C0(RN ) ∩Hβ(RN ). If

p ≤ 1 +
β(2− γ)

(N − β + βγ)+
or p <

1
γ
,

then all solutions of problem (1.1) blow-up in finite time.

(2) For u0 ∈ C0(RN ) ∩ Lpsc(RN ), where psc := (p−1)N
β(2−γ) . If

p > max
{

1 +
β(2− γ)

(N − β + βγ)+
;

1
γ

}
,

and ||u0||Lpsc sufficiently small, then u exists globally.

The method used to prove the blow-up theorem is the test function method considered by
Mitidieri and Pohozaev [18, 19] and Kirane et al. [9, 14].

Furthermore, in the case β = 2, we derive the blow-up rate estimates for the parabolic equa-
tion (1.1).We shall prove that, if u is the blow-up solution of (1.1) at the finite time T ∗ > 0,
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then there are constants c, C > 0 such that c(T ∗ − t)−α1 ≤ supRN u(., t) ≤ C(T ∗ − t)−α1

for 1 < p ≤ 1 + 2(2−γ)
(N−β+βγ)+

or 1 < p < 1
γ and all t ∈ (0, T ∗), where α1 := 2−γ

p−1 . We use
a scaling argument to reduce the problems of blow-up rate to Fujita-type theorems (it is
similar to “blow-up analysis” in elliptic problems to reduce the problems of a priori bounds
to Liouville-type theorems). As far as we know, this method was first applied to parabolic
problems by Hu [10], and sequently, was used in various parabolic equations and system
(see [4, 7, 26]) where in the case of γ = 0, the rate constant 2

p−1 found by P. Souplet [26]
is a particular case of our one.

The organization of this paper is as follows. In section 2, we give the sufficient properties
that will be used in the sequel. In Section 3, we derive the local existence of solutions for
the parabolic equation (1.1). Section 4 contains the blow-up of solutions for (1.1). Section
5 is dedicated to the blow-up rate of solutions. Next, global existence is studied in the
section 6. Finally, we give a necessary conditions for local and global existence in section
7.

2 Preliminaries

In this section, we present some definitions and results concerning fractional laplacians,
fractional integrals and fractional derivatives that will be used hereafter.
First, if we take the usual linear fractional equation

ut + (−∆)β/2 = 0, β ∈ (0, 2], t ∈ (0,∞), x ∈ RN , (2.1)

then, the fundamental solution Sβ of Eq. (2.1) can be represented via the Fourier transform

Sβ(t) := Sβ(x, t) =
1

(2π)N/2

∫
RN

eix.ξ−t|ξ|
β
dξ. (2.2)

It is well-known that this function satisfies

Sβ(1) ∈ L∞(RN ) ∩ L1(RN ), Sβ(x, t) ≥ 0,
∫

RN
Sβ(x, t) dx = 1, (2.3)

for all x ∈ RN and t > 0. Hence, using the Young inequality for the convolution and the
following self-similar form Sβ(x, t) = t−N/βSβ(xt−1/β, 1), we have

‖Sβ(t) ∗ v‖q ≤ Ct
−N
β

( 1
r
− 1
q

)‖v‖r, (2.4)
‖Sβ(t) ∗ v‖r ≤ ‖v‖r, (2.5)

for all v ∈ Lr(RN ) and all 1 ≤ r < q ≤ ∞, t > 0.
Moreover, as (−∆)β/2 is a self-adjoint operator with D(−∆)β/2 = Hβ(RN ), we have∫

RN
u(x)(−∆)β/2v(x) dx =

∫
RN

v(x)(−∆)β/2u(x) dx, (2.6)
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for all u, v ∈ Hβ(RN ).
Next, if AC[0, T ] is the space of all functions which are absolutely continuous on [0, T ] with
0 < T < ∞, then, for f ∈ AC[0, T ], the left-handed and right-handed Riemann-Liouville
fractional derivatives Dα

0|tf(t) and Dα
t|T f(t) of order α ∈ (0, 1) are defined by (see [13])

Dα
0|tf(t) := DJ1−α

0|t f(t), (2.7)

Dα
t|T f(t) := − 1

Γ(1− α)
D

∫ T

t
(s− t)−αf(s) ds, (2.8)

for all t ∈ [0, T ], where D := d
dt and

Jα0|tf(t) :=
1

Γ(α)

∫ t

0
(t− s)α−1f(s) ds (2.9)

is the Riemann-Liouville fractional integral defined in [13].
Now, for every f, g ∈ C([0, T ]), such that Dα

0|tf(t), Dα
t|T g(t) exist and are continuous, for

all t ∈ [0, T ], 0 < α < 1, we have the formula of integration by parts (see (2.64) p. 46 in
[24]) ∫ T

0

(
Dα

0|tf
)

(s)g(s) ds =
∫ T

0
f(s)

(
Dα
t|T g

)
(s) ds. (2.10)

Note also that, for all f ∈ AC2[0, T ], we have (see 2.2.30 in [13])

−D.Dα
t|T f = D1+α

t|T f, (2.11)

where
AC2[0, T ] := {f : [0, T ]→ R and Df ∈ AC[0, T ].}

Moreover, for all 1 ≤ q ≤ ∞, the following equalities (see [Lemma 2.4 p.74][13])

Dα
0|tJ

α
0|t = IdLq(0,T ) (2.12)

hold almost everywhere on [0, T ]. Later on, we will use the following results.
• If w1(t) =

(
1− t

T

)σ
+
, t ≥ 0, T > 0, σ >> 1, where (.)+ is the positive part, then

Dα
t|Tw1(t) =

(1− α+ σ)Γ(σ + 1)
Γ(2− α+ σ)

T−σ(T − t)σ−α+ , (2.13)

Dα+1
t|T w1(t) =

(1− α+ σ)(σ − α)Γ(σ + 1)
Γ(2− α+ σ)

T−σ(T − t)σ−α−1
+ , (2.14)

for all α ∈ (0, 1); so (
Dα
t|Tw1

)
(T ) = 0 ;

(
Dα
t|Tw1

)
(0) = C T−α, (2.15)
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where C = (1−α+σ)Γ(σ+1)
Γ(2−α+σ) ; indeed, using the Euler change of variable y = s−t

T−t , we get

Dα
t|Tw1(t) := − 1

Γ(1− α)
D

[∫ T

t
(s− t)−α

(
1− s

T

)σ
ds

]
= − T−σ

Γ(1− α)
D

[
(T − t)1−α+σ

∫ 1

0
(y)−α(1− y)σ ds

]
= +

(1− α+ σ)B(1− α;σ + 1)
Γ(1− α)

T−σ(T − t)σ−α,

where B(.; .) stands for the beta function. Then, (2.13) follows using the relation

B(1− α;σ + 1) =
Γ(1− α)Γ(σ + 1)

Γ(2− α+ σ)
.

• If w2(t) =
(

1− t2

T 2

)`
+
, T > 0, ` >> 1, then, using the change of variable y = s−t

T−t , we
have

Dα
t|Tw2(t) =

T−2`

Γ(1− α)

∑̀
k=0

C1(`, k, α)T `−k(T − t)`+k−α, (2.16)

D1+α
t|T w2(t) =

T−2`

Γ(1− α)

∑̀
k=0

C2(`, k, α)T `−k(T − t)`+k−α−1, (2.17)

for all −T ≤ t ≤ T, α ∈ (0, 1), where
C1(`, k, α) := ck` (1− α+ `+ k)2`−k(−1)k Γ(k+`+1)Γ(1−α)

Γ(k+`+2−α) ,

C2(`, k, α) := (`+ k − α)C1(`, k, α),
ck` := `!

(`−k)!k! ;

so (
Dα
t|Tw2

)
(T ) = 0 ;

(
Dα
t|Tw2

)
(−T ) = C3(`, k, α) T−α, (2.18)

where

C3(`, k, α) :=
22`−α

Γ(1− α)

∑̀
k=0

ck` (1− α+ `+ k)2`−k(−1)k
Γ(k + `+ 1)Γ(1− α)

Γ(k + `+ 2− α)
.

We should mention that the investigation of properties of nonlinear fractional kinetic
equations is at its beginning stage and a number of important questions are not answered
yet.
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3 Local existence

In order to prove the existence of a local mild solution for the problem (1.1), we consider
the integral equation

u(t) = T (t)u0 +
∫ t

0
T (t− s)Jα0|s

(
|u|p−1u

)
ds, t ∈ [0, T ], (3.1)

where T (t) := e−t(−∆)β/2 . As, for every real number β, (−∆)β/2 is a positive definite self-
adjoint operator in L2(RN ), hence T (t) is a strongly continuous semigroup on L2(RN ) of
(2.1), for t > 0, generated by the fractional power −(−∆)β/2 (see Yosida [27]). In fact,
T (t) is an integral operator for all t > 0. It is represented as follows T (t)v = Sβ(t) ∗ v
(see [Prop. 3.3][20]), for all v ∈ L2(RN ), t > 0, where Sβ is given by (2.2) and u ∗ v is the
convolution of u and v.

Theorem 1 (Mild solution)
Given u0 ∈ C0(RN ) and p > 1, there exist a maximal time Tmax > 0 and a unique mild
solution u ∈ C([0, Tmax), C0(RN )) to the problem (1.1). In addition, if u0 ≥ 0, u0 6≡ 0, then
u(t) > 0 for all 0 < t < Tmax.
Moreover, if u0 ∈ Lr(RN )∩Hβ(RN ) for 1 ≤ r <∞, 0 < β ≤ 2, then u ∈ C([0, Tmax), Lr(RN )∩
Hβ(RN )).

Proof For arbitrary T > 0, we define a Banach space ET such that

ET :=
{
u ∈ L∞((0, T ), C0(RN )) : ||u||1 ≤ 2||u0||L∞

}
,

where ||.||1 := ||.||L∞((0,T ),L∞(RN )). Next, for every u ∈ ET , we define

Ψ(u) := T (t)u0 +
∫ t

0
T (t− s)Jα0|s

(
|u|p−1u

)
ds.

As usual, we prove the local existence by the Banach fixed point theorem.
Let u ∈ ET , by using (2.5), we obtain, if ||.||∞ := ||.||L∞(RN ),

||Ψ(u)||1 ≤ ||u0||∞ +
1

Γ(1− γ)
||
∫ t

0

∫ s

0
(s− σ)−γ ||u(σ)||p∞ dσ ds||L∞(0,T )

= ||u0||∞ +
1

Γ(1− γ)
||
∫ t

0

∫ t

σ
(s− σ)−γ ||u(σ)||p∞ ds dσ||L∞(0,T )

≤ ||u0||∞ +
T 2−γ

(1− γ)(2− γ)Γ(1− γ)
||u||p1

≤ ||u0||∞ +
T 2−γ2p||u0||p−1

L∞

(1− γ)(2− γ)Γ(1− γ)
||u0||∞.

Now, if we choose T such that

T 2−γ2p||u0||p−1
∞

(1− γ)(2− γ)Γ(1− γ)
≤ 1, (3.2)
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we conclude that ||Ψ(u)||1 ≤ 2||u0||∞, and then Ψ(u) ∈ ET .

Now, for u, v ∈ ET , we have

||Ψ(u)−Ψ(v)||1 ≤ 1
Γ(1− γ)

||
∫ t

0

∫ s

0
(s− σ)−γ |||u|p−1u(σ)− |v|p−1v(σ)||∞ dσ ds||L∞(0,T )

=
1

Γ(1− γ)
||
∫ t

0

∫ t

σ
(s− σ)−γ |||u|p−1u(σ)− |v|p−1v(σ)||∞ ds dσ||L∞(0,T )

≤ T 2−γ

(1− γ)(2− γ)Γ(1− γ)
|||u|p−1u− |v|p−1v||1

≤ p2p−1||u0||p−1
∞ T 2−γ

(1− γ)(2− γ)Γ(1− γ)
||u− v||1

≤ 1
2
||u− v||1,

thanks to the choice of T. Then, by the Banach fixed point theorem, there exists a unique
mild solution u ∈ ΠT , where ΠT := L∞((0, T ), C0(RN )), to the problem (1.1).
Next, using the uniqueness of solutions, we conclude the existence of a solution on a
maximal interval [0, Tmax) where

Tmax := sup {T > 0 : u is a solution to (1.1) in ΠT } .

Note that, using usual tools, we can prove that u ∈ C([0, Tmax), C0(RN )).
Finally, if u0 ∈ Lr(RN ), for 1 ≤ r <∞, then by repeating the fixed point argument in the
space

ET,β,r := {u ∈ L∞((0, T ), C0(RN ) ∩Hβ(RN ) ∩ Lr(RN )) :
||u||1 ≤ 2||u0||L∞ , ||u||∞,β ≤ 2||u0||Hβ , ||u||∞,r ≤ 2||u0||Lr},

instead of ET , where

||.||∞,β := ||.||L∞((0,T ),Hβ(RN )) , ||.||∞,r := ||.||L∞((0,T ),Lr(RN )),

and by estimating ||up||Hβ(RN ) by C||u||
p−1
L∞(RN )

||u||Hβ(RN ) (see Appendix.B) and ||up||Lr(RN )

by ||u||p−1
L∞(RN )

||u||Lr(RN ) in the contraction mapping argument, using (2.5), we obtain a
unique solution in ET,β,r; we conclude then that

u ∈ C([0, Tmax), C0(RN ) ∩Hβ(RN ) ∩ Lr(RN )).

Moreover, if u0 ≥ 0, then we can construct a nonnegative solution on some interval [0, T ]
by applying the fixed-point argument in the set E+

T = {u ∈ ET ; u ≥ 0}. In particular,
it follows from (3.1) that u(t) ≥ T (t)u0 > 0 on (0, T ]. It is not difficult to deduce that u
stays positive on (0, Tmax). �

Corollary 1 (Strong solution)
If u0 ∈ C0(RN ) ∩ Hβ(RN ), then, the mild solution u is a strong solution, i.e. u ∈
C([0, T ], Hβ(RN )) ∩ C1([0, T ], L2(RN )), for every 0 < T < Tmax, and satisfies (1.1) with
u(t = 0) = u0.
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Proof It suffices to see that as u ∈ C([0, T ], C0(RN ) ∩ Hβ(RN )), for 0 < T < Tmax,
then Jα0|t(|u|

p−1u) ∈ C([0, T ], L2(RN )) ∩ L1((0, T ), Hβ) and we conclude by [Prop. 4.1.6
p.52][5]. �

When Tmax =∞ we say that u is a global solution, and when Tmax <∞ we say that u blows
up in a finite time or that u is non-global and in this case we have lim

t→Tmax

||u(., t)||L∞(RN ) =
∞.

4 Blow-up of solutions

Now, we want to derive a blow-up result for Eq. (1.1).

Hereafter,
∫
QT

=
∫ T

0

∫
RN

for all 0 < T ≤ ∞.

Theorem 2 Let u0 ∈ C0(RN ) ∩Hβ(RN ) be such that u0 ≥ 0 and u0 6≡ 0. If

p ≤ 1 +
β(2− γ)

(N − β + βγ)+
:= p∗, or p <

1
γ
, (4.1)

then any solution to (1.1), with initial condition u0, blows-up in a finite time.
Note that in the case where p = p∗, β ∈ (0, 2) we take p > N

N−β with N > β.

Proof The proof is by contradiction. Suppose that u is a global solution to (1.1), then
u is a solution of (1.1) in C([0, T ], C0(RN ) ∩Hβ(RN )) ∩ C1([0, T ], L2) for all T > 0 such
that u(t) > 0 for all t ∈ [0, T ].
Now, we take ϕ(x, t) = (ϕ1(x))` ϕ2(t) with ϕ1(x) := Φ

(
|x|

B−1/βT 1/β

)
, ϕ2(t) := Ψ

(
t
T

)
,

where ` ≥ p
p−1 , 1 ≤ B < T large enough such as T → ∞ ; B → ∞, and Φ a smooth

non-increasing function such that

Φ(r) =
{

1 if 0 ≤ r ≤ 1,
0 if r ≥ 2,

0 ≤ Φ ≤ 1, |Φ′(r)| ≤ C1/r, for all r > 0, and

Ψ(s) =
{

(1− s)η if 0 ≤ s ≤ 1,
0 if s ≥ 1,

with η ≥ αp+1
p−1 .

Here B ≥ 1 is a fixed positive constant which plays some role in the case p = p∗, while in
the case p < p∗ we take B = 1. Then, multiplying, scalarly in L2, Eq. (1.4) by Dα

t|Tϕ, we
obtain ∫

QT

ut D
α
t|Tϕ+

∫
QT

(−∆)β/2u Dα
t|Tϕ =

∫
QT

Jα0|t(u
p)Dα

t|Tϕ. (4.2)
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Using (2.6) and integrating by parts the left hand side of (4.2) while in the right hand side
we use formula (2.10), we conclude that

−
∫
QT

u DDα
t|Tϕ+

[∫
RN

u Dα
t|Tϕ

]T
0

+
∫
QT

u(−∆)β/2Dα
t|Tϕ =

∫
QT

Dα
0|TJ

α
0|t(u

p)ϕ. (4.3)

Moreover, from (2.11), (2.12) and (2.15), we may write with ΣB = (0, T ) × ΩB, where
ΩB :=

{
x ∈ RN ; |x| ≤ 2B−1/βT 1/β

}
,∫

ΣB

up ϕdx dt + C T−α
∫

ΩB

(ϕ1(x))` u0(x) dx

=
∫

ΣB

u (ϕ1(x))`D1+α
t|T ϕ2(t) dx dt

+
∫

ΣB

u(−∆x)β/2 (ϕ1(x))`Dα
t|Tϕ2(t) dx dt. (4.4)

So, Ju’s inequality (−∆)β/2
(
ϕ`1
)
≤ `ϕ`−1

1 (−∆)β/2 (ϕ1) (see Appendix.A) will allow us to
write: ∫

ΣB

up ϕdx dt + C T−α
∫

ΩB

(ϕ1(x))` u0(x) dx

≤ C

∫
ΣB

u (ϕ1(x))`
∣∣∣D1+α

t|T ϕ2(t)
∣∣∣ dx dt

+ C

∫
ΣB

u (ϕ1(x))`−1
∣∣∣(−∆x)β/2ϕ1(x) Dα

t|Tϕ2(t)
∣∣∣ dx dt

= C

∫
ΣB

u ϕ1/pϕ−1/p (ϕ1(x))`
∣∣∣D1+α

t|T ϕ2(t)
∣∣∣ dx dt

+ C

∫
ΣB

u ϕ1/pϕ−1/p (ϕ1(x))`−1
∣∣∣(−∆x)β/2ϕ1(x) Dα

t|Tϕ2(t)
∣∣∣ dx dt. (4.5)

Therefore, as u0 ≥ 0, then, using Young’s inequality

ab ≤ 1
2p
a p +

2eq−1

p̃
b ep where a > 0, b > 0, pp̃ = p+ p̃, (4.6)

with {
a = u ϕ1/p,

b = ϕ−1/p (ϕ1(x))`
∣∣∣D1+α

t|T ϕ2(t)
∣∣∣ ,

in the first integral of the right hand side of (4.5) and with{
a = u ϕ1/p,

b = ϕ−1/p (ϕ1(x))`−1
∣∣∣(−∆x)β/2ϕ1(x) Dα

t|Tϕ2(t)
∣∣∣ ,
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in the second integral of the right hand side of (4.5), we obtain∫
ΣB

up ϕ(x, t) dx dt

≤ C
∫

ΣB

(ϕ1(x))` (ϕ2(t))−
1
p−1

∣∣∣D1+α
t|T ϕ2(t)

∣∣∣ep dx dt
+C

∫
ΣB

(ϕ1(x))`−ep (ϕ2(t))−
1
p−1

∣∣∣(−∆x)β/2ϕ1(x)Dα
t|Tϕ2(t)

∣∣∣ep dx dt. (4.7)

At this stage, we introduce the scaled variables: τ = T−1t, ξ = (T/B)−1/β x; using formula
(2.13) and (2.14) in the right hand-side of (4.7), we obtain:∫

ΣB

up(x, t) ϕ(x, t) dx dt ≤ C T−δB−N/β + C T−δB−N/β+ep, (4.8)

where δ := (1 + α)p̃ − 1 − (N/β), C = C(|Ω2| , |Ω3|), (|Ωi| stands for the measure of Ωi,
for i = 2, 3), with

Ω2 :=
{
ξ ∈ RN ; |ξ| ≤ 2

}
, Ω3 := {τ ≥ 0 ; τ ≤ 1} .

Now, noting that as

p ≤ p∗ or p <
1
γ
⇐⇒ δ ≥ 0 or p <

1
γ
, (4.9)

we have to distinguish three cases:

• The case p < p∗ (δ > 0): We take B = 1 and pass to the limit in (4.8), as T goes to ∞,
we get

lim
T→∞

∫ T

0

∫
|x|≤2T 1/β

up ϕ(x, t) dx dt = 0.

Using the dominated convergence theorem and the continuity in time and space of u, we
infer that ∫

Q∞

up(x, t) dx dt = 0 =⇒ u ≡ 0.

Contradiction.

• The case p = p∗ (δ = 0): Let’s recall here that B > 1 is sufficiently large. Then, from
inequality (4.8), using the the fact that p = p∗, we have∫

ΣB

up(x, t) ϕ(x, t) dx dt ≤ C B−N/β + C B−N/β+ep. (4.10)

Using p > N
N−β and taking the limit when T −→∞ and then B −→∞, we get:∫

Q∞

up dx dt = 0 =⇒ u ≡ 0, (4.11)

11



which is a contradiction.
Note that, in the case β = 2, it is not necessary to take the condition p > N

N−β with N > β.
Indeed, from (4.5), we may write∫

ΣB

up ϕdx dt

≤ C
∫

ΣB

u ϕ1/pϕ−1/p (ϕ1(x))`
∣∣∣D1+α

t|T ϕ2(t)
∣∣∣ dx dt

+ C

∫
∆B

u ϕ1/pϕ−1/p (ϕ1(x))`−1
∣∣∣∆xϕ1(x) Dα

t|Tϕ2(t)
∣∣∣ dx dt, (4.12)

where
∆B = (0, T )×

{
x ∈ RN ; B−1/βT 1/β ≤ |x| ≤ 2B−1/βT 1/β

}
.

Moreover, using Young’s inequality

ab ≤ 1
p
a p +

1
p̃
b ep where a > 0, b > 0, pp̃ = p+ p̃, (4.13)

with {
a = u ϕ1/p,

b = ϕ−1/p (ϕ1(x))`
∣∣∣D1+α

t|T ϕ2(t)
∣∣∣ ,

in the first integral of the right hand side of (4.12), and using Hölder’s inequality∫
∆B

ab dx dt ≤
(∫

∆B

a p dx dt

)1/p (∫
∆B

b ep dx dt
)1/ep

,

with {
a = u ϕ1/p,

b = ϕ−1/p (ϕ1(x))`−1
∣∣∣∆xϕ1(x) Dα

t|Tϕ2(t)
∣∣∣ ,

in the second integral of the right hand side of (4.12), we obtain∫
ΣB

up ϕ(x, t) dx dt

≤ C
∫

ΣB

(ϕ1(x))` (ϕ2(t))−
1
p−1

∣∣∣D1+α
t|T ϕ2(t)

∣∣∣ep
+C

(∫
∆B

up ϕ

)1/p(∫
∆B

(ϕ1(x))`−ep (ϕ2(t))−
1
p−1

∣∣∣∆xϕ1(x)Dα
t|Tϕ2(t)

∣∣∣ep)1/ep
. (4.14)

Taking account of the scaled variables: τ = T−1t, ξ = (T/B)−1/2 x, and the fact that
δ = 0, we get∫

ΣB

up(x, t) ϕ(x, t) dx dt ≤ C B−N/2 + C B
−Nep2+1

(∫
∆B

up ϕ

)1/p

. (4.15)
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Now, as

lim
T→∞

(∫
∆B

up ϕ

)1/p

= 0,

then, passing to the limit in (4.15), as T →∞, we get∫ ∞
0

∫
RN
up(x, t) dx dt ≤ C B−N/2.

Then, taking the limit when B goes to infinity, we obtain u ≡ 0, contradiction.

• For the case p < (1/γ), we repeat the same argument as in the case p < p∗ by choosing
the following function ϕ(x, t) = (ϕ1(x))` ϕ2(t) where ϕ1(x) = Φ (|x|/R) , ϕ2(t) = Ψ (t/T )
and R ∈ (0, T ) large enough such that T →∞; R→∞, with the same functions Φ and
Ψ as above. We then obtain∫ T

0

∫
C
up ϕdx dt + C T−α

∫
C

(ϕ1(x))` u0(x) dx

≤ C

∫ T

0

∫
C
u ϕ1/pϕ−1/p (ϕ1(x))`

∣∣∣D1+α
t|T ϕ2(t)

∣∣∣ dx dt
+ C

∫ T

0

∫
C
u ϕ1/pϕ−1/p(ϕ1(x))`−1

∣∣∣(−∆x)β/2ϕ1(x) Dα
t|Tϕ2(t)

∣∣∣ dx dt, (4.16)

where
C :=

{
x ∈ RN ; |x| ≤ 2R

}
.

Now, by Young’s inequality (4.6), with the same a and b, and using the fact that u0 ≥ 0,
we get ∫ T

0

∫
C
up ϕ ≤ C

∫ T

0

∫
C

(ϕ1(x))` (ϕ2(t))−
1
p−1

∣∣∣D1+α
t|T ϕ2(t)

∣∣∣ep
+ C

∫ T

0

∫
C

(ϕ1(x))`−ep (ϕ2(t))−
1
p−1

∣∣∣(−∆x)β/2ϕ1D
α
t|Tϕ2

∣∣∣ep .
Then, the new variables ξ = R−1x, τ = T−1t and (2.13) allow us to write:∫ T

0

∫
C
up(x, t) ϕ(x, t) dx dt ≤ C T 1−(1+α)ep RN + C T 1−αep RN−βep.

Taking the limit as T →∞, we infer, as p < 1
γ ⇐⇒ 1− αp̃ < 0, that∫ ∞

0

∫
C
u(x, t)p (ϕ1(x))` dx dt = 0.

Finally, by taking R→∞, we get a contradiction as u(x, t) > 0 for all x ∈ RN , t > 0. �
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4.0.1 Remarks

(1) We can extend our analysis to the equation

ut = −(−∆)β/2u+
1

Γ(1− γ)

∫ t

0

ψ(x, s)|u(s)|p−1u(s)
(t− s)γ

ds, x ∈ RN , (4.17)

with ψ ∈ L1
Loc(RN × (0,∞), ψ(t) ≥ 0 for all t ≥ 0, ψ 6≡ 0, ψ(B−1/βT 1/βξ, T τ) ≥ C > 0 in

the case p ≤ p∗ and ψ(Rξ, Tτ) ≥ C > 0 in the case p < 1
γ , for any 0 < R,B < T, τ ∈ [0, 1],

ξ ∈ [0, 2], 1 < p, 0 < β ≤ 2 and 0 < γ < 1.

(2) If we take β = 2 and v(x, t) = (Γ(1− γ))
1−γ
p−1 u(Γ(1 − γ)1/2x,Γ(1 − γ)t) where u is a

solution of (1.1), we recover the result in [6] as a particular case.

(3) We can take the nonlocal porous-medium spatio- fractional problem
∂tu+ (−∆)β/2|u|m−1u =

1
Γ(1− γ)

∫ t

0
(t− s)−γ |u|p−1u(s) ds x ∈ RN , t > 0,

u(x, 0) = u0(x) x ∈ RN ,

where 0 < β ≤ 2, 0 < γ < 1, 1 ≤ m < p, u0 ≥ 0 and u0 6≡ 0.
The threshold on p will be

p ≤ 1 +
(2− γ)(N(m− 1) + β)

(N − β + βγ)+
or p <

m

γ
.

5 Blow-up Rate

In this section, we study the blow-up rate for the parabolic problem (1.1) in the case of
β = 2.
We take the solution of (1.1) with an initial condition satisfying

u(., 0) = u0 ≥ 0, u0 6≡ 0 and u0 ∈ C0(RN ) ∩H2(RN ). (5.1)

The following lemma will be used in the proof of Theorem (3) below.

Lemma 1 Let u be a nonnegative classical global solution of

(ϕ)t = ∆ϕ+ Jα−∞|t(ϕ
p) in RN × R. (5.2)

Then, for

p ≤ p∗ or p <
1
γ
, (5.3)

we have u ≡ 0.
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Proof We repeat the same computations as in Theorem 2 with ϕ2(t) := Ψ
(
t2/T 2

)
instead of ϕ2(t) := Ψ (t/T ) , using (2.16)− (2.18), into account the following inequalites

Jα−∞|t(ϕ
p) ≥ Jα0|t(ϕ

p).

Moreover, we take ϕ`/p1 ϕ
−`/p
1 instead of ϕ1/pϕ−1/p in (4.5) − (4.12) and (4.16) to use the

Young and Hölder’s inequality.
Note that here, we use the ε−Young inequality

ab ≤ ε

2
ap + C(ε)bep,

by choosing 0 < ε < 1 small enough such that ϕ2(t) ≥ ε for all t ∈ R. �

Theorem 3 For p ≤ p∗ or p < 1
γ , let α1 := (2 − γ)/(p − 1) and u be the blowing-up

solution of (1.1), (5.1) in a finite time Tmax := T ∗. Then there are constants c, C > 0 such
that

c(T ∗ − t)−α1 ≤ sup
RN

u(., t) ≤ C(T ∗ − t)−α1 , t ∈ (0, T ∗). (5.4)

Proof We decompose the proof into two parts:

• The upper blow-up rate estimate. Let

M(t) := sup
RN×(0,t]

u, t ∈ (0, T ∗).

Clearly, M is positive, continuous and nondecreasing on (0, T ∗). As limt→T ∗M(t) = ∞,
then for all t0 ∈ (0, T ∗) we can define

t+0 := t+(t0) := max{t ∈ (t0, T ∗) : M(t) = 2M(t0)}.

Choose A ≥ 1 and let

λ0 := λ(t0) :=
(

1
2A

M(t0)
)−1/(2α1)

. (5.5)

we claim that
λ−2(t0)(t+0 − t0) ≤ D, t0 ∈

(
T ∗

2
, T ∗

)
, (5.6)

where D is a positive constant which does not depend on t0.
We proceed by contradiction. If (5.6) were false, then there would exist a sequence tn → T ∗

such that
λ−2
n (t+n − tn) −→∞,

where λn = λ(tn) and t+n = t+(tn). For each tn choose

(x̂n, t̂n) ∈ RN × (0, tn] such that u(x̂n, t̂n) ≥ 1
2
M(tn). (5.7)
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Obviously, M(tn)→∞; hence, t̂n → T ∗. Next, rescale the function u as

ϕλn(y, s) := λ2α1
n u(λny + x̂n, λ

2
ns+ t̂n), (y, s) ∈ RN × In(T ∗), (5.8)

where In(t) := (−λ−2
n t̂n, λ

−2
n (t− t̂n)) for all t > 0. Then ϕλn is a solution of

(ϕ)s = ∆ϕ+ Jα−λ−2
n btn|t(ϕp) in RN × In(T ∗), (5.9)

such that ϕλn(0, 0) ≥ A, and

0 ≤ ϕλn ≤ λ2α1
n M(t+n ) = λ2α1

n 2M(tn) = 4A in RN × In(t+n ),

thanks to (5.5) and the definition of t+n .
It follows, from the parabolic interior regularity theory (cf. [17]), that there is µ ∈ (0, 1)
such that the sequence ϕλn is bounded in the Cµ,µ/2loc (RN × R)-norm by a constant that
does not depend on n. Similar uniform estimates for Jα−λ−2

n btn|t(ϕp) follow if µ is sufficiently

small. The parabolic interior Schauder’s estimates imply now that the C2+µ,1+µ/2

loc (RN ×
R)-norm of ϕλn is uniformly bounded. Hence, we obtain a subsequence converging in
C

2+µ,1+µ/2
loc (RN × R) to a strong solution ϕ of

(ϕ)s = ∆ϕ+ Jα−∞|s(ϕ
p) in RN × (−∞,+∞).

Then using Lemma (1) we infer that ϕ ≡ 0. Contradiction with the fact that ϕ(0, 0) ≥
A > 1. This proves (5.6).
Next we use an idea from Hu [10]. From (5.5) and (5.6) it follows that

(t+0 − t0) ≤ D(2A)1/α1M(t0)−1/α1 for any t0 ∈
(
T ∗

2
, T ∗

)
.

Fix t0 ∈
(
T ∗

2 , T
∗) and denote t1 = t+0 , t2 = t+1 , t3 = t+2 , .... Then

tj+1 − tj ≤ D(2A)1/α1M(tj)−1/α1 ,

M(tj+1) = 2M(tj),

j = 0, 1, 2, .... Consequently,

T ∗ − t0 =
∞∑
j=0

(tj+1 − tj) ≤ D(2A)1/α1

∞∑
j=0

M(tj)−1/α1

= D(2A)1/α1M(t0)−1/α1

∞∑
j=0

2−j/α1 .

And finally we conclude that

u(x, t0) ≤M(t0) ≤ C(T ∗ − t0)−α1 , ∀ t0 ∈ (0, T ∗)
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where

C = 2A

D ∞∑
j=0

2−j/α1

α1

,

and consequently
sup
RN

u(., t) ≤ C(T ∗ − t)−α1 , ∀ t ∈ (0, T ∗).

• The lower blow-up rate estimate. If we repeat the same proof of the local existence of
Theorem 1, by taking ||u||1 ≤ θ instead of ||u||1 ≤ 2||u0||∞ in the space ET for all positive
constant θ > 0 and all 0 < t < T, then the condition (3.2) of T will be:

||u0||∞ + CT 2−γθp ≤ θ, (5.10)

and then, like before, we infer that ||u(t)||∞ ≤ θ for (almost) all 0 < t < T. Consequently,
if ||u0||∞ + Ct2−γθp ≤ θ, then ||u(t)||∞ ≤ θ. Applying this to any point in the trajectory,
we see that if 0 ≤ s < t and

(t− s)2−γ ≤ θ − ||u(s)||∞
Cθp

, (5.11)

then ||u(t)||∞ ≤ θ, for all 0 < t < T.
Moreover, if 0 ≤ s < T ∗ and ||u(s)||∞ < θ, then:

(T ∗ − s)2−γ >
θ − ||u(s)||∞

Cθp
. (5.12)

Indeed, arguing by contradiction and assume that for some θ > ||u(s)||∞ and all t ∈ (s, T ∗)
we have

(t− s)2−γ ≤ θ − ||u(s)||∞
Cθp

,

then, using (5.11), we infer that ||u(t)||∞ ≤ θ for all t ∈ (s, T ∗); this contradicts with the
fact that ||u(t)||∞ →∞ as t→ T ∗.
Next, for example, letting θ = 2||u(s)||∞ in (5.12), we see that for 0 < s < T ∗ we have:

(T ∗ − s)2−γ > C
′ ||u(s)||1−p∞ ,

and by the positivity and the continuity of u we get

c(T ∗ − s)−α1 < sup
x∈RN

u(x, s), ∀ s ∈ (0, T ∗) (5.13)

�
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6 Global existence

In this section, we prove the existence of global solutions of (1.1) with initial data small
enough. We give a similar proof than that in [6] just for the seek of completness. In the
following, we use the notation psc := (p−1)N

β(2−γ) . As p
∗ > 1 + β(2−γ)

N , we note that p > p∗ ⇒
psc > 1.

Theorem 4 Let u0 ∈ C0(RN ) ∩ Lpsc(RN ). If

p > max{1
γ

; p∗}, (6.1)

and ||u0||Lpsc is sufficiently small, then u exists globally.

Note that we can take |u0(x)| ≤ C|x|−
β(2−γ)
p−1 instead of u0 ∈ Lpsc .

Proof As p > 1
γ , then we have the possibility to take a positive constant q > 0 so that:

2− γ
p− 1

− 1
p
<
N

βq
<

1
p− 1

, q ≥ p. (6.2)

It follows, using (6.1), that

q >
N(p− 1)

β
> psc > 1. (6.3)

Let
b :=

N

βpsc
− N

βq
=

2− γ
p− 1

− N

βq
. (6.4)

Then, using (6.2)− (6.4), we conclude that

b >
1− γ
p− 1

> 0, pb < 1,
N(p− 1)

βq
+ (p− 1)b+ γ = 2. (6.5)

As u0 ∈ Lpsc , using (2.4) and (6.4), we get, for all t > 0,

sup
t>0

tb||e−t(−∆)β/2u0||Lq ≤ C||u0||Lpsc = η <∞. (6.6)

Set
Ξ :=

{
u ∈ L∞((0,∞), Lq(RN )); sup

t>0
tb||u(t)||Lq ≤ δ

}
, (6.7)

where δ > 0 is to be chosen sufficiently small. If

dΞ(u, v) = sup
t>0

tb||u(t)− v(t)||Lq , ∀u, v ∈ Ξ, (6.8)

then (Ξ, d) is a complete metric space. Given u ∈ Ξ, let’s set:

Φ(u)(t) := e−t(−∆)β/2u0 +
1

Γ(1− γ)

∫ t

0
e−(t−s)(−∆)β/2

∫ s

0
(s− σ)−γ |u|p−1u(σ) dσ ds, (6.9)
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for all t ≥ 0. We have by (2.4), (6.6) and (6.7)

tb||Φ(u)(t)||Lq ≤ η + Ctb
∫ t

0
(t− s)−

N
β

( p
q
− 1
q

)
∫ s

0
(s− σ)−γ ||up(σ)||

L
q
p
dσ ds

≤ η + Cδptb
∫ t

0

∫ s

0
(t− s)−

N(p−1)
βq (s− σ)−γσ−bp dσ ds. (6.10)

Next, using (6.2) and pb < 1, we get∫ t

0

∫ s

0

(t− s)−
N
βq

(p−1)

(s− σ)γ
σ−bp dσ ds =

(∫ 1

0
(1− σ)−γσ−bp dσ

)∫ t

0

(t− s)−
N(p−1)
βq

sbp+γ−1
ds

= Ct
−N(p−1)

βq
−bp−γ+2 = Ct−b, (6.11)

for all t ≥ 0. So, we deduce from (6.10)− (6.11) that

tb||Φ(u)(t)||Lq ≤ η + Cδp. (6.12)

Therefore, if η and δ are chosen small enough so that η + Cδp ≤ δ, we see that Φ :
Ξ → Ξ. Similar calculations show that (assuming η and δ small enough) Φ is a strict
contraction, so it has a fixed point u ∈ Ξ which is a solution of (1.1). Now, we show that
u ∈ C([0,∞), C0(RN )).

First, we show that u ∈ C([0, T ], C0(RN )) if T > 0 is sufficiently small. Indeed, note
that the above argument shows uniqueness in ΞT , where, for any T > 0,

ΞT :=
{
u ∈ L∞((0, T ), Lq(RN )); sup

0<t<T
tb||u(t)||Lq ≤ δ

}
.

Let ũ be the local solution of (1.1) constructed in Theorem 1. Since u0 ∈ C0(RN )∩Lpsc(RN ),
then, using (6.3), u0 ∈ Lq(RN ), we have ũ ∈ C([0, Tmax), Lq(RN )) by Theorem 1. It follows
that sup0<t<T t

b||ũ(t)||Lq ≤ δ if T > 0 is sufficiently small. Therefore, by uniqueness, u = ũ
on [0, T ], so that u ∈ C([0, T ], C0(RN )).

Next, we show that u ∈ C([T,∞), C0(RN )) by a bootstrap argument. Indeed, for
t > T, we write

u(t)− e−t(−∆)β/2u0 =
∫ t

0
e−(t−s)(−∆)β/2

∫ T

0
(s− σ)−γ |u|p−1u(σ) dσ ds

+
∫ t

0
e−(t−s)(−∆)β/2

∫ s

T
(s− σ)−γ |u|p−1u(σ) dσ ds

≡ I1(t) + I2(t).

Since u ∈ C([0, T ], C0(RN )), it follows that I1 ∈ C([T,∞), C0(RN )). Also, by the calcula-
tions used to construct the fixed point, using the fact that t−b ≤ T−b < ∞ and pq > q,
I1 ∈ C([T,∞), Lq(RN )). Next, note that N

β (pq −
1
q ) < 1 by (6.3). Therefore, there exists

r ∈ (q,∞] such that
N

β
(
p

q
− 1
r

) < 1. (6.13)
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Given T < s < t (the case of s < T < t is obvious). Since u ∈ L∞((0,∞), Lq(RN )), we
have |u|p−1u ∈ L∞((T, s), L

q
p (RN )), and it easily follows, using (2.4) and (6.13), that I2 ∈

C([T,∞), Lr(RN )). As the terms e−·(−∆)β/2u0 and I1 both belong to C([T,∞), C0(RN ))∩
C([T,∞), Lq(RN )), we see that u ∈ C([T,∞), Lr(RN )). Iterating this procedure a finite
number of times, we deduce that u ∈ C([T,∞), C0(RN )). This completes the proof.

7 Necessary conditions for local and global existence

In this section, we establish necessary conditions for the existence of local and global
solutions to the problem (1.1); these conditions depend on the behavior of the initial
condition for large x.

Theorem 5 (Necessary conditions for global existence)
Let u0 ∈ C0(RN ) ∩ Hβ(RN ), u0 ≥ 0, 0 < β ≤ 2 and p > 1. If u is a global solution to
problem (1.1), then there is a positive constant C > 0 such that

lim
|x|→∞

(u0(x)|x|
β(2−γ)
p−1 ) ≤ C. (7.1)

Proof We repeat the same calculation as in the proof of Theorem 1 by taking, for
0 < R ≤ ∞ sufficiently large, ϕ(x, t) := ϕ1(x)ϕ2(t) := Φ (|x|/R) Ψ

(
t/Rβ

)
instead of the

one chosen in Theorem 1, where, for x ∈ RN and R = 1, 0 ≤ ϕ1 ∈ Hβ(RN ) ∩ L∞(RN )
is the first eigenfunction of the fractional laplacian operator (−∆x)β/2, associated to the
first eigenvector λ1 := inf{||u||Hβ/2 ; ||u||L2 = 1 and u = 0 in Bc

2} where Bc
2 is the ball of

center 0 and radius 2, and, for all s > 0,

Ψ(s) =
{

(1− s)` if 0 ≤ s ≤ 1,
0 if s ≥ 1,

with ` large enough. Then, as for the estimate (4.7), we obtain, with
Σ2 :=

{
(x, t) ∈ RN × (0,∞); |x| ≤ 2R, t ≤ Rβ

}
,∫

Σ2

up ϕdx dt+ C R−αβ
∫
|x|≤2R

u0(x)ϕ1(x) dx

≤ C
∫

Σ2

ϕ1(x) (ϕ2(t))−
1
p−1

∣∣∣D1+α
t|Rβϕ2(t)

∣∣∣ep dx dt
+C

∫
Σ2

(ϕ1(x))−
1
p−1 (ϕ2(t))−

1
p−1

∣∣∣(−∆x)β/2ϕ1(x)Dα
t|Rβϕ2(t)

∣∣∣ep dx dt, (7.2)

where α := 1 − γ and p̃ := p/(p − 1). If we take the scaled variables τ = t/Rβ, ξ = x/R
and using the fact that (−∆x)β/2ϕ1(x) = R−βλ1ϕ1(x) and u ≥ 0, then (7.2) implies

C R−αβ
∫
|ξ|≤2

u0(Rξ)Φ(|ξ|) dξ
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≤ C(R)
∫
|ξ|≤2

Φ(|ξ|) dξ

= C(R)
∫
|ξ|≤2

|Rξ|β(1+α)(ep−1)|Rξ|β(1+α)(1−ep)Φ(|ξ|) dξ

≤ C(R)(2R)β(1+α)(ep−1)

∫
|ξ|≤2

|Rξ|β(1+α)(1−ep)Φ(|ξ|) dξ (7.3)

where C(R) = Rβ−(1+α)βep(C + Cλ1).
Using the estimate

inf
|ξ|>1

(u0(Rξ)|Rξ|β(1+α)(ep−1))
∫
|ξ|≤2

|Rξ|β(1+α)(1−ep)Φ(|ξ|) dξ ≤
∫

1<|ξ|≤2
u0(Rξ)Φ(|ξ|) dξ

≤
∫
|ξ|≤2

u0(Rξ)Φ(|ξ|) dξ

in the right-hand side of (7.3), we conclude, after dividing by the term
∫
|ξ|≤2 |Rξ|

β(1+α)(1−ep)Φ(|ξ|) dξ
that

inf
|ξ|>1

(u0(Rξ)|Rξ|β(1+α)(ep−1)) ≤ C(R)Rαβ(2R)β(1+α)(ep−1) ≤ C. (7.4)

Passing to the limit in (7.4), as R → ∞, and taking account of the continuity of u0, we
obtain

lim
|x|→∞

(u0(x)|x|β(1+α)(ep−1)) = lim inf
|x|→∞

(u0(x)|x|β(1+α)(ep−1)) ≤ C.

�

Corollary 2 (sufficient conditions for the nonexistence of global solution)
Let u0 ∈ C0(RN ) ∩Hβ(RN ), u0 ≥ 0, 0 < β ≤ 2 and p > 1. If

lim
|x|→∞

(u0(x)|x|
β(2−γ)
p−1 ) = +∞,

then the problem (1.1) cannot have a global solution. �

Next, we give a necessary condition for local existence where we obtain a similar estimate
of T found in the proof of Theorem 1, as |x| goes to infinity.

Theorem 6 (Necessary conditions for local existence)
Let u0 ∈ C(RN )∩L∞(RN )∩Hβ(RN ), u0 ≥ 0, 0 < β ≤ 2 and p > 1. If u is a local solution
to problem (1.1) on [0, T ] where 0 < T < +∞, then we have the estimates

lim
|x|→∞

(u0(x)) ≤ C T
− 2−γ
p−1 , (7.5)

for some positive constant C > 0.
Note that, if A := lim|x|→∞(u0(x)), then we obtain a similar estimate as that found in
(3.2),

T 2−γAp−1

Cp−1
≤ 1.
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Proof We take, for 0 < R ≤ ∞ sufficiently large, ϕ(x, t) := ϕ1(x)ϕ2(t) := Φ
(
|x|
R

)
Ψ
(
t
T

)
instead of the one chosen in Theorem 5, where, for x ∈ RN and R = 1, 0 ≤ ϕ1 ∈
Hβ(RN )∩L∞(RN ) is the first eigenfunction, for the fractional laplacian operator (−∆x)β/2,
relative to the first eigenvector λ1 := inf{||u||Hβ/2 ; ||u||L2 = 1 and u = 0 in Bc

2}. Then, as
(7.2), we obtain, with Σ3 :=

{
(x, t) ∈ RN × (0,∞); |x| ≤ 2R, t ≤ T

}
,∫

Σ3

up ϕdx dt+ C T−α
∫
|x|≤2R

u0(x)ϕ1(x) dx

≤ C
∫

Σ3

ϕ1(x) (ϕ2(t))−
1
p−1

∣∣∣D1+α
t|T ϕ2(t)

∣∣∣ep dx dt
+C

∫
Σ2

(ϕ1(x))−
2
p−1 (ϕ2(t))−

1
p−1

∣∣∣(−∆x)β/2ϕ1(x)Dα
t|Tϕ2(t)

∣∣∣ep dx dt. (7.6)

where α := 1− γ and p̃ := p
p−1 . If we take the scaled variables τ = t

T , ξ = x
R and use the

fact that (−∆x)β/2ϕ1(x) = R−βλ1ϕ1(x) and u ≥ 0, then (7.6) implies

C T−α
∫
|ξ|≤2

u0(Rξ)Φ(|ξ|) dξ ≤
(
C T 1−(1+α)ep + Cλ1 T

1−αepR−βep)∫
|ξ|≤2

Φ(|ξ|) dξ;

so ∫
|ξ|≤2

u0(Rξ)Φ(|ξ|) dξ ≤ C(R, T )
∫
|ξ|≤2

Φ(|ξ|) dξ (7.7)

where C(R, T ) = C T (1+α)(1−ep) + C T 1+α(1−ep)R−βep.
Using the estimate

inf
|ξ|>1

(u0(Rξ))
∫
|ξ|≤2

Φ(|ξ|) dξ ≤
∫

1<|ξ|≤2
u0(Rξ)Φ(|ξ|) dξ

≤
∫
|ξ|≤2

u0(Rξ)Φ(|ξ|) dξ

in the left-hand side of (7.7), we conclude, after dividing by the term
∫
|ξ|≤2 Φ(|ξ|) dξ, that

inf
|ξ|>1

(u0(Rξ)) ≤ C(R, T ). (7.8)

Passing to the limit in (7.8), as R → ∞, and taking account of the continuity of u0, we
obtain

lim
|x|→∞

(u0(x)) = lim inf
|x|→∞

(u0(x)) ≤ C T (1+α)(1−ep) = C T
− 2−γ
p−1 .

�

Appendix.A

We give a proof of Ju’s inequality (see proposition 3.3 in [11]), in dimension N where
δ ∈ [0, 2] and q ≥ 1, for all nonnegative Schwartz function ψ (in general case)

(−∆)δ/2ψq ≤ qψq−1(−∆)δ/2ψ. (7.9)
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The cases δ = 0, δ = 1 and δ = 2 are obvious.
• If δ ∈ (0, 1), we have

(−∆)δ/2ψ(x) = −cN (δ)
∫

RN

ψ(x+ z)− ψ(x)
|z|N+δ

dz, ∀ x ∈ RN , (7.10)

where cN (δ) = δΓ(N+δ
2

)

2π
N
2 +δΓ(1− δ

2
)
. Then

(ψ(x))q−1(−∆)δ/2ψ(x) = −cN (δ)
∫

RN

(ψ(x))q−1ψ(x+ z)− (ψ(x))q

|z|N+δ
dz.

The case q = 1 is clear. If q > 1, then by Young’s inequality we have

(ψ(x))q−1ψ(x+ z) ≤ q − 1
q

(ψ(x))q +
1
q

(ψ(x+ z))q.

Therefore, we infer

(ψ(x))q−1(−∆)δ/2ψ(x) ≥ −cN (δ)
q

∫
RN

(ψ(x+ z))q − (ψ(x))q

|z|N+δ
dz =

1
q

(−∆)δ/2(ψ(x))q.

• If δ ∈ (1, 2), we have

(−∆)δ/2ψ(x) = −cN (δ)
∫

RN

ψ(x+ z)− ψ(x)−∇ψ(x).z
|z|N+δ

dz, ∀ x ∈ RN . (7.11)

Then by the similar process, we have

(ψ(x))q−1(−∆)δ/2ψ(x) ≥ −cN (δ)
∫

RN

1
q ((ψ(x+ z))q − (ψ(x))q)− (∇ψ(x).z)(ψ(x))q−1

|z|N+δ
dz

=
−cN (δ)

q

∫
RN

(ψ(x+ z))q − (ψ(x))q −∇(ψ(x))q.z
|z|N+δ

dz

=
1
q

(−∆)δ/2(ψ(x))q.

Appendix.B

For all ψ ∈ L∞(RN ) ∩Hδ(RN ), we have the estimate

||ψq||Hδ ≤ C||ψ||q−1
L∞ ||ψ||Hδ . (7.12)

The case δ = 1 is obvious, while for the rest we distinguish 3 cases:
• If δ ∈ (0, 1), using the Mean value theorem and the following equivalent norm of ||.||Hδ

(see Th. 7.48 p. 214 in [1]), we have:

||ψq||2Hδ = ||ψq||2L2 +
∫

RN

∫
RN

(ψq(x)− ψq(y))2

|x− y|N+2δ
dx dy
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= ||ψq||2L2 +
∫

RN

∫
RN

(
qzq−1(ψ(x)− ψ(y))

)2
|x− y|N+2δ

dx dy

≤ q2||ψq−1||2L∞

[
||ψ||2L2 +

∫
RN

∫
RN

(ψ(x)− ψ(y))2

|x− y|N+2δ
dx dy

]
≤ q2||ψ||2(q−1)

L∞ ||ψ||2Hδ ,

where min(ψ(x), ψ(y)) < z < max(ψ(x), ψ(y)) for every x, y ∈ RN .

• If δ ∈ (1, 2), by the equivalent norm of ||.||Hδ (see Th. 7.48 p. 214 in [1]), we obtain:

||ψq||2Hδ = ||ψq||2H1 +
∑
|α|=1

∫
RN×RN

(Dαψq(x)−Dαψq(y))2

|x− y|N+2(δ−1)
dx dy

= ||qψq−1∇ψ||2L2 +
∑
|α|=1

∫
RN×RN

(Dα(ψq(x)− ψq(y)))2

|x− y|N+2(δ−1)
dx dy

≤ q2||ψ||2(q−1)
L∞ ||ψ||2H1 +

∑
|α|=1

∫
RN×RN

(
Dα(qzq−1(ψ(x)− ψ(y)))

)2
|x− y|N+2(δ−1)

dx dy

≤ q2||ψ||2(q−1)
L∞ ||ψ||2Hδ ,

where z is like above.

• If δ = 2, using the definition of ∆, we get:

||ψq||2H2 := ||(−∆)ψq||2L2

= ||q(q − 1)ψq−2|∇ψ|2 + qψq−1(−∆)ψ||2L2

≤ q2(q − 1)2||ψq−2|∇ψ|2||2L2 + q2||ψq−1(−∆)ψ||2L2

≤ q2(q − 1)2||ψ||2(q−2)
L∞ |||∇ψ|2||2L2 + q2||ψ||2(q−1)

L∞ ||(−∆)ψ||2L2

= q2(q − 1)2||ψ||2(q−2)
L∞ ||∇ψ||4L4 + q2||ψ||2(q−1)

L∞ ||ψ||2H2

≤ q2(q − 1)2||ψ||2(q−2)
L∞

C
∑
|α|=2

||Dαψ||L2

1/2

||ψ||1/2L∞


4

+ q2||ψ||2(q−1)
L∞ ||ψ||2H2

≤ C q2(q − 1)2||ψ||2(q−1)
L∞

∑
|α|=2

||Dαψ||L2

2

+ q2||ψ||2(q−1)
L∞ ||ψ||2H2

≤ C||ψ||2(q−1)
L∞ ||ψ||2Hδ

thanks to the Gagliardo-Nirenberg inequality see [Th. 1.3.4][5]. Finally, taking the follow-
ing equivalent norm of ‖.‖H2 , to conclude that

‖ψq‖2H2 = ‖ψq‖2L2 + ‖∇(ψq)‖2L2 + ‖(−4)(ψq)‖2L2 ≤ C‖ψ‖2(q−1)
L∞

‖ψ‖2H2 .

24



References

[1] R. A. Adams, Sobolev spaces, Academic press New York 1975.

[2] R. Balescu, V-Langevin Equations, Continuous Time RandomWalks and Fractional
Diffusion, arXiv: 0704.2517v1 [Physics.plasma-ph] 19 April 2007.

[3] M. Birkner, J. A. Lopez-Mimbela and A. Wakolbinger, Blow-up of semilinear
PDE’s at the critical dimension. A probabilistic approach (English summary), Proc.
Amer. Math. Soc. 130 (2002), no. 8, 2431− 2442 (electronic).

[4] M. Chlebik and M. Fila, From critical exponents to blow-up rates for parabolic
problems, Rend. Mat. Appl. (7) 19 (4) (1999), 449− 470.

[5] T. Cazenave and A. Haraux, Introduction aux problèmes d’évolution semi-
linéaires, Ellipses, Paris, (1990).

[6] T. Cazenave, F. Dickstein, F. D. Weissler, An equation whose Fujita critical
exponent is not given by scaling, Nonlinear Analysis 68 (2008), 862− 874.

[7] M. Fila and P. Quittner, The Blow-Up Rate for a Semilinear Parabolic System,
J. of Mathematical Analysis and Applications 238 (1999), 468− 476.

[8] H. Fujita, On the blowing up of solutions of the problem for ut = ∆u+u1+α, J. Fac.
Sci. Univ. Tokyo 13 (1966), 109− 124.

[9] M. Guedda and M. Kirane, Criticality for some evolution equations, Differential
Equations 37 (2001), 511− 520.

[10] B. Hu, Remarks on the blowup estimate for solutions of the heat equation with a
nonlinear boundary condition, Differential Integral Equations 9 (1996), 891− 901.

[11] N. Ju, The Maximum Principle and the Global Attractor for the Dissipative 2-D
Quasi-Geostrophic Equations, Comm. Pure. Appl. Ana. (2005), 161− 181.

[12] W. E. Kastenberg, Space dependent reactor kinetics with positive feed-back, Nuk-
leonik, 11 (1968), 126− 130.

[13] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of
Fractional Differential Equations, 2006.

[14] M. Kirane, Y. Laskri, N.-e. Tatar, Critical exponents of Fujita type for certain
evolution equations and systems with Spatio-Temporal Fractional derivatives, J. Math.
Anal. Appl. 312 (2005), 488− 501.

[15] K. Kobayashi, On some semilinear evolution equations with time-lag, Hiroshima
Math. J. 10 (1980), 189− 227.

25



[16] M. Kirane and M. Qafsaoui, Global nonexistence for the cauchy problem of some
nonlinear Reaction-Diffusion systems, J. Math. Analysis and Appl. 268 (2002), 217−
243.

[17] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and
Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968.

[18] E. Mitidieri and S. I. Pohozaev, A priori estimates and blow-up of solutions to
nonlinear partial differential equations and inequalities, Proc. Steklov. Inst. Math. 234
(2001), 1− 383.

[19] E. Mitidieri and S. I. Pohozaev, Nonexistence of weak solutions for some degen-
erate elliptic and parabolic problems on RN , J. Evol. Equ. 1 (2001), 189− 220.

[20] S. Miyajima and H. Shindoh, Gaussian Estimates of Order α and Lp-Spectral
Independence of Generators of C0-Semigroups, Positivity 11 (2007), 15− 39.

[21] M. Nagasawa and T. Sirao, Probabilistic treatment of the blowing up of solutions
for a nonlinear integral equation, Trans. Amer. Math. Soc. 139 (1969), 301− 310.

[22] I. M. Sokolov, J. Klafter, From diffusion to anomalous diffusion: a century after
Einstein’s Brownian Motion, Chaos 15 (2005), 6103− 6109.

[23] I. M. Sokolov, J. Klafter, A. Bluman, Fractional kinetics, Physics Today,
november 2002.

[24] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives,
Theory and Applications, Gordon and Breach Science Publishers, 1987.

[25] P. Souplet, Blow-up in nonlocal reaction–diffusion equations, SIAM J. Math. Anal.
29 (1998), 1301− 1334.

[26] P. Souplet, Monotonicity of solutions and blow-up for semilinear parabolic equations
with nonlinear memory, Z. angew. Math. Phys. 55 (2004), 28− 31.

[27] K. Yosida, Functional Analysis, sixth Edition, Springer-Verlag, Berlin Heidelberg,
New York 1980.

[28] G. M. Zaslavsky, Chaos, Fractionak kinetics, and anomalous transport, Physics
Reports, 371 (2002), 461− 580.

26


