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FORMAL GEOMETRIC QUANTIZATION II

PAUL-EMILE PARADAN

ABSTRACT. In this paper we pursue the study of formal geometric quantization
of non-compact Hamiltonian manifolds. Our main result is the proof that two
quantization process coincide. This fact was obtained by Ma and Zhang in the
preprint Arxiv:0812.3989 by completely different means.

CONTENTS

Introduction and statement of results
Quantizations of non-compact manifolds
Proof of Theorem D

Other properties of Q%

. Example: the cotangent bundle of an orbit
References

T oo

In the previous article [@], we have studied some functorial properties of the
“formal geometric quantization” process Q~°°, which is defined on proper Hamil-
tonian manifolds, e.g. non-compact Hamiltonian manifolds with proper moment
map.

There is another way, denoted Q%, of quantizing proper Hamiltonian manifolds
by localizing the index of the Dolbeault Dirac operator on the critical points of the
square of the moment map [@, @, @]

The main purpose of this paper is to provide a geometric proof that the quanti-
zation process @~ and Q% coincide. This fact was proved by Ma and Zhang in
the recent preprint [@] by completely different means.

Keywords: moment map ; symplectic reduction ; geometric quantization ; transver-
sally elliptic symbol.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let us first recall the definition of the geometric quantization of a smooth and
compact Hamiltonian manifold. Then we show two way of extending the notion of
geometric quantization to the case of a non-compact Hamiltonian manifold.

Let K be a compact connected Lie group, with Lie algebra €. In the Kostant-
Souriau framework, a Hamiltonian K-manifold (M, Q, ®) is pre-quantized if there
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2 PAUL-EMILE PARADAN

is an equivariant Hermitian line bundle L with an invariant Hermitian connection

V such that
(1.1) L(X)=Vx, =i(® X) and V?=—iQ,

for every X € t. Here Xy is the vector field on M defined by Xas(m) = %e*txmb.

The data (L, V) is also called a Kostant-Souriau line bundle, and ® : M — ¢* is
the moment map. Remark that conditions (m) imply via the equivariant Bianchi
formula the relation

(1.2) WX ) = —d(®,X), Xet.

Let us recall the notion of geometric quantization when M is compact. Choose
a K-invariant almost complex structure J on M which is compatible with € in
the sense that the symmetric bilinear form (-, J-) is a Riemannian metric. Let
Jr, be the Dolbeault operator with coefficients in L, and let 52 be its (formal)
adjoint. The Dolbeault-Dirac operator on M with coefficients in L is Dy, = 0, +5*L,
considered as an elliptic operator from A%¢ve"(M, L) to A%°4 (M, L). Let R(K)
be the representation ring of K.

Definition 1.1. The geometric quantization of a compact Hamiltonian K -manifold
(M,Q,®) is the element Qg (M) € R(K) defined as the equivariant index of the
Dolbeault-Dirac operator Dry,.

Let us consider the case of a proper Hamiltonian K-manifold M: the manifold
is (perhaps) non-compact but the moment map ® : M — €* is supposed to
be proper. Under this properness assumption, one define the formal geometric
quantization of M as an element Q°°(M) that belongs to R~>°(K) [Bd, RT]. Let
us recall the definition.

Let T be a maximal torus of K. Let t* be the dual of the Lie algebra of T
containing the weight lattice A* : a € A* if i : t — iR is the differential of a
character of T'. Let Cx C t* be a Weyl chamber, and let K:=A"N Ck be the set
of dominant weights. The ring of characters R(K) has a Z-basis V#K pneK: V#K
is the irreducible representation of K with highest weight .

A representation E of K is admissible if it has finite K-multiplicities :
dim(homg (V,, E)) < oo for every u € K. Let R=°(K) be the Grothendieck
group associated to the K-admissible representations. We have an inclusion map
R(K) — R™>°(K) and R~>°(K) is canonically identify with homyz(R(K),Z).

For any p € K which is a regular value of moment map ®, the reduced space (or
symplectic quotient) M, := ® (K - u)/K is a compact orbifold equipped with a
symplectic structure Q,,. Moreover L, := (L|g-1(,y)®C_,)/ K, is a Kostant-Souriau
line orbibundle over (M,,,€2,). The definition of the index of the Dolbeault-Dirac
operator carries over to the orbifold case, hence Q(M,,) € Z is defined. In Section
E, we explain how this notion of geometric quantization extends further to the
case of singular symplectic quotients. So the integer Q(M,,) € Z is well defined for

every pu € K: in particular Q(M,) =0if pu & ®(M).

Definition 1.2. Let (M,Q, D) be a proper Hamiltonian K-manifold which is pre-
quantized by a Kostant-Souriau line bundle L. The formal quantization of (M, <), @)
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is the element of R~°°(K) defined by
QR (M) = QM) VK.

HEI?

When M is compact, the fact that
(1.3) Qk (M) = Q™ (M)

is known as the “quantization commutes with reduction Theorem”. This was con-
jectured by Guillemin-Sternberg in [H] and was first proved by Meinrenken [@] and
Meinrenken—Sjamaar[E. Other proofs of ([L.d) were also given by Tian-Zhang
Bd and the author [L]. For complete references on the subject the reader should
consult [R3, Y.

One of the main feature of the formal geometric quantization Q~° is its stability
relatively to the restriction to subgroups.

Theorem 1.3 ([R1]). Let M be a pre-quantized Hamiltonian K -manifold which
is proper. Let H C K be a closed connected Lie subgroup such that M is still
proper as a Hamiltonian H-manifold. Then Qx> (M) is H-admissible and we
have Q> (M)|gp = Q5™ (M) in R~*°(H).

When M is a proper Hamiltonian K -manifold, we can also define another “formal
geometric quantization”, denoted

(1.4) Q% (M) € R™®(K),

by localizing the index of the Dolbeault-Dirac operator Dy on the set Cr(||®|?)
of critical points of the square of the moment map (see Section E for the precise
definiton). We proved in previous papers [@, , @] that

(1.5) QR (M) = Qi (M).
in somes situations:
e M is a coadjoint orbit of a semi-simple Lie group S that parametrizes a rep-

resentation of the discrete series of S,
e )M is a Hermitian vector space.

In her ICM 2006 plenary lecture [R9], Vergne conjectured that ([.) holds when
Cr(||®||?) is compact. Recently, Ma and Zhang [L] prove the following generalisa-
tion of this conjecture.

Theorem 1.4. The equality /@) holds for any proper Hamiltonian K-manifold.

This article is dedicated to the study of the quantization map Q%:

e In Section E, we give the precise definition of the quantization process Q%.
In particular, we refine the constant ¢, appearing in [[[J)[Theorem 0.1].

e In Section @, we explain how to compute the quantization of a point.

e We give in Section E another proof of Theorem by using the technique
of symplectic cutting developped in [@]

e In Section E, we consider the case where K = K7 x Ky acts on M in a way
that the symplectic reduction M /K is a smooth proper K,-Hamiltonian
manifold. We show then that the K-invariant part of QF | . (M) is equal

to Q22 (M [/, K1).
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In Section E, we study the example where M is the cotangent bundle of a ho-
mogeneous space: M = T*(K/H) where H is a closed subgroup of K. We see
that T*(K/H) is a proper Hamiltonian K-manifold prequantized by the trivial line
bundle. A direct computation gives

(1.6) Q¥ (T*(K/H)) =L*(K/H) in R *(K).

Let us denoted [T*(K/H)], x the symplectic reduction at p € K of the K-
Hamiltonian manifold T*(K/H). Theorem [L4 together with ([.4) give

Q([T*(K/H)pux) = dim[V;5] 7,

for any € K. Here [VE]H € VK is the subspace of H-invariant vectors.

Then we consider the action of a closed connected subgroup G C K on T*(K/H).
We first check that T*(K/H) is a proper Hamiltonian G-manifold if and only if the
restriction L?(K/H)|¢ is an admissible G-representation. Then, using Theorem

E, we get that
(1.7) Qx> (T*(K/H)) = L*(K/H)|¢ in R (G).

In other words, the multiplicity of V)\G in L2(K/H) is equal to the quantization of
the reduced space [T*(K/H)|\ g-

2. QUANTIZATIONS OF NON-COMPACT MANIFOLDS

In this section we define the quantization process Q®, and we give another defi-
nition of the quantization process @~ °° that uses the notion of symplectic cutting

2

2.1. Transversally elliptic symbols. Here we give the basic definitions from the
theory of transversally elliptic symbols (or operators) defined by Atiyah-Singer in
ll]. For an axiomatic treatment of the index morphism see Berline-Vergne [ﬂ, ﬂ]
and Paradan-Vergne [@] For a short introduction see }

Let X be a compact K-manifold. Let p : TA — X be the projection, and let
(—, —)x be a K-invariant Riemannian metric. If E°, B! are K-equivariant complex
vector bundles over X, a K-equivariant morphism o € I'(TX, hom(p*E®, p*E')) is
called a symbol on X. The subset of all (z,v) € TX where]] o(z,v) : EY — El is
not invertible is called the characteristic set of o, and is denoted by Char(c).

In the following, the product of a symbol o by a complex vector bundle F' — M,
is the symbol

o F
defined by o ® F(z,v) = o(z,v) ® Idp, from EY ® F, to El ® F,. Note that
Char(c ® F) = Char(o).
Let T X be the following subset of TX :

TrX = {(r,v) € TX, (v, Xx(x)), =0 forall X € t}.

A symbol o is elliptic if o is invertible outside a compact subset of TX (i.e.
Char(o) is compact), and is K-transversally elliptic if the restriction of o to TxX
is invertible outside a compact subset of Tx X" (i.e. Char(c) NTk,X is compact).
An elliptic symbol o defines an element in the equivariant K-theory of TX with
compact support, which is denoted by K (TX), and the index of ¢ is a virtual finite
dimensional representation of K, that we denote Index’y (¢) € R(K) B, §, i, f-

IThe map o(x, v) will be also denote 0| (v)
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Let
R, (K) C R(K)

be the R(K)-submodule formed by all the infinite sum Z# R mHVﬂK where the map

pek my, € Z has at most a polynomial growth. The R(K)-module R, > (K) is
the Grothendieck group associated to the trace class virtual K-representations: we
can associate to any V € R, .*°(K), its trace k& — Tr(k, V) which is a generalized
function on K invariant by conjugation. Then the trace defines a morphism of
R(K)-module

(2.8) R;.>°(K) — C™=(K)K.

A K-transversally elliptic symbol o defines an element of K (TxX), and the
index of ¢ is defined as a trace class virtual representation of K, that we still denote
Index% (0) € R.°(K).

Remark that any elliptic symbol of TX is K-transversally elliptic, hence we have
a restriction map K (TX) — Kg(TgX), and a commutative diagram

(2.9) K (TX) — > Kx(TxX)
Indexﬁjl llndexﬁj
R(K) — R, (K) .

Using the excision property, one can easily show that the index map Indexﬁ :
Ki(TrU) — R;.°(K) is still defined when U is a K-invariant relatively compact
open subset of a K-manifold (see [[LY[section 3.1]).

Suppose now that the group K is equal to the product K7 x Ko. When a symbol
o is Ky x Ks-transversaly elliptic we will be interested in the K;j-invariant part of
its index, that we denote

K
[IndeX§IXK2 (O'):| e R > (K3).

An intermediate notion between the “ellipticity” and “K; x Ks-transversal ellip-
ticity” is the “K;i-transversal ellipticity”. When a K; x Ks-equivariant morphism
o is Ky -transversally elliptic, its index Index’s'**2(o0) € R, *°(K; x Ks), viewed
as a generalized function on K x Ko, is smooth relatively to the variable in Ks. It
implies that Indexs'**2(5) = 37, 0(\) ® VX" with

0(\) € R(K,), VAeK;.

In particular, we know that
K
[Indexﬁgl”{z (O'):| Lo 0(0)
belongs to R(K3).

Let us recall the multiplicative property of the index map for the product of
manifolds that was proved by Atiyah-Singer in [ﬂ} Consider a compact Lie group
K5 acting on two manifolds A} and X5, and assume that another compact Lie group
K, acts on X7 commuting with the action of K.

The external product of complexes on TA; and TA5 induces a multiplication

(see [EL):

©: KK1><K2(TK1X1) X KKz(TKzXQ) I KK1><K2(TK1><K2(X1 X XQ))
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The following property will be used frequently in the paper.

Theorem 2.1 (Multiplicative property). For any [01] € Kk, xx,(Tk, X1) and any
[02] € Kk, (T, X2) we have

Index§ 752 ((01] © [02])) = Index ¥ (0]) © Indext§? ([o2]).

We will use in this article the notion of support of a generalized character.

Definition 2.2. The support of x := Zuf( a#VﬂK € R™°(K) is the set of u € K
such that a, # 0.

We will say that y € R™°°(K) is supported outside B C t* if the support of x

does not intersect B. Note that an infinite sum ), ; x; converges in R™*°(K) if
for each ball

B, ={¢et"| ¢l <r}
the set {i € I | support(x;) N B, # 0} is finite.

Definition 2.3. We denote by O(r) any character of R~°°(K) which is supported
outside the ball B,..

2.2. Definition and first properties of Q®. Let (M,, ®) be a proper Hamil-
tonian K-manifold prequantized by an equivariant line bundle L. Let J be an
invariant almost complex structure compatible with . Let p : TM — M be the
projection.

Let us first describe the principal symbol of the Dolbeault-Dirac operator 9y, +
52. The complex vector bundle (T*M)%! is K-equivariantly identified with the
tangent bundle TM equipped with the complex structure J. Let h be the Hermitian
structure on (TM, J) defined by : h(v,w) = Q(v, Jw) — iQ(v,w) for v,w € TM.
The symbol

Thom(M, J) € T (M, hom(p* (A" TM), p*(AXITM)))
at (m,v) € TM is equal to the Clifford map
(2.10) Cm(v) © AZT, M — AT, M,

where ¢, (v).w = vAw—1(v)w for w € ALT,,, M. Here t(v) : AXT,,M — A*'T,,,M
denotes the contraction map relative to h. Since ¢, (v)? = —||v]|?Id, the map c,, (v)
is invertible for all v # 0. Hence the characteristic set of Thom(M, J) corresponds
to the 0-section of TM.

It is a classical fact that the principal symbol of the Dolbeault-Dirac operator
Jr, + 52 is equal toﬁ

(2.11) Thom(M,J) ® L,
see [fJ. Here also we have Char(Thom(M,J) ® L) = 0 — section of TM.

Remark 2.4. When the manifold M is a product My x My the symbol Thom(M, J)®
L is equal to the product o1 ® oo where o, = Thom(My, Ji) ® L.

2Here we use an identification T* M ~ TM given by an invariant Riemannian metric.
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When M is compact, the symbol Thom(M, J)® L is elliptic and then defines an
element of the equivariant K-group of TM. The topological index of Thom(M, J)®
L € Kg(TM) is equal to the analytical index of the Dolbeault-Dirac operator
5[, + 52 :

(2.12) Qk (M) = Index; (Thom(M, J) ® L) in R(K).

When M is not compact the topological index of Thom(M, J)® L is not defined.
In order to extend the notion of geometric quantization to this setting we deform the
symbol Thom (M, J) ® L in the “Witten” way [[9, JJ. Consider the identification
& E, £* — £ defined by a K-invariant scalar product on £*. We define the Kirwan
vector field on M :

—~—

(2.13) K = (@(m))M (m), m e M.

Definition 2.5. The symbol Thom(M, J) @ L pushed by the vector field k is the
symbol ¢ defined by the relation

c"|m(v) = Thom(M, J) @ L|m (v — )
for any (m,v) € TM.

Note that ¢”|,,(v) is invertible except if v = Ky,. If furthermore v belongs to
the subset Tx M of tangent vectors orthogonal to the K-orbits, then v = 0 and
km = 0. Indeed k,, is tangent to K - m while v is orthogonal.

Since « is the Hamiltonian vector field of the function =} |®[|?, the set of zeros
of k coincides with the set Cr(||®]|?) of critical points of ||®||%. Finally we have

Char(c®) N TxgM =~ Cr(||®[]?).

In general Cr(]|®||?) is not compact, so c* does not define a transversally elliptic
symbol on M. In order to define a kind of index of ¢, we proceed as follows. For
any invariant open relatively compact subset U C M the set Char(c”|y) N TrU ~
Cr(||®]|?) N U is compact when

(2.14) ou N Cr(||@[?) = 0.
When (P.14) holds we denote
(2.15) QL(U) = IndexfS (¢*|v) € Ry (K)

the equivariant index of the transversally elliptic symbol ¢”|y.

It will be usefull to understand the dependance of the generalized character
Q%.(U) relatively to the data (U, (2, L). So we consider two proper Hamilonian K-
manifolds (M, Q, ®) and (M’, ), ®’) respectively prequantized by the line bundles
Land L'. Let V.C M and V' € M’ two invariant open subsets.

Proposition 2.6. e The generalized character Q%-(U) does not depend of the choice
of an invariant almost complex structure on U which is compatible with Q| .
e Suppose that there exists an equivariant diffeomorphism W :V — V' such that
(1) ¥=(®') = @,
(2) (L") =L,
(3) there exists an homotopy of symplectic forms taking *(Q|v/) to Qv .
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Let U' C U" C V' be an invariant open relatively compact subset such that OU’

satisfies ([2.1]). Take U = W—Y(U"). Then U satisfies (£.14) and

QX (U") = Qk(U) € R™™(K).

Proof. Let us prove the first point. Let cf|y,i = 0,1 be the transversally elliptic
symbols defined with the compatible almost complex structure J;,7 = 0,1. Since
the space of compatible almost complex structure is contractible, there exist an
homotopy Ji, t € [0,1] of almost complex structures linking Jy and J;. If we
use Lemma 2.2 in [l], we know that there exists an invertible bundle map A €
I'(U,End(TU)), homotopic to the identity, such that Ao Jy = J; o A. With the
help of A we prove then that the symbols ¢y and cf|y define the same class in
Kx(TxU) (see [[J][Lemma 2.2]). Hence their equivariant index coincide.

Let, us prove the second point.The characters Q% (U) and Q% (U’) are computed
as the equivariant index of the symbols ¢*|y and ¢ |y, Let ¢®|y the pull back
of ¢’|y by ¥. Thanks to the point (1) and (2), the only thing which differs in
the definitions of the symbols ¢*|y and €|y are the almost complex structures
J and J = U*(J') : the first one is comptible with © and the second one with
U*(Q]y+). Since these two symplectic structure are homotopic, one sees that the

almost complex structures J and J are also homotopic. So we can conclude like in
the first point. 1

Let us recall the basic fact concerning the singular values of || ®||2.

Lemma 2.7. The set of singular values of |®||?> : M — R forms a sequence
0<ry <re<...<7rk <...which is finite iff Cr(||®||?) is compact. In the other
case limy_, oo T, = 0O.

At each regular value R of Cr(||®||?), we associate the invariant open subset
Mg := {||®||?> < R} which satisfies (:14). The restriction ¢”|s_, defines then a
transversally elliptic symbol on M. g: let QF(M<g) be its equivariant index.

Let us show that Q% (M. g) has a limit when R — oco. The set Cr(]|®||?) has
the following decomposition

(2.16) cr(le)?) = |J K- (MPna'(g)
pBeB

Zg
where the B is a subset of the Weyl chamber t’, . Note that each part Zg is compact,
hence B is finite only if Cr(||®||?) is compact. When Cr(||®||?) is non-compact, the
set B is infinite, but it is easy to see that BN B, is finite for any » > 0. For any
B € B, we consider a relatively compact open invariant neighborhood Ug of Zg such
that Cr(||®||?) NUs = Z.
Definition 2.8. We denote

Qi (M) € R ;™ (K)
the indezﬁ of the transversally elliptic symbol c* |y, .

A simple application of the excision property ] gives that

(2.17) QN (Mcop):= > Qp(M).

8112 <r

3The index of c"fy, was denoted RR;( (M, L) in @]
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We have now the key fact

Theorem 2.9. The generalized character Q%(M) is supported outside the open
ball B||5H .

Proof. Proposition @ follows directly from the computations done in [E] First
consider the case where 8 # 0 is a K-invariant element of B. Let ¢ : Tg — T
be the compact torus generated by 3. If F is Z-module we denote F&® R=>°(Tg)
the Z-module formed by the infinite formal sums ), E, h® taken over the set of
weights of Ty, where E, € F for every a.

Since Ty lies in the center of K, the morphism 7 : (k,t) € K x Tg +— kt € K
induces a map 7 : R~°(K) — R™°(K) & R~>®(Tp).

The normal bundle N of M? in M inherits a canonical complex structure Jy
on the fibers. We denote by N' — M? the complex vector bundle with the opposite
complex structure. The torus Ty is included in the center of K, so the bundle N
and the virtual bundle /\(EN = /\%UB”JT/' R /\(‘(’:ddﬁ carry a K x Tg-action: they can
be considered as elements of Kgxr,(M?) = K (M”)® R(T).

In [}, we have defined an inverse of ASN, [/\('CN}; € K (MP)® R=>°(Tp),
which is polarized by (. It means that [/\&N]; = >, N h® with N, # 0 only if
(a,8) = 0.

We prove in [Ld] the following localization formula :

(M7, Lo @ [EN])

KX'H'B

(2.18) ™ [Q%(M)} ~ RR},

as an equality in R™°°(K) ® R~°°(Ts). With (P-1§) in hand, it is easy to see that
VHK occurs in the character Q%(M) only if (11, 3) > ||8]|*> (See Lemma 9.4 in [L])).

Now we consider the case were 3 € B is not a K-invariant element. Let o be
the unique open face of the Weyl chamber t} which contains 3. Let K, be the
corresponding stabilizer subgroup. We consider the symplectic slice ), C M: it is
a K, invariant Hamiltonian submanifold of M which is prequantized by the line
bundle L]y, . The restriction of ® to ), is a moment map ®, : YV, — & which is
proper in a neighborhood of 5 € €. The set

K, - (Y2 n®,'(8) = M7 na ' (8)

is a component of Cr(||®,|?). Let Q%G (Vo) € R, (Ks) be the corresponding
character (see Definition P.§).
We prove in [[[J][Section 7], the following induction formula:

(2.19) Qj (M) = Hol,_ (% ()

where Holi : R™*°(K,) — R™°°(K) is the holomorphic induction map. See the
Appendix in [@] for the definition and properties of these induction maps.
We know from the previous case that

Q% (Vo) = Y muVe

ek,
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where m,, # 0 => (11, 3) > ||8]|>. Then, with (R.19), we get

K
Qr (Vo) = > my Hol, (V")
(.3 =811
= Y m, Hol, (t7),
(.3 =811
where HOI: : R7°°(T) — R~ °°(K) is the holomorphic induction map.

Let p be half the sum of the positive roots. The term HOI: (t*) is equal to 0
when p + p is not a regular element of t*. When u + p is a regular element of t*,

K
we have Hol (") = (—1)‘“"\/“}5 where

o =w(p+p)—p

is dominant for a unique w € W.
Finally, a representation VX appears in the character Qf{ (M) ounly if X = pu,
for a weight u satisfying (i, 3) > ||8]|%>. Hence, for such A, we have

Al = lle+p—wlp
_ B
> (pt+p—wlp o
( Lk
> Bl

In the last inequality we use that (p —w™1p,3) > 0 since p — w™lp is a sum of
positive roots, and 3 € t} .
0

With the help of Theorem E and decomposition (), we see that the multi-
plicity of V. in Q% (Mg) does not depend on the regular value R > ||v[|>. We
can refine the constant ¢, appearing in [[J[Theorem 0.1]: take ¢, equal to ||
instead of} [l + pl|> = [lo]I* = 7.

Definition 2.10. The generalized character Q% (M) is defined as the limit in
R™°(K) of Q% (M.Rr) when R goes to infinity. In other words

(2.20) QR (M) =" Qp(M).

BeB

Note that for any regular value R of ||®||? we have the useful relation
(2:21) Qi (M) = Qi (M<g) + O(VR).

2.3. Quantization of a symplectic quotient. We will now explain how we de-
fine the geometric quantization of singular compact Hamiltonian manifolds : here
“singular” means that the manifold is obtained by symplectic reduction.

Let (N, Q) be a smooth symplectic manifold equipped with a Hamiltonian action
of K1 x Ky : we denote (®1,P2) : N — £ x € the corresponding moment map.
We assume that IV is pre-quantized by a K X Ks-equivariant line bundle L and we

4Here p is half the sum of the positive roots. Hence ||y + p||2 — [lol|2 = [|7]|2 = 2(p,~) > 0 and
(p,v) = 0 only if the weight v belongs to the center of €~ £*.
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suppose that the map ®; is proper. One wants to define the geometric quantization
of the (compact) symplectic quotient

N/ K1 := o7 (0)/K;.

Let k1 be the Kirwan vector field attached to the moment map ®;. We denote
by ¢ the symbol Thom(N,J) ® L pushed by the vector field k;. For any regular
value Ry of [|[®1?, we consider the restriction ¢*'|y_, to the invariant, open
subset Neg, := {||®1]|* < Ri}. The symbol ¢**|y_, is K1 x Ky-equivariant and
Ki-transversally elliptic, hence we can consider its index

Indexy "2 (¢ [v_p, ) € R™(K) % Ka).

which is smooth relatively to the parameter in K. We consider the following
extension of Definition .

Definition 2.11. The generalized character Q?&xlﬁ (N) is defined as the limit in
R™°(K1 x K3) of Indexﬁilﬁf{z ("™ |N_p,) when Ry goes to infinity.

Here Cr(||®1]|?) is equal to the disjoint union of the compact K; x Ka-invariant

subsets Zg, := Ki - (MP n®;Y(3))), B1 € Bi. For B, € By, we consider an
invariant relatively compact open subset U, such that: Zg C Ug, and Zg, =
Cr(|@1)?) NUp,. Let Q. (N) € R™®°(K; x Ka) be the equivariant index
of the K;-transversally elliptic symbol cgl |uﬁ1- The Kj-transversallity condition
imposes that Qﬁ;lsz (N) =32, 0% (\) @ V¥ with

091 (\) € R(K,), VA€ K.
We have the following extension of Theorem E

Theorem 2.12. We have Q%llsz (N) =2 her 091 (\) ® VI where 691 (\) # 0
only if [l = [|Bu]-

Proof. The proof works exactly like the one of Theorem @ O

Let us explain the “quantization commutes with reduction theorem”, or why we
can consider the geometric quantization of

N /oKy = 277 (0)/K

as the Kj-invariant part of Q%x}@ (N).

Let us first suppose that 0 is a regular value of ®;. Then N/ K, is a compact
symplectic orbifold equipped with a Hamiltonian action of Ks : the corresponding
moment map is induced by the restriction of ®5 to ®;(0). The symplectic quotient
N/ K1 is pre-quantized by the line orbibundle

Lo = (L|<D;1(O)) /K.

Definition E extends to the orbifold case. We can still define the geometric

quantization of N/ K as the index of an elliptic operator : we denote it by
QKQ(N//OK].) € R(Kg) We have

Theorem 2.13. If0 is a reqular value of ®1, the Ki-invariant part of Q?&sz (N)
is equal to Q, (N [/oK1) € R(K3).
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Suppose now that 0 is not a regular value of ®;. Let T} be a maximal torus of
K, and let Cy C t] be a Weyl chamber. Since ®; is proper, the convexity Theorem
says that the image of @, intersects C7 in a closed locally polyhedral convex set,
that we denote A, (N) [[L4].

We consider an element a € Ak, (N) which is generic and sufficiently close to
0 € Ak, (N) : we denote (K1), the subgroup of K; which stabilizes a. When
a € Ak, (N) is generic, one can show (see [[[§]) that

N[ K1 =P (a)/(K1)a

is a compact Hamiltonian Ks-orbifold, and that

La = (Lo o)) /KD

is a K-equivariant line orbibundle over N/ K : we can then define, like in Def-
inition [L.1], the element Q,(N/,K1) € R(K>) as the equivariant index of the
Dolbeault-Dirac operator on N //,K; (with coefficients in L,).

Theorem 2.14. The K;-invariant part of QleK2 (M) is equal to Qp,(N ) K1) €
R(K5). In particular, the elements Qg,(N //,K1) do not depend on the choice of
the generic element a € Ay (N), when a is sufficiently close to 0.

PROOFS OF THEOREM AN THEOREM . When N is compact and
Ky = {e}, the proofs can be found in [I§ and in L. Let us explain briefly how

the K-theoretic proof of [[Lld] extends naturally to our case. Like in Definition P.10,
we have the following decomposition

QK1><K2( ) ZQKIXKQ( )

BeByL

K
And Theorem tells us that [QleKz( )} C—0if B1 # 0. We have proved
the first step:

[, )] = [ Qs (W]

The analysis of the term [Q% , x, (V)] K1 is undertaken in 9 when Ky = {e}:
we explain that this term is equal either to Q(N /K1) when 0 is a regular value,
or to Q(N /K1) with a generic. It work similarly with an action of a compact Lie
group Ky. O

Definition 2.15. The geometric quantization of N [ K1 := ®;'(0)/K; is taken
as the Kj-invariant part of Q}};llsz (N). We denote it Qk, (N / K1).

2.4. Quantization of points. Let (M, ), ®) be a proper Hamiltonian K -manifold

prequantized by a Kostant-Souriau line bundle L. Let p € K be dominant weight
such that ®~1(K - p) is a K-orbit in M. Let m® € ®~!(u) so that

<I>_1(K-u):K-m"

Then the reduced space M,, := ® (K - y1)/K is a point. The aim of this section is
to compute the quantlzatlon of M,: Q(M,) € Z.

Let H be the stabilizer subgroup of m?. We have a linear action of H on the
1-dimensional vector space L,,c C L. We have H C K, where K, is the connected
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subgroup of K that fixes u € t*. Let C_, be the 1-dimensional representation of
K,, associated to the infinitesimal character —ij.

Let us denote x be the character of H defined by the 1-dimensional representation
Cy = Lo ® C_,. We know from the Kostant formula ([[.1]) that xy = 1 on the
identity component H° C H.

Theorem 2.16. We have
1 if y=1on H
(2.22) Q(M,) = { X

0 in the other case.

This Theorem tells us in particular that Q(M,,) = 1 when the stabiliser subgroup
H C K of a point m® € ®~1(u) is connected.

Proof. Let N = M x K - 11 be the proper Hamiltonian K-manifold which is pre-
quantized by the line bundle Ly := L ® [C_,]. Let us denote ®x the moment
map on N. Since (K - 1) is a K-orbit in M, we see that ®,'(0) is the K-orbit
through n° := (m°, u) where m® € ®~!(u). Note that H is the stabilizer subgroups
of n°.

Let QFV(N) € R~°(K) be the formal quantization of N through the proper
map Pp. By definition

o) = [etan]”
= [Qhv)]".

where Q% (N) depends only of a neighborhood of ®'(0).

The orbit K - n°® — N is an isotropic embedding since it is the 0-level of the
moment map ®y. Then to describe a K-invariant neighborhood of K - n® in N we
can use the normal-form recipe of Marle, Guillemin and Sternberg.

First we consider, following Weinstein (see [IE, @])7 the symplectic normal bun-
dle

(2.23) Vi= T(K 0?5 [T(K -n%) |

where the orthogonal () is taken relatively to the symplectic 2-form. We have
V=KxgV

where the vector space V' := Tpo(K - n")lvgl/Tno (K - n°) inherits a symplectic

structure and an Hamiltonian action of the group H: we denote @y : V' — bh* the
corresponding moment map.

Consider now the following symplectic manifold
(2.24) N:=VaeT (K/H) =K xy (({%/b)* ® v).

The action of H on N is Hamiltonian and the moment map Py : N — ¢ is given
by the equation
(2.25) Oy (ki&o]) = k- (E+®u(v) kekK, Ee(t/b), veV .

The Hamiltonian K -manifold N is prequantized by the line bundle L5 := K xgC,.
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The local normal form Theorem (see [I0], [R4] Proposition 2.5 ) tells us that
there exists a K-Hamiltonian isomorphism Y : U; = U, between a K-invariant
neighborhood U; of K - n° in N, and a K-invariant neighborhood Us of K/H in
N. This isomorphism Y, when restricted to K - n°, corresponds to the natural
isomorphism K -n® = K/H.

Thanks to Y, we know that the fiber ®,'(0) C V is reduced to {0}. This last
point is equivalent to the fact that ®5 (and then ® ) is proper map (see [R1]). We
check easily that the set of critical points of ||® 3 ||* is reduced to <I>]_Ql (0)=K/H.
Then, thank to the isomorphism Y, we have that

S

(2.26) Qi (N) = Qi (N) = Qi (N).

Let IndZ : R7°°(H) — R~ *°(K) be the induction map that is defined by the
relation <Ind2(¢)), E) = (¢, E|py) for any ¢ € R~°°(H) and E € R(K). Note that

Ind., (¢)]% = (Ind, (¢),C) = (¢,C) = [¢]".

Since @y : V — b* is proper one can consider the quantization of the vector
space V through the map ®g: QFF (V) € R~°(H).

Proposition 2.17. e We have
(2.27) Qi* (V) =Tnd,, (Qf" (V) 0 C,)

e The formal quantization Q?IH (V) coincides, as a generalized H-module, to the
H-module S(V*) of polynomial function on V.

e The set [S(V*)]HD of polynomials invariant by the connected component H® is
reduced to the scalars.

With the last Proposition we can finish the proof of Theorem as follows.
We have

QM) m)*

Qi
ool
- [armee,

= [S( )®Cx] :[CX]H'

Proof. The first point of Proposition follows from the property of induction
defined by Atiyah (see Section 3.4 in ﬂg Let us explain the arguments. We work
with the H-manifold Y = (¢/h)* @ V and the H-equivariant map j : ) < N :=
Kxuy Y,y leyl. )

We noticef] that TN ~ K x  (¢/h®TY), and that Tk N ~ K x g (TY). Hence
the map j induces an isomorphism j, : K (Tg)) — Kg(TxgN). Theorem 4.1 of

5 These identities come from the following K X H-equivariant isomorphism of vector bundles
over K xY: Ty(N) — K x (¢/h®TY), (k, m; (ke!X) +vm) — (K, m; pre sy (X) +vm). Here

Presy € — £/b is the orthogonal projection.

’dt\t 0
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Atiyah [fl] tells us that the following diagram
(2.28) Ku(TuY) SEL Kr(TgN)
Index} l llndexfé

R~°(H) ——> R~>(K) .
Ind

is commutative. ~
The tangent bundle TN is equivariantly diffeomorphic to

K xpm[t/b@ (t/b)" @ TV] ~ K xp [(£/h)c & TV]

where (£/h)c is the complexification of the real vector space £/h. We consider on
N the almost complex structure Jg = (i,.Jy’) where 7 is the complex structure
on (¢/h)c and Jy is a compatible (constant) complex structure on the symplectic
vector space V. Note that Jg is compatible with the symplectic structure on a

neighborhood U of the O-section of the bundle N — K/H.
Let x5 be the Kirwan vector field on N:
ry([k;€0]) = = +il6, Pu(v)] @ rv(v) € (¢/bh)cdV.
Here kv is the Kirwan vector field relative to the Hamiltonian action of H on the
symplectic vector space V. Note that x5 vanishes exactly on the 0-section of the

bundle N — K/H.

Let ¢~ be the symbol Thom(N, J§) ® L pushed by the vector field xg. The
generalized character Q;};N (1\7 ) is either computed as the equivariant index of the
symbols ¢®¥ or ¢~ |y.

Remark 2.18. The fact that Jg is not compatible on the entire manifold N s
not problematic, since Jg is compatible in a neighborhood U of the set where kg

vanishes. See the first point of Lemma .
For X +in&w € Tje,o) N =~ (¢/b)c @V, the map

(229) "N (X +in®w) = C(X +E+i(n— e, fI)H(v)]) © c(w - nv(v))
acts on the vector space Ac(8/h)c ® Ay, V @ C,.

Let Bott(t/h) be the Bott morphism of the vector space £/h. It is an elliptic
morphism defined by

Bott(t/h)le(n) = c(§ +in) actingon  Ac (¢/h)c,
for n € Te(8/h). Let ¢*v be the symbol Thom(V, Jy) pushed by the vector field
Ry .
Lemma 2.19. We have
N = j, (Bott(E/h) O ® (CX).
Proof. We work with the symbol
o7 l(¢.0) () = (€ +in —iT[€, D (v)])

acting on Ac(€/h)c. Note that Bott(t/h) = ¢°. From (.29), we see that ¢~ =
Jx (01 ©cvV ® (CX). It is now easy to check that o7 ® ¢"v ® C,,T € [0,1] is an
homotopy of transversally elliptic symbols on £/h x V. O
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The commutative diagram (R.29) and the last Lemma gives
Q}};N (N) = Indexg(c”“f\")
= Ind (Indexgjw (Bott({%/h) ® c”V) ® (CX)
= IndZ (Indexgh(Bott(E/h)) ® Indexys (™) ® (CX)
= Ind, (Q;‘EIH V) ® CX) .

We have used here that the equivariant index of Bott(£/h) is equal to 1 (e.g. the
trivial representation).

Let us proved now the second point of Proposition . The Kirwan vector field
kY satisfies the simple rule:

(2.30) (Y (v), Jyv) = =Q(r" (v),v) = ;H(I)H(U)||2, veV.

It shows in particular that x"(v) = 0 & ®y(v) = 0. Since the moment map
®y : V — b* is quadratic, the fact that @ is proper is equivalent to the fact that
;' (0) =0.

We consider on V' the family of symbol o° :

%y (w) = c(w —sk¥(v) — (1= S)JVU)

viewed as a map from A"V to A2V, Thanks to (P.30), one sees that o° is
a family of K-transversally elliptic symbol on V. Hence o! = ¢*V and 0¥ =
c(w — Jyv) defines the same class in the group K (Tx V). The symbol ¢ was first
studied by Atiyah ] when dim¢ V' = 1. The author considered the general case in

. We have
Indexis (6°) = S(V*)  in R™°(K).

The last point of Proposition .17: is a consequence of the properness of the
moment map Py (see Section 5 of [R1])).

(]
(]

Example 2.20 ([21]). We consider the action of the unitary group U, on C™.
The symplectic form on C™ is defined by Q(v,w) = %3, viWy — Vgwy,. Let us
identify the Lie algebra u, with its dual through the trace map. The moment map
P : C" — u, is defined by ®(v) = 3.0 @ v* where v ® v* : C" — C" is the linear
map w — (D, Trwy)v. One checks easily that the pull-back by ® of a Uy-orbit in
u, is either empty or a Uy, -orbit in C™. We knows also that the stabiliser subgroup
of a mon-zero vector of C™ is connected since it is diffeomorphic to U,_1. Finally
we have

1 if pe I/J; belongs to the image of ®

(231)  QUC™),) = {

0 if pe I/J; does not belongs to the image of ®.

Then one checks that Q> (C") coincides in R=°°(Uy,) with the algebra S((C")*)
of polynomial function on C™.
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Example 2.21 ([R3]). We consider the Lie group SLy(R) and its compact torus
of dimension 1 denoted by T. The Lie algebra sla(R) is identified with its dual
through the trace map, and the Lie algebra t is naturally identified with sly(R)T.
Forl € Z\ {0}, we consider the character x; of T defined by

cosf —sinf \ Qo
XU\ sinf  cosf T

Its differential %dxz € t* correspond (through the trace map) to the matriz

X = ( —?/2 l{)2 )

Let Oy be the coadjoint orbit of the group SLa(R) trough the matriz X;. It is a
Hamiltonian SLa(R)-manifold prequantized by the SLa(R)-equivariant line bundle
L; ~ SLy(R) xp C;, where C; is the T-module associated to the character x;. We
look at the Hamiltonian action of T on O;. Let 1 : O — t* be the corresponding
moment map. One checks that the moment map ®r is proper and that ils image
is equal to the half-line {aX;,a > 1} C t*.

We check that for each & € {aX;,a > 1} the fiber 3 (€) is equal to a T-orbit
in O;. For k € Z, let us denote (Ol)k the symplectic reduction of O at the level
Xi. We knows that (Op), = 0 if k ¢ {al,a > 1}, and that (Oy), is a point if
ke {al,a > 1}.

In order to compute Q((O;),) we look at the stabilizer subgroup T, = {t €
T|t-m =m} for each point m € O;. One sees that T, =T if m = X; and T, is
equal to the center {£Id} of SLa(R), when m # X;.

Theorem gives in this setting that, for k € {al,a > 1},

1 if I —kiseven

(2.32) A(O),) = {0 if 1 — k is odd.

Hence the formal geometric quantization of the proper T-manifold O is

Ci- Y50 Cop if1>0

(2.33) Q™ (On) = {Cz Y50 Cosp i 1<0.

Here we recognizes that Q7.°°(O;) coincides with the restriction of the holomorphic
(resp. anti-holomorphic) discrete series representation ©; to the group T when
I1>0 (resp. 1 <0).

2.5. Wonderful compactifications and symplectic cuts. Another equivalent
definition of the quantization Q~°° uses a generalisation of the technique of sym-
plectic cutting (originally due to Lerman [E}) that was introduced in [@] and was
motivated by the wonderful compactifications of De Concini and Procesi. Let us
recall the method.

We recall that T is a maximal torus in the compact connected Lie group K, and
W is the Weyl group. We define a K -adapted polytope in t* to be a W-invariant
Delzant polytope P in t* whose vertices are regular elements of the weight lattice
A*. If {\1,...,An} are the dominant weights lying in the union of all the closed
one-dimensional faces of P, then there is a G X G-equivariant embedding of G = K¢
into

N
PEVE e 1)
1=1
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associating to g € G its representation on @fil V. The closure Xp of the image
of G in this projective space is smooth and is equipped with a K x K that we
denote:

(ky, ko) -z =ko-a -kt

Let Qx,. be the symplectic 2-form on Xp which given by the Kahler structure. We
recall briefly the different properties of (Xp,Qx,) : all the details can be found in
1.
(1) Xp is equipped with an Hamiltonian action of K x K. Let ® = ($;,D,) :
M — ¥ x £ be the corresponding moment map.
(2) The image of ® := (®;, ®,) is equal to {(k-&, —k'-&) | £ € P and k, k' € K}.
(3) The Hamiltonian manifold (Xp, K x K) has no multiplicities: the pull-back
by ® of a K x K-orbit in the image is a K x K-orbit in Xp.

Let Up := K - P° where P° is the interior of P. We define
Xp =&, (Up)

which is an invariant, open and dense subset of Xp. We have the following impor-
tant property concerning X'p.

(4) There exists an equivariant diffeomorphism T : K x Up — Xp such that
TH(@) (k. €) = k- € and T*(@,)(k, &) = —¢.

(5) This diffecomorphism T is a quasi-symplectomorphism in the sense that
there is a homotopy of symplectic forms taking the symplectic form on the
open subset K x Up of the cotangent bundle T*K to the pullback of the
symplectic form Qy, on Xp.

(6) The symplectic manifold (Xp,Qx,) is prequantized by the restriction of
the hyperplane line bundle O(1) — P(&X, Vy @ Vy,) to Xp: let us denoted
Lp the corresponding K x K-equivariant line bundle.

(7) The pull-back of the line bundle Lp by the map T : K x Up — Xp is

trivial.

Let (M,Qpr, ®pr) be a proper Hamiltonian K-manifold. We also consider the
Hamiltonian K x K-manifold Xp associated to a K-adapted polytope P. We con-
sider now the product M x Xp with the following K x K action:

e the action k1 (m,x) = (k-m,z-k~!) : the corresponding moment map is
Dy (m,x) = Ppr(m) + @,.(x),

e the action k -5 (m,z) = (m,k - x) : the corresponding moment map is
Dy (m,z) = Oy(x).

Definition 2.22. We denote Mp the symplectic reduction at 0 of M x Xp for the
action -1 : Mp := (@1)71(0)/(K, -1).

Then Mp inherits a Hamiltonian K-action with moment map ®,s, : Mp — €*
whose image is ®(M)N K - P.

One checks that Mp contains an open and dense subset of smooth points which
quasi-symplectomorphic to the open subset (®,7)~!(Up). If the polytope P is fixed,
we can work with the dilated polytopes nP for n > 1. We have then the family of
compact, perhaps singular, K-hamiltonian manifolds M, p, n > 1: in Section B,
we have explained how was defined their geometric quantization Qx (M, p) € R(K).

We have a convenient definition for Q~°°.
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Proposition 2.23 (R1]). We have the following equality in R=(K):
(2.34) Q> (M) = nlingo Qx(Mup).

3. PROOF OF THEOREM [[.4]
The main result of this section is
Theorem 3.1. Let rp := infecqp ||€]|. The generalized character
Qx (M) — Qx(Mp) € R™®(K)
is supported outside the ball By, .

Then, for the dilated polytope nP,n > 1, the character Q% (M) — QK (M, p) is
supported outside the ball B, ,. Taking the limit when n goes to infinity gives

(3.35) Q%Y (M) = lim Qe (Myp).
Finally, the identity of Theorem @,

Qi (M) = Qi (M),
is a direct consequence of (.34) and (B.33).

Recall that O(r) € R~°°(K) denoted any generalized character supported out-
side the ball B,.

Theorem @ follows from the comparison of three differents geometrical situa-
tion. All of them concern Hamiltonian actions of K7 x K5, where K; and Ky are
two copies of K.

First setting. We work with the Hamiltonian K; x Ks-manifold M x Xp:
here K7 acts both on M and on Xp. Since the moment map ®; (relative to the
Kj-action) is proper we may “quantize” M x Xp via the map || ®1]|? : let

QR ke, (M x Xp) € R™°(K; x K)

be the corresponding generalized character. Recall that Qg,(Mp) is equal to
[QR iy (M x Xp)]52.

Second setting. We consider the same setting than before : the Hamiltonian
action of K1 x Ko on M x Xp. But we “quantize” M x Xp through the global
moment map & = (P, Py). Here we have some liberty in the choice of the scalar
product on & x €. If ||£||? is an invariant Euclidean norm on £*, we take on €} x €3
the Euclidean norm

(3.36) (€1, €117 = Il + pli€2]?

depending on a parameter p > 0. Let us consider the quantization of M x Xp via
the map [|®]|:

O’ i, (M x Xp) € R™°(K1 x K3).

Third setting. We consider the cotangent bundle T*K with the Hamiltonian
action of K1 x Ksy: Kj acts by right translations, and K5 by left translations. We
consider the Hamiltonian action of Ky X Ko on M x T*K : here K; acts both on
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M and on T*K. Let ® = (®, P3) be the global moment map on M x T*K. Since
the moment map & is proper we can “quantize” M x T*K via the map ||<I>||ﬁ : let

O’ i, (M x T*K) € R™°(K; x Ka)
be the corresponding generalized character.
Theorem is a consequence of the following propositions.
First we compare Q% (M) with the Kj-invariant part of Q?}’fx i, (M x T*K).
Proposition 3.2. For any p €]0,1], we have
K
@, N . e
(3.37) [QfoK2 (M xTK)| =02 (M) in R *(K).
Then we compare the K;i-invariant part of the generalized characters
O’ 1, (M x T*K) and Qp*, o (M x Xp).
Proposition 3.3. For any p €]0,1], we have the following relation in R™°°(K3)
D,p K D,p * K
(3.38) (Ol s, (M x &p)| ™ = [QF s, (M x T*K)| ™ = O(rp)
Finally we compare the Kj-invariant part of the generalized characters
O’ 1, (M x Xp) and QR o (M x Xp).
Proposition 3.4. There exists € > 0 such that
K
(339)  Qu(Mp) — [, (M x Xp)] = O((e/0) ) in R(K)

if p> 0 is small enough.

If we sum the relations (B.37), (B.38) and (B.39) we get
Qi (M) = Qi (Mp) + O(rp) + O((¢/p)'/?)
if p is small enough. So Theorem B.] follows by taking (e/p)*/? > rp.

3.1. Proof of Proposition @ The cotangent bundle T*K is identified with
K x . The data is then (see Section [f.1)):

e the Liouville I-form A =}, w; ® Ej;. Here (E}) is a basis of ¢ with dual basis
(E5), and wj is the left invariant 1-form on K defined by wj(%a etX|o) = (£7, X).

e the symplectic form € := —d,

e the action of K; x Ky on K x & is (k1, ka) - (a,&) = (kaak; ', k1 - €),

e the moment map relative to the Kj-action is ®,(a,&) = —¢,

e the moment map relative to the Ky-action is ®;(a,&) =a - &.

We work now with the Hamiltonian action of K7 x K on M x T*K given by
(k1 k2) - (m,a, &) = (k1 - m, kaaky ' Ky - €).

The corresponding moment map is ® = (&1, Py): Pq1(m,a,&) = Pp(m) — & and
(1)2(m7 a,§)=a-&

Let ¢q be a symbol Thom (M, J;) ® L attached to the prequantized Hamiltonian
Ki-manifold (M, ). The cotangent bundle T*K is prequantized by the trivial
line bundle: let co be the symbol Thom(T*K, J;) attached to the prequantized
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Hamiltonian K7 x Ks-manifold T*K. The product ¢ = ¢; ® ¢ corresponds to the
symbol Thom(N,J) ® L on N = M x T*K.

Let x, be the Kirwan vector field associated to the map [|®[|2 : M x T*K — R.
We check that [|®]|2(m, k,&) = |®ar(m) — &[|2 + pl[]|?, and

rp(m. k) = ((@ar(m) =) -m: Bas(m) — (14 p)E: ~[Bar(m). ] ).

Kr KI,p K
Here T 1,6y (M x T*K) ~ T,,, M x £ x £. We have
Cr(|@llf) = {x, =0}
= UK xKs [M5m¢Ml(5) x {1} x {i}]
5o p+1

where BB parametrizes Cr(||®/(|?). Hence one checks that the critical values of ||®]|%

are L2 [16]1%, 5 € B.
Let ¢ be the symbol ¢ pushed by the vector field ,: we have

c(; X;Y)=ci(v—kr) ©co(X —Krp; Y — k)

for (v; X;Y) € T pe) (M x T*K) ~ T, M x € x &
For a real R > 0 we define the open invariant subsets of M x T*K

Ur {lel3 < R}
Ve = {|®um]* <R} xT*K.

By definition the generalized index Q%lp I, (M x T*K) is defined as the limit of
the equivariant index

Qe sy (Un) 1= Indexi > (i),

when R goes to infinity (and stays outside the critical values of [|®||2).
In the other hand, when R’ is a regular value of || ®,/]|?, we see that the symbol
cp|VR/ is K1 x Ks-transversally elliptic. Let

(340) Index‘l/ii/x ez (CNP |VR/ )

be its equivariant index. Notice that the index map is well-defined on Vi =
{lIl®nm]]? < R} x T*K since T*K can be seen as a open subset of a compact
manifold.

It is easy to check that for any R > 0 there exists R’ > R such that Ugr C V}.
It implies that Q}};’foz (M x T*K) is also defined as the limit of (B.4()) when R’
goes to infinity.

We look now to the deformation x,(s) = (k7; k7 i 85m), s € [0, 1] where

K3(m,€) = (Bar(m) = s&)-m and Ky ,(m,€) = s@pr(m) — (1 + sp)é.
Let ¢®(*) be the symbol ¢ pushed by the vector field x,(s).

Lemma 3.5. Let R' be a reqular value of ||®p||*.

e The familly c"ﬂ(s)h/R,7 s € [0,1] defines an homotopy of K1 x Ka-transversally
elliptic symbols on Vg .

e The K;-invariant part of Indexgli/XKZ (¢ Oy ) is equal to Ok, (Mcpr).
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Proof. The first point follows from the fact that Char(c®»®|y. ) N T, xx, (Vrr),
which is equal to

{(m b wum), k€ K and m e Crlln?)n {loalP < R
stays in a compact set when s € [0, 1].
The symbol c"ﬁ(o)|VR, is equal to the product of the symbol ¢f|pr<pgs, which is
K -transversally elliptic, with the symbol
c5(X3Y) =co(X +&Y)

which is a Ks-transversally elliptic on T*K. A basic computation done in section

gives that

Indexf1 %52 (ch) = L*(K)
- Z(VHKI)*®VHK2
ueﬁ

in R~°(K; x K»). Finally the “multiplicative property” (see Theorem P.1]) gives

Indext X K2 (%O, ) = Indexi? g (€F|arerr) ® Indext 252 (czr)
= Z Q}};I(M<R,)®(VHK1)*®VHK2
HEE
Taking the K;-invariant completes the proof of the second point. O

Finally we have proved that the generalized character [Index{f}i/X K2 (¢ |y, )]
is equal to QF_(Mg/). Taking the limit R’ — oo gives
K
lim Inde:)c‘l,:;/X (e ly,,)

— 00

= lim_QF,(Mcp) = QF,(M).

o x T
QKlXKQ( X )

3.2. Proof of Proposition @ We work here with the Hamiltonian action of
K; x Kq on M x Xp. The action is (ky, k) - (m,z) = (k-m, ko -z - k') and the
corresponding moment map is ® = (P, Do) with &1 (m,x) = Ppr(m) + ®,(z) and
Dy(m, x) = y(z). Let [|(&1,8)[|2 = [I&1]]* + pll&2]|* be the Euclidean norm € x &5
attached to p > 0.

Let us consider the quantization of M x Xp via the map |||2:

O’ 1, (M x Xp) € R™°(K; x K3)
The critical set Cr(||®]|?) admits the decomposition
(3.41) Cr(@)?) = |J EK1x Ks-C,
yeB,
where (m,x) € Cy if and only if v = (v1,72) with
Dpr(m) + @ (2) =
Py(x) =72
y1-m=0
Yr &4 pY2z=0.

(3.42)
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We have

(3.43) QleKg(M x Xp) = Z K1><K2(M x Xp)
yeB,

where the generalized character }Qf I, (M x Xp) is computed as an index of a
transversally elliptic symbol in a neighborhood of
Ki x Ky -Cy C M x &' (Ka - 70).
Thanks to Theorem E we know that the support of the generalized character
K g, (M x Xp) is contained in {(a,b) € K1 x Ky | |all®+ pllo]*> > |I7]|2}. Hence

support ([QR7, e, (M x Xp)]™*) < {b e By | plbl> > 12}
Let rp = infecop [|€]]. We know then that

[, M x 2p)] ™ = Y QR (M x )] 4 O(rp).

~EB,
2
V115 <pr?

Let Rp < pr} be a regular value of ||®[2 : M x Xp — R such that for all v € B,
we have [|7]|2 < prp <= ||| < Rp. Then

K1
(44)  [Qh (M < Xp)] =[Ok (M x Xp)ar,)] " +Orr).

For the generalized index Q%lp I, (M x T*K) we have also a decomposition
Qe k(M x T*K) = > Q)P o (M x T*K)
vEB),

where B), parametrizes the critical set of ||®||2 : M x T*K — R. Like before we get

(345) [k, (M < TE)] " =[O (M < T'K)cr)] - +0(r).

Here R, < prp is a regular value of || @2 : M x T*K — R such that for all y € B,
we have [|y[[5 < prp <= [17ll; < Rp.
Lemma 3.6. We have
D, *

(3.46) QUL ey (M X Xp)<pp) = QP s, (M x T*K) <gy,).
Proof. The Lemma will follow from Proposition R.6. We take here V' = M x X,
V=MxKxUp CM x T*K and the equivariant diffeomorphism ¥ : V — V' is
equal to Id x Y where Y was introduced in Section R.J. Note that ¥ satisfies points
(1) — (3) of Proposition P.q

Note that [|®(m, z)||> < pr}p implies that [|®;(z)|| < rp and then 2 € Xp. Hence
the open subset U’ := (M X Xp)<pr, is contained in V' = M x X3. In the same
way the open subset U := (M x T*K)pg, is contained in V. We have ¥(U) = U’
if Rp = Rp.

We have proved that () is a consequence of Proposition @ O

Finally, if we take the difference between (B.44) and (B.45), we get

K,
(08 e, (M x0)] ™ [Q82, e, (0 < 1K) = ().
which is the relation of Proposition @
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3.3. Proof of Pr0p051t10n @ Here we want to compare the Kj-invariant part
of the characters QK wicy (M X Xp) and QK wicy (M X Xp).
We know after Theorem - that

K1
Quea(Mp) = | QR s, (M x Xp)]

= {QKl sz( )} "

when € > 0 is any regular value of || ®1]|?, and U, := {||®]|> < ¢} C M x Xp.
In this section we fix once for all € > 0 small enough so that

(3.47) Cr(@1]1*) N {[[@1]]* < €} = {®1 = 0}.

Let ¢q be the symbol Thom(M, J;) ® L attached to the prequantized Hamilton-
ian Kj-manifold (M, Q). Let c3 be the symbol Thom(Xp, J;) ® Lp attached to
the prequantized Hamiltonian K7 x Ks-manifold Xp. The product ¢ = ¢; ® c3
corresponds to the symbol Thom(N,J)® L on N = M x Xp.

Let ko and &, be the Kirwan vector fields associated to the functions ||®;
@7 on M x Xp:

|2 and

Kko(m,x) = (@1(m,x) -m; ®1(m, ) - x), Kp(m, x) = K2 (m, z)+p (0, @ () - z).
——

KRI R R

Let c”» be the symbol ¢ pushed by the vector field ,: we have
¢ (vin) = c1(v — k1) © c3(n — k1 — prm)
for (v;n) € T 2)(M x Xp).
The character Q%X o (U.) is given by the index of the Kj-transversally elliptic

symbol ¢ |y;_. The character Q}};’fx K, (M xXp) is given by the index of the Ky x Ko-
transversally elliptic symbol c"»

Lemma 3.7. e There exists p(e) > 0 such that
€
()2 () {l92]1? < e} < {ll)? < 5}

for any 0 < p < p(e).

Proof. With the help of Riemannian metrics on M and Xp we define

ale) = inf k2 (m,
© 6/2§H‘I’1(m7w)|\§e” ( )l
b = sup |[|[®i(z) .
rzeXp

We have a(e) > 0 thanks to (B.47), and b < oo since Xp is compact. It is now easy
to check that {x, =0} N{e/2 < ||[P1]2 <e}=0if0<p< a(e)
O

The symbols ¢ |y, p € [0,p(c)] are K7 x Ka-transversally elliptic, and they
define the same class in K, x i, (Tx, xx,Ue). Hence Qg,(Mp) can be computed
as the Kj-invariant part of

QK1><K2( ) - IndeXIUéxIQ(CK Ue) € Rioo(Kl X K2)

for p € [0, p(e)].
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A component K1 x Ky - Cy of Cr([|®|]2) is contained in U, if and only ||y < e:
hence the decomposition (B.43) for the character Q}};’f I, (M X Xp) gives

QleKg(M X XP) QK1><K2 Z QK1><K2 M X Xp).
YEBp
Hml\zZe
where
Qulire,Ue) = Y Ql e, (M x Xp).
’YEB
|\’Y1|\2<e

Taking the K;i-invariant gives

(3.48) [QK Fxac, (M X Xp)]*t = Qi (Mp) + Z [QKYxkey (M X Xp)]™
2%

In general we know that the support of the generalized character
[Q7 s 1, (M x Xp))]1 is included in {b € Kz | plIbl? = [7)l* + pllv2/1*}. When
|\71||2 > € we have then that the support of [Q%” . (M x Xp))]*1 is contained in

[be Ra | ol > o).
Finally (B.4§) imposes that

[Qrls iy (M x Xp)|" = Qre, (Mp) + O((¢/p)'/?).

when 0 < p < p(e), which is the precise content of Proposition @

4. OTHER PROPERTIES OF Q%

Let (M,w,®) be a proper Hamitlonian K-manifold which is prequantized by a
line bundle L. The character Q% (M) is computed by means of a scalar product on
£*. The fact that Q% (M) = Q> (M) gives the following

Proposition 4.1. The character Q% (M) does not depend of the choice of a scalar
product on €*

In this section we work in the setting where K = K; x K5. Let ®; be the moment

map relative to the Ki-action.

4.1. @, is proper. In this subsection we suppose that the moment map ®; relative
to the Kj-action is proper. We fix an invariant Euclidean norm || e ||? on € in such
a way that £ = €.

Let us “quantize” (M, Q) via the invariant proper function ||®1]|?: let

QK1><K2( )eRioo(Kl XKQ)
be the corresponding generalized character.
Theorem 4.2. We have

(4.49) OF i, (M) = QleK2( ) in RT°(K; x K»).
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Proof. On £ = €; & 3 we may consider the family of invariant Euclidean norms:
X1 & Xof] = [ X1]]* + pl| X2||? for X; € €;. Let

QK1><K2( ) € R™ (K1 x K»)

be the quantization of M computed via the map [|®[2 = [|®:1]]* + p||P2]|>.
definition, Q%X K, (M) is equal to ()% le &, (M), and we know after Proposition [

that QF  x, (M) coincides with the generalized character Qi’fx iy (M) € R™°(K)
for any p > 0.

Let us prove that prove that QK Pk, (M) = QleK2 (M). We denote O(r) €
R™>°(K; x K3) any generalized character supported outside the ball

{cetixg | lal* + el <’}

And we denote Oy (r) € R™°°(K; x K1) any generalized character supported outside
the

{Eetixt &) <r}
Let Ry > 0 be a regular value of ||®1]|?: the open subset {|®1]|> < Ri} is
denoted M<g,. We know that
QK1><K2( ): QillXKg(M<Rl)+Ol(\/ Rl)
Like in the Lemma @, we know that

(4.50) Cr([[@[2) N {]|®1]* = R} = 0.
for p > 0 small enough. The identity (f.50) first implies that
QleK2 (M) = Z Kixre,(M) + Z Kexre, (M)
YEBp YEB)
I lIP<Ra ll71112>Ra

= Q%fxl(z (M<gr,) +O(\/Ry).

In the second equality we have used that Q% . (M) = O(V/Ry) when |[y1]* > Ry
since the ball {(&1,&2) € t] x 5 | [|€1]|* + || < R1} is contained in

{(t1,&) e tf x5 | (€. &)1 < (7213} -
The identity () shows also that the symbol ¢”# |5/, are homotopic for p > 0
small enough. Hence

o,
QKlpr2 (M<R1) = Q?&x}@ (M<R1)

We get finally that QleKz( ) — QK1><K2( ) = O(VR1) + O1(V/Ry) for any
regular value Ry of ||®1]|>. We have proved that QleK2( ) — QR i, (M) =
0. O

Let us explain how Theorem @ contains the identity that we called “quantization
commutes with reduction in the singular setling” in [@] By definition the K-
invariant part of the right hand side of ) is equal to the geometric quantization
of the (possibly singular) compact Hamiltonian Ks-manifold

M) K1 = ®7'(0)/K.
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Using now the fact that the left hand side of ([t.49) is equal to Ok, (M), we see
that the multiplicity of VMK2 in Qg, (M )/ K1) is equal to the geometric quantization
of the (possibly singular) compact manifold

M x KQ . /L//(07M)K1 X KQ.

4.2. The symplectic reduction M /,K; is smooth. Let (M,(2) be an Hamil-
tonian K7 X Ks-manifold with a proper moment map ® = (®;, ®5). In this section
we suppose that 0 is a regular value of ®; and that K acts freely on ®;'(0). We
work then with the (smooth) Hamiltonian Ks-manifold

N :=&1(0)/K;.

We still denote by ®; : N — £ the moment map relative to the Ks-action: note
that this map is proper. Hence we can quantize the Ks-action on N via the map
®y. Let Q% (N) € R~°°(K32) be the corresponding character.

Proposition 4.3. We have
K ) .
(4.51) [Q% xk,(M)] 7" = QR2(N) in R >™(Ky).

Proof. When @ is proper, the manifold N is compact. Then the right hand side of
([L51) is equal to Qk, (N), and we know from Theorem . that the left hand side of
(.51) is equal to [Q}I?MK2 (M)]¥1. In this case ([.51]) becomes [Q}I?MK2 (M) =
Qk, (M J,K1) which is the content of Theorem P.13.

Let us consider the general case where @y is not proper. Thanks to Theorem

R . K

[[4 one knows that the multiplicities of VMK2 in [Q% . x,(M)]"" and Q}{Z (N)
are respectively equal to the quantization of the (possibly singular) symplectic
reductions

MM =M x Ko - /J’//(O.,O)Kl x Ks.
and
M/H ::NXKQ'M//OK27 Wlth N:M//OK].

Note that M, and /\/l’H coincide as symplectic reduced space. Let us prove that
their geometric quantization are identical also. The proof will be done for p = 0:
the other case follows from the shifting trick.

Let ¢ be the K; x Ks-equivariant symbol Thom(M,J) @ Ly;. Let k be the
Kirwan vector field attached to the moment map & = ($1,P2). Let ¢ be the
symbol ¢ pushed by k. Let us denote M. the open subset {||®||* < €}. For e >0
small enough, the symbol ¢*|ar_. is K1 x Ks-transversally elliptic, and Q(M,) is
the K; x Ks-invariant part of IndexffjiK2 (c"|n..)

Let co be the Ks-equivariant symbol Thom(N, J) ® Ly. Let ko be the Kirwan
vector field attached to the moment map ®2. Let c5? be the symbol co pushed by
k2. Let us denote N.. the open subset {||®2]|?> < €}. For € > 0 small enough, the
symbol ¢5?|n_, is Ka-transversally elliptic, and Q(My) is the Ky-invariant part of
Indexf,ie (52| n_.)-

Our proof follows from the comparison of the classes

[€”me.] € Koy, (Try i, M<e)

and
[ng |N<e] € KKz (TK2N<€)
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A neighborhood of the smooth submanifold Z := ®;(0) in M is diffeomorphic to
a neighborhood of the 0-section of the bundle Z x ¢ — Z. Let Z.. = Z N M., so
that Nee = Z<./K;. Hence [c¢”|p_.] can be seen naturally a class in the K-group

Ky, (Try i, (Z<e X 87)).
Following Atiyah []][Theorem 4.3], the inclusion map j : Z<. < Z. x £} induces
the Thom isomorphism

I Kroxko (Try k. Z<) — Ko xr (Tr sk (Z<e X E)),
with the commutative diagram

g

(452) KK1><K2(TK1><K22<€) KK1><K2 (TK1><K2(Z<E X ET)) .
\\ llndexg1 o
Index?i: 2 D
Rioo(Kl X KQ)

Let m : Zo. — N, be the quotient relative to the free action of K;. The
corresponding isomorphism

71 K, (Tro,Nee) — Koy xro (T xkx, Z<e)
satisfies the following rule :
(4.53) [Indexlzé;& (ﬁ@)r{l — Tndex¥<* (6)
for any 0 € Kk, (Tx,N<e).
Lemma 4.4 ([IJ])). We have

gromi([e5ln.] ) = [e"larl]

in K, x i, (Try x i, (Z<e X £)).

Proof. This Lemma is proven in [Section 6.2] when the group Kj is trivial. It
is easy to check that the proof extends naturally to our setting. 0

If one uses Lemma [[.4 together with ([L53) and ([E.53), we get that

KixKso
Q(Mo) = [Indexf2 (" lar.,)]

K2 K2 K2 /
[IndeXN<é(CQ |N<é)} = Q(My).

5. EXAMPLE: THE COTANGENT BUNDLE OF AN ORBIT

5.1. The formal quantization of T*K. Let K be a compact connected Lie group
equipped with the action of two copies of K: (k1,ke)-a = kgakfl. Then we have
a Hamiltonian action of K7 x K5 on the cotangent bundle T*K. In this section,
we check that each formal geometric quantization of T*K, Q% r (T*K) and
Q% «k,(T*K), are both equal to the K1 x Ky-module L?(K).
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The tangent bundle TK is identified with K x € through the right translations:
to (a,X) € K x ¢ we associate ae'X|o. The action of K; x K5 on the cotangent
bundle T*K ~ K x € is then

(k1 k2) - (a,&) = (kaaky ' Ky - €).

The symplectic form on T*K is Q) := —d\, where ) is the Liouville 1-form. Let
us compute these two form in coordinates. The tangent bundle of T*K ~ K x ¢*
is identified with T*K x £ x £*: for each (a,§) € T*K, we have a two form Q(, ¢)
on £ x €. A direct computation gives

Q(a,ﬁ) (Xv Y) = <€7 [Xa Y]>7 Q(a,&) (777 77/) =0, Q(a,&) (X, 77) = <777 X>

for X,Y € € and 7,7 € ¥. So Q¢ = Qo + 7 where p is the canonical
(constant) symplectic form on € x £ and 7¢ is the closed two form on £ defined by
me(X,Y) = (&, [X, Y]).

If we identify & ~ £* through an invariant Euclidean norm, the symplectic struc-
ture on T, ¢)(T*K) ~ & x £ is given by a skew-symmetric matrix

_ [ ad(©) I
pom (M 1Y,
We will work with the following compatible almost complex structure on the tangent

bundle of T*K : J¢ = —A¢(—AZ)™*/2. When ¢ = 0, the complex structure Jy on
£ x £ is defined by the matrix
0o -1,
%,_(% ! ).

Hence the complex K-module (€ x £, .Jy) is naturally identified with the complex-
ification t¢ of €.

One checks easily that the moment map relative to the K; x Ks-action is the
proper map ¢ : T*K — € x £ defined by ®(a,&) = (=, a - §).

Here the symplectic manifold T* K is prequantized by the trivial line bundle.

5.1.1. Computation of Q5 k., (T*K). Let O1 x O3 be a coadjoint orbit of Ky x Ko
in €5 x 5. One checks that

D if O) £ —0,

5.54 d (01 x Oy) =
( ) ( L 2) {a Kl XKQ—Ol”bit if (91:—02.

We knows that the stabiliser subgroup K¢ of an element £ € £* is connected.
Then the stabilizer subgroup (K1 x K3),¢) = {(k1,akia™"), ki € K¢} is also
connected. N

Let (T* K)(u ») be the symplect1c reduction of T*K at the level (u,\) € K2
For any u € K we define p* € K by the relation —K - p = K - u*: note that
VI ~ (V). If one uses Theorem P.1 P14, one has

0 if A\#£p*

(5.55) QwFKMMﬂ={1ﬁA_ur
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Finally
% (TK) = Y Q(T'K) ) Vi @ v
(1N eR XK
= > Ve Ve =1X(K).
;LGIA(

5.1.2. Computation of QF , i, (T*K). The Kirwan vector field on T*K is

k(a,§) = =26 € tc.
Let ¢ be the symbol Thom(T*K,.J) pushed by the vector field 3x. At each
(a,§) € T*K, the map cf, (X ®n) from NG (E x E7) to /\ﬂ‘gd(é x £*) is equal
to the clifford map c(X + @ n). Note that ¢ is a Ko-transversally elliptic symbol
on T*K: we have Char(c’”") N T, (T*K) = {(1,0)}. We will now compute the
equivariant index of c”

First we consider the homotopy t € [0, 1] — Jy¢ of symplectic structure on T*K.
Let ¢" be the symbol acting on Aj (€ x £*) = Aztc. Proposition @ shows that the
symbols ¢ and € define the same class in Kx, x i, (Tk, (T*K)).

The projection 7 : T*K — £* corresponds to the quotient map relative to the
free action of Ks. At the level of K-groups we get an isomorphism

Trx KK1><K2(TK2(T*K)) - KKI(TE*)'
Atiyah [[] proves that
IndexKllx(K2 Z IndexK1 (Tu(o® VKZ)) ® (V#Kz)*
,uGK

for any class 0 € Kk, xx,(Tk,(T*K)). In our case the symbol 7*(€") is equal to
the Bott symbol Bott(¢*), and for any Ks-module Ey we have

(6" ® Fy) = Bott(¢*) ® F;
where F; is the module F5 with the action of K;. Then

QleK2(T*K) = Index’lr(*llil(g(én)
= ) Index, (Bott(t") ® V,[) @ (V,F2)"
pneK
= Y VB e V) =1A(K),
HEK

since Index?1 (Bott(€*)) = 1.

5.2. The formal quantization of T*(K/H). Let H be a closed connected sub-
group of K. Look at T*K as a Hamiltonian manifold relatively to the action of
H x K C Ky x Ky. The moment map ® = (®p,Pg) is defined by : ®py(a,§) =
—pr(§) and Pk (a,&) = a- &, where pr: € — bh* is the projection. Note that @ is a
proper map.

The cotangent bundle T*(K/H), viewed as K-manifold, is equal to the symplec-
tic reduction of T* K relatively to the H-action: if the kernel of the projection pr
is denoted h*, we have

O, (0)/H = K xg bt =T*(K/H).
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We are here in the setting of section Q The reduction of the H x K proper
Hamiltonian manifold T* K relatively to the H-action is smooth, then its formal
quantization is computed as follows

QR(T" (K/H)) = Qs (TH)] " =[Oy (T K) rcrc]
(5.56) = A"
= L*(K/H).
Here the fact that QF, x(T*K) is equal to the restriction of QF , k., (T*K) =

L2%(K) to H x K is a consequence of Theorem E
Let us denoted [T*(K/H)} the symplectic reduction at p € K of the K-

o
Hamiltonian manifold T*(K/H). Theorem [L.4 together with ([L.4) gives

Corollary 5.1. For any u € IA(, we have
H
* s K
Q(ﬁwKﬂﬂL)_mmP@},
where [VHK]H is the subspace of H-invariant vector.

5.3. The formal quantization of T*(K/H) relatively to the action of G.
Let G be a closed connected subgroup of K. We look at the hamiltonian action of
G on T*(K/H). Let &g : T*(K/H) — g* be the moment map. We consider also
the restriction of the K-module L?(K/H) to G.

We have

Proposition 5.2. The following statements are equivalent
(1) The moment map ®g : T*(K/H) — g* is proper.
o' (0) is equal to the zero section.

k g—i—f)—E forany k € K.

g+h=t¢t

G acts tmnsztwely on K/H.

L2(K/H)|% ~C

L3(K/H)|c is an admissible G-representation.

(2
(
(
(
(

Proof. (1) = (7) is a consequence of Theorem [L.J. Let us prove that (7) => (6).
Suppose now that
LX(K/H)le = Y V" o (Vi) e
HEI?

is an admissible G-representation. It means that for any A\ € G the set
Ay = {u e B | VEIT £ {0} and (V)" @ (VF)*|a]® # {0} }

is finite. Then the vector space L?(K/H )] is equal to the finite dimensional vector
space D 4, [VEH @ [(V)*]€. 1t is not difficult to check that if 1 € Ao, then
kp € Ag for k >> 1. Finally the fact that Ag is finite implies that Ay is reduced to
1= 0. Hence the only G-invariant functions on K/H are the scalars.

(6) <= (5) <= (4) < (3) is a general fact concerning smooth actions of a
compact connected Lie group G on a compact connected manifold M. The manifold
M does not have G-invariant functions which are not scalar if and only if the action
of G on M is transitive. And given a point m € M, the orbit G - m is all of M if
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and only if tangent spaces T, (G - m) and T,, M are equal. If we take m = k—! in
M = K/H, the condition T,,(G - m) = T,, M is equivalent to k- g+ b = &.

Let us check (3) = (2). Let [k,£] € K xght = T*(K/H).We have ®([k,&]) =
0 if and only if k- £ € g*. Hence the vector & belongs to

gt ()bt =" g+ 0t

Hence condition (3) imposes that £ = 0.
(2) <= (1) comes from the fact that ®¢ is a homogeneous map of degree one
between the vector bundle T*(K/H) and the vector space g*. O

Suppose now that the cotangent bundle T*(K/H) is a proper Hamiltonian G-
manifold. Let us denoted [T*(K/H)], ¢ the (compact) symplectic reduction at

1t € G of the G-Hamiltonian manifold T* (K/H). Then,

Corollary 5.3. The multiplicity of V#G in L2(K/H) is equal to the quantization of
the reduced space [T*(K/H)],c.

Proof. Using Theorem [[.3, equality (f.5§) gives then

Qe (TH(K/H)) = Q™ (T*(K/H))|e
= L*(K/H)|c.
In other words, the multiplicity of VMG in L2(K/H) is equal to the quantization of
the reduced space [T*(K/H)|,.c- O
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