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Introduction

We consider a solution of the incompressible Euler equations for a potential flow in a domain with free boundary, of the form

{ (t, x, y) ∈ [0, T ] × R d × R : (x, y) ∈ Ω t },
where Ω t is the domain located between a free surface

Σ t = { (x, y) ∈ R d × R : y = η(t, x) },
and a given bottom denoted by Γ = ∂Ω t \ Σ t . The only assumption we shall make on the domain is that the top boundary, Σ t , and the bottom boundary, Γ are separated by a "strip" of fixed length.

More precisely, we assume that the initial domain satisfy the following assumption for t = 0.
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H t ) The domain Ω t is the intersection of the half space, denoted by Ω 1,t , located below the free surface Σ t ,

Ω 1,t = {(x, y) ∈ R d × R : y < η(t, x)}
and an open set Ω 2 ⊂ R d+1 such that Ω 2 contains a fixed strip around Σ t , which means that there exists h > 0 such that,

{(x, y) ∈ R d × R : η(t, x) -h ≤ y ≤ η(t, x)} ⊂ Ω 2 .
We shall also assume that the domain Ω 2 (and hence the domain Ω t = Ω 1,t ∩ Ω 2 ) is connected.

We emphasize that no regularity assumption is made on the domain (apart from the regularity of the top boundary Σ t ). Notice that our setting contains both cases of infinite depth and bounded depth bottoms (and all cases in-between).

The domain

A key feature of the water waves equations is that there are two boundary conditions on the free surface Σ t = {y = η(t, x)}. Namely, we consider a potential flow so that the velocity field is the gradient of a potential φ = φ(t, x, y) which is a harmonic function. The water waves equations are then given by the Neumann boundary condition on the bottom Γ, and the classical kinematic and dynamic boundary conditions on the free surface Σ t . The system reads (1.1)

             ∆φ + ∂ 2 y φ = 0 in Ω t , ∂ t η = ∂ y φ -∇η • ∇φ on Σ t , ∂ t φ = -gη + κH(η) - 1 2 |∇φ| 2 - 1 2 |∂ y φ| 2 on Σ t , ∂ n φ = 0 on Γ, where ∇ = (∂ x i ) 1≤i≤d , ∆ = d i=1 ∂ 2
x i , n is the normal to the boundary Γ, g > 0 denotes the acceleration of gravity, κ ≥ 0 is the coefficient of surface tension and H(η) is the mean curvature of the free surface:

H(η) = div ∇η 1 + |∇η| 2 .
We are concerned with the problem with surface tension and then we set κ = 1. Since we make no regularity assumption on the bottom, to make sense of the system (1.1) requires some care (see Section 2 for a precise definition). Following Zakharov we shall first define ψ = ψ(t, x) ∈ R by ψ(t, x) = φ(t, x, η(t, x)), and for χ ∈ C ∞ 0 (] -1, 1[) equal to 1 near 0, ψ(t, x, y) = χ y -η(t, x) h ψ(t, x).

The function φ being harmonic, φ -ψ = φ will be defined as the variational solution of the system

-∆ x,y φ = ∆ x,y ψ in Ω t , φ | Σt = 0, ∂ n φ | Γ = 0.
Let us now define the Dirichlet-Neumann operator by (G(η)ψ)(t, x) = 1 + |∇η| 2 ∂ n φ| y=η(t,x) , = (∂ y φ)(t, x, η(t, x)) -∇η(t, x) • (∇φ)(t, x, η(t, x)).

Now (η, ψ) solves (1.2)      ∂ t η -G(η)ψ = 0, ∂ t ψ + gη -H(η) + 1 2 |∇ψ| 2 - 1 2 ∇η • ∇ψ + G(η)ψ 2 1 + |∇η| 2 = 0.
The fact that the Cauchy problem (without bottom) is well posed was proved by Beyer and Günther in [START_REF] Beyer | On the Cauchy problem for a capillary drop. I. Irrotational motion[END_REF]. This result, as well as related uniform estimates with respect to κ, have been obtained by different proofs in [START_REF] Schweizer | On the three-dimensional Euler equations with a free boundary subject to surface tension[END_REF][START_REF] Iguchi | A long wave approximation for capillary-gravity waves and an effect of the bottom[END_REF][START_REF] Ambrose | The zero surface tension limit of two-dimensional water waves[END_REF][START_REF] Coutand | Well-posedness of the free-surface incompressible Euler equations with or without surface tension[END_REF][START_REF] Ming | Well-posedness of the water-wave problem with surface tension[END_REF][START_REF] Rousset | Transverse instability of the line solitary water-waves[END_REF]. The purpose of this article is twofold: first we want to clarify the Cauchy theory as well in terms of regularity indexes for the initial conditions as for the smoothness of the bottom (to our knowledge, previous results required the bottom to be the graph of an H 13 function). Second we want to show that the smoothing effect for the (one dimensional) surface tension water waves, as proved in [START_REF] Christianson | Local smoothing effects for the water-wave problem with surface tension[END_REF], is in fact a rather direct consequence of the paralinearization approach developped in [START_REF] Alazard | Paralinearization of the Dirichlet to Neumann operator, and regularity of three dimensional water waves[END_REF].

Our first result (Cauchy theory) is the following Theorem 1.1. Let d ≥ 1, s > 2 + d/2 and (η 0 , ψ 0 ) ∈ H s+ 1 2 (R d ) × H s (R d ) be such that the assumption H t=0 is satisfied. Then there exists T > 0 such that the Cauchy problem for (1.2) with initial data (η 0 , ψ 0 ) has a unique solution

(η, ψ) ∈ C 0 [0, T ]; H s+ 1 2 (R d ) × H s (R d ) such that the assumption H t is satisfied for t ∈ [0, T ].
Remark 1.2. The assumption ψ 0 ∈ H s (R d ) could be replaced by ∇ψ 0 ∈ H s-1 (R d ). We then obtain solutions such that ψ -ψ 0 ∈ C 0 [0, T ]; H s (R d ) (cf [START_REF] Lannes | Well-posedness of the water-waves equations[END_REF]). Notice that our thresholds of regularities appear to be the natural ones, as they control the Lipschitz norm of the non-linearities. However, working at that level of regularity gives rise to many technical difficulties, which would be avoided by choosing s > 3 + d 2 . Our second result is the following 1/4-smoothing effect for 2D-water waves.

Theorem 1.3. Assume that d = 1 and let s > 5/2 and T > 0. Consider a solution (η, ψ) of (1.2) on the time interval [0, T ], such that Ω t satisfies the assumption H t . If

(η, ψ) ∈ C 0 [0, T ]; H s+ 1 2 (R) × H s (R) , then
x -1 2 -δ (η, ψ) ∈ L 2 0, T ; H s+ 3 4 (R) × H s+ 1 4 (R) , for any δ > 0. This 1/4-smoothing effect was first established recently by Christianson, Hur and Staffilani in [START_REF] Christianson | Local smoothing effects for the water-wave problem with surface tension[END_REF] by a different method. Theorem 1.3 improves the result in [START_REF] Christianson | Local smoothing effects for the water-wave problem with surface tension[END_REF] in the following directions. Firstly, we obtain the smoothing effect on the lifespan of the solution and not only for a time small enough. Secondly, we lower the index of regularity (in [START_REF] Christianson | Local smoothing effects for the water-wave problem with surface tension[END_REF] the authors require s ≥ 15) and we improve the decay rate in space to the optimal one (in [START_REF] Christianson | Local smoothing effects for the water-wave problem with surface tension[END_REF] the authors require δ > 5/2). In addition, we allow much more general domains, which is interesting for applications to the cases where one takes into account the surface tension effect. Notice finally that our proof would apply to the radial case in dimension 3.

Many variations are possible concerning the fluid domain. Our method would apply to the case where the free surface is not a graph over the hyperplane R d × {0}, but rather a graph over a fixed hypersurface. Our results hold also in the case where the bottom is time-dependent, under an additional Lipschitz regularity assumption on the bottom and we prove (see Appendix A) Theorem 1.4. Assume that the domain is time dependent and satisfies the assumptions H 2 ), H 3 ) in Appendix A. Then the conclusions in Theorems 1.1 and 1.3 still hold for the system of the water-wave equations with time dependent bottom (A.1).

To prove Theorem 1.3, we start in §2 by defining and proving regularity properties of the Dirichlet-Neumann operator. Then in §3 we perform several reductions to a paradifferential system on the boundary by means of the analysis in [START_REF] Alazard | Paralinearization of the Dirichlet to Neumann operator, and regularity of three dimensional water waves[END_REF]. The key technical lemma in this paper in a reduction of the system (1.2) to a simple hyperbolic form. To perform this reduction, we prove in §4 the existence of a paradifferential symmetrizer. We deduce Theorem 1.1 from this symmetrization in §5. Theorem 1.3 is then proved in §7 by means of Doi's approach [START_REF] Doi | On the Cauchy problem for Schrödinger type equations and the regularity of solutions[END_REF][START_REF] Doi | Remarks on the Cauchy problem for Schrödinger-type equations[END_REF]. Finaly, we give in Appendix A the modifications required to prove Theorem 1.4. Note that our strategy is based on a direct analysis in Eulerian coordinates. In this direction it is influenced by the important paper by Lannes ([16]).

As it was shown by Zakharov (see [START_REF] Zakharov | Weakly nonlinear waves on the surface of an ideal finite depth fluid[END_REF] and references there in), the system (1.2) is a Hamiltonian one, of the form

∂η ∂t = δH δψ , ∂ψ ∂t = - δH δη ,
where H is the total energy of the system. Denoting by H 0 the Hamiltonian associated to the linearized system at the origin, we have

H 0 = 1 2 |ξ| | ψ| 2 + (g + |ξ| 2 )| η| 2 dξ,
where f denotes the Fourier transform, f (ξ) = e -ix•ξ f (x) dx. An important observation is that the canonical transformation (η, ψ) → a with

a = 1 √ 2 g + |ξ| 2 |ξ| 1/4 η -i |ξ| g + |ξ| 2 1/4 ψ ,
diagonalizes the Hamiltonian H 0 and reduces the analysis of the linearized system to one complex equation (see [START_REF] Zakharov | Weakly nonlinear waves on the surface of an ideal finite depth fluid[END_REF]). We shall show that there exists a similar diagonalization for the nonlinear equation, by using paradifferential calculus instead of Fourier transform. As already mentionned, this is the main technical result in this paper. In fact, we strongly believe that all dispersive estimates on the water waves system with surface tension could be obtained by using our reduction.

The Dirichlet-Neumann operator

2.1. Definition of the operator. The purpose of this section is to define the Dirichlet-Neumann operator and prove some basic regularity properties. Let us recall that we assume that Ω t is the intersection of the half space located below the free surface

Ω 1,t = {(x, y) ∈ R d × R : y < η(t, x)}
and an open set Ω 2 ⊂ R d+1 and that Ω 2 contains a fixed strip around Σ t , which means that there exists h > 0 such that

{(x, y) ∈ R d × R : η(t, x) -h ≤ y ≤ η(t, x)} ⊂ Ω 2 .
We shall also assume that the domain Ω 2 (and hence the domain Ω t ) is connected.

In the remainder of this subsection, we will drop the time dependence of the domain, and it will appear clearly from the proofs that all estimates are uniform as long as η(t, x) remains bounded in the set of functions such that η(t,

•) H s (R d ) remains bounded.
Below we use the following notations

∇ = (∂ x i ) 1≤i≤d , ∇ x,y = (∇, ∂ y ), ∆ = 1≤i≤d ∂ 2 x i , ∆ x,y = ∆ + ∂ 2 y . Notation 2.1. Denote by D the space of functions u ∈ C ∞ (Ω) such that ∇ x,y u ∈ L 2 (Ω).
We then define D 0 as the subspace of functions u ∈ D such that u is equal to 0 near the top boundary Σ. Here is the proof. Let us set

(2.2) O 1 = (x, y) ∈ R d × R : η(x) -h < y < η(x) , O 2 = (x, y) ∈ Ω : y < η(x) -h .
To prove Proposition 2.2, the starting point is the following Poincaré inequality on O 1 .

Lemma 2.3. For all u ∈ D 0 we have

O 1 |u| 2 dxdy ≤ h 2 Ω |∇ x,y u| 2 dxdy. Proof. For (x, y) ∈ O 1 we can write u(x, y) = - η(x) y
(∂ y u)(x, z) dz, so using the Hölder inequality we obtain

|u(x, y)| 2 ≤ h η(x) η(x)-h |(∂ y u)(x, z)| 2 dz.
Integrating on O 1 we obtain the desired conclusion.

Lemma 2.4. Let m 0 ∈ Ω and δ > 0 such that

B(m 0 , 2δ) = {m ∈ R d × R : |m -m 0 | < 2δ} ⊂ Ω.
Then for any m 1 ∈ B(m 0 , δ) and any u ∈ D,

(2.3) B(m 0 ,δ) |u| 2 dxdy ≤ 2 B(m 1 ,δ) |u| 2 dxdy + 2δ 2 B(m 0 ,2δ) |∇ x,y u| 2 dxdy. Proof. Denote by v = m 0 -m 1 and write u(m + v) = u(m) + 1 0 v • ∇ x,y u(m + tv)dt
As a consequence, we get

|u(m + v)| 2 ≤ 2|u(m)| 2 + 2|v| 2 1 0 |∇ x,y u(m + tv)| 2 dt,
and integrating this last inequality on B(m 1 , δ) ⊂ B(m 0 , 2δ) ⊂ Ω, we obtain (2.3).

Corollary 2.5. For any compact K ⊂ O 2 , there exists a constant C(K) > 0 such that, for all u ∈ D 0 , we have

K |u| 2 dxdy ≤ C(K) Ω |∇ x,y u| 2 dxdy.

Proof. Consider now an arbitrary point

m 0 ∈ O 2 .
Since Ω is open and connected, there exists a continuous map γ : [0, 1] → Ω such that γ(0) = m 0 and γ(1) ∈ O 1 . By compactness, there exists δ > 0 such that for any t ∈ [0, 1] B(γ(t), 2δ) ⊂ Ω. Taking smaller δ if necessary, we can also assume that B(γ(1), δ) ⊂ O 1 so that by Lemma 2.3

B(γ(1),δ) |u| 2 dxdy ≤ C Ω |∇ x,y u| 2 dxdy.
We now can find a sequence t 0 = 0, t 1 , • • • , t N = 1 such that the points m n = γ(t n ) satisfy m N +1 ∈ B(m N , δ). Applying Lemma 2.4 successively, we obtain

B(m 0 ,δ) |u| 2 dxdy ≤ C ′ Ω |∇ x,y u| 2 dxdy.
Then Corollary 2.5 follows by compactness.

Proof of Proposition 2.2. Writing

O 2 = ∪ ∞ n=1 K n ,
and taking a partition of unity (χ n ) such that 0 ≤ χ n ≤ 1 and supp χ n ⊂ K n , we can define the continuous function

g(x, y) = ∞ n=1 χ n (x, y) (1 + C(K n ))n 2 ,
which is clearly positive. Then by Corollary 2.5,

(2.4) O 2 g(x, y) |u| 2 dxdy ≤ ∞ n=1 1 (1 + C(K n ))n 2 Kn |u| 2 dxdy ≤ 2 O 2 |∇ x,y u| 2 dxdy.
Finally, let us set

g(x, y) = 1 for (x, y) ∈ O 1 , g(x, y) = g(x, y) for (x, y) ∈ O 2 .
Then Proposition 2.2 follows from Lemma 2.3 and (2.4).

We now introduce the space in which we shall solve the variational formulation of our Dirichlet problem. Definition 2.6. Denote by H 1,0 (Ω) the space of functions u on Ω such that there exists a sequence (u n ) ∈ D 0 such that,

∇ x,y u n → ∇ x,y u in L 2 (Ω, dxdy), u n → u in L 2 (Ω, g(x, y)dxdy).
We endow the space H 1,0 with the norm

u = ∇ x,y u L 2 (Ω) .
The key point is that the space H 1,0 (Ω) is a Hilbert space. Indeed, passing to the limit in (2.1), we obtain first that by definition, the norm on

H 1,0 (Ω) is equivalent to ∇ x,y u L 2 (Ω,dxdy) + u L 2 (Ω,g(x,y)dxdy) .
As a consequence, if (u n ) is a Cauchy sequence in H 1,0 (Ω), we obtain easily from the completeness of L 2 spaces that there exists u ∈ L 2 (Ω, g(x, y)dxdy) and v ∈ L 2 (Ω, dxdy) such that

u n → u in L 2 (Ω, g(x, y)dxdy), ∇ x,y u n → v in L 2 (Ω, dxdy).
But the convergence in L 2 (Ω, g(x, y)dxdy) implies the convergence in D ′ (Ω) and consequently v = ∇ x,y u in D ′ (Ω) and it is easy to see that u ∈ H 1,0 (Ω).

We are now in position to define the Dirichlet-Neumann operator. Let

ψ(x) ∈ H 1 (R d ). For χ ∈ C ∞ 0 (] -1, 1[) equal to 1 near 0, we first define ψ(x, y) = χ y -η(x) h ψ(x) ∈ H 1 (R d+1 ),
which is the most simple lifting of ψ. Then the map

v → ∆ x,y ψ, v = - Ω ∇ x,y ψ • ∇ x,y v dxdy
is a bounded linear form on H 1,0 (Ω). It follows from the Riesz theorem that there exists a unique φ ∈ H 1,0 (Ω) such that

(2.5) ∀v ∈ H 1,0 (Ω), Ω ∇ x,y φ • ∇ x,y v dxdy = ∆ x,y ψ, v .
Then φ solves the problem

-∆ x,y φ = ∆ x,y ψ in D ′ (Ω), φ | Σ = 0, ∂ n φ | Γ = 0,
the latter condition being justified as soon as the bottom Γ is regular enough. We now set φ = φ + ψ and define the Dirichlet-Neumann operator by

G(η)ψ(x) = 1 + |∇η| 2 ∂ n φ| y=η(x) , = (∂ y φ)(x, η(x)) -∇η(x) • (∇φ)(x, η(x)),
Notice that a simple calculation shows that this definition is independent on the choice of the lifting function ψ as long as it remains bounded in H 1 (Ω) and vanishes near the bottom.

2.2. Boundedness on Sobolev spaces.

Proposition 2.7.

Let d ≥ 1, s > 2 + d 2 and 1 ≤ σ ≤ s. Consider η ∈ H s+ 1 2 (R d ). Then G(η) maps H σ (R d ) to H σ-1 (R d ). Moreover, there exists a function C such that, for all ψ ∈ H σ (R d ) and η ∈ H s+ 1 2 (R d ), G(η)ψ H σ-1 (R d ) ≤ C η H s+ 1 2 ∇ψ H σ-1 .
Proof. The proof is in two steps.

First step: A localization argument. Let us define (by regularizing the function η), a smooth function η ∈ H ∞ (R d ) such that η -η L ∞ ≤ h/100 and η -η H s+1/2 ≤ h/100. We now set

η 1 = η - 9h 20 .
Then η 1 satisfies

(2.6) η(x) - h 4 < η 1 (x) ≤ η(x) - h 5 .
Lemma 2.8. Consider for -3h/4 < a < b < h/5 , the strip

S a,b = {(x, y) ∈ R d+1 ; a < y -η 1 (x) < b}, which is included in Ω. Let k ≥ 1 and assume that φ H k (S a,b ) < +∞. Then for any a < a ′ < b ′ < b there exists C > 0 such that φ H k+1 (S a ′ ,b ′ ) ≤ C φ H k (S a,b ) . Proof. Choose a function χ ∈ C ∞ 0 (a, b) equal to 1 on (a ′ , b ′ ). The function w = χ(y -η 1 (x))φ(x, y) is solution to ∆ x,y w = [∆ x,y , χ(y -η 1 (x))]φ,
and since the assumption implies that the right hand side is bounded in H k-1 , the result follows from the (explicit) elliptic regularity of the operator ∆ x,y in R d+1 . Lemma 2.9. Assume that -3h/4 < a < b < h/5 then the strip S a,b = {(x, y) ∈ R d+1 : a < y -η 1 (x) < b} is included in Ω and for any k ≥ 1, there exists

C > 0 such that φ H k (S a,b ) ≤ C ψ H 1 (R d ) .
Proof. It follows from the variational problem (2.5), the definition of

φ = φ + ψ, that ∇ x,y φ L 2 (Ω) ≤ c ψ H 1 (R d ) .
Noticing that S a,b ⊂ O 1 (cf (2.2)) and applying Lemma 2.3 we obtain the a priori

H 1 bound φ H 1 (S a,b ) ≤ φ H 1 (O 1 ) ≤ (1 + h) ∇ x,y φ L 2 (Ω) ≤ c(1 + h) ψ H 1 (R d ) .
Since it is always possible to chose a < a

2 < • • • < a k = a ′ < b ′ = b k < • • • < b 2 < b, we deduce Lemma 2.9 from Lemma 2.8. We next introduce χ 0 ∈ C ∞ (R) such that 0 ≤ χ 0 ≤ 1, χ 0 (z) = 1 for z ≥ 0, χ 0 (z) = 0 for z ≤ - 1 4 Then the function Φ(x, y) = χ 0 y -η 1 (x) h φ(x, y) is solution to ∆ x,y Φ = f := ∆ x,y , χ 0 y -η 1 (x) h φ.
In view of (2.6), notice that f is supported in a set where φ is H ∞ according to Lemma 2.9, we find that

f ∈ H ∞ (Π η ) where Π η := (x, y) ∈ R d × R : η(x) -h < y ≤ η(x) .
In addition, using that χ 0 (0) = 1 and that Φ(x, y) is identically equal to 0 near the set {y = η -h}, we immediately verify that Φ satisfies the boundary conditions

Φ | y=η(x) = ψ(x), ∂ y Φ | y=η(x)-h = 0, Φ | y=η(x)-h = 0.
The fact that the strip Π η depends on η and not on η 1 is not a typographical error. Indeed, with this choice, the strip Π η is made of two parallel curves. As a result, a very simple (affine) change of variables will flatten both the top surface {y = η(x)} and the bottom surface {y = η(x) -h}.

Second step: Elliptic estimates. To prove elliptic estimates, we shall consider the most simple change of variables. Namely, introduce ρ(x, z) = hz + η(x).

Then (x, z) → (x, ρ(x, z)), is a diffeomorphism from the strip R d × [-1, 0] to the set (x, y) ∈ R d × R : η(x) -h ≤ y ≤ η(x) .
Let us define the function v :

R d × [-1, 0] → R by (2.7) v(x, z) = Φ(x, ρ(x, z)).
From ∆ x,y Φ = f with f ∈ H ∞ (Π η ), we deduce that v satisfies the elliptic equation

(2.8) 1 ∂ z ρ ∂ z 2 v + ∇ - ∇ρ ∂ z ρ ∂ z 2 v = g, where g(x, z) = f (x, hz + η(x)) is in C 2 z ([-1, 0]; H s+ 1 2 (R d x )
). This yields (2.9)

α∂ 2 z v + ∆v + β • ∇∂ z v -γ∂ z v = g, where (2.10) α := 1 + |∇η| 2 h 2 , β := - 2∇η h , γ := ∆η h .
Also v satisfies the boundary conditions

(2.11) v   z=0 = ψ, ∂ z v| z=-1 = 0, v| z=-1 = 0.
We are now in position to apply elliptic regularity results obtained by Alvarez-Samaniego and Lannes in [3, Section 2.2] to deduce the following result.

Lemma 2.10. Suppose that v satisfies the elliptic equation (2.9) with the boundary condtions (2.11) 

with ψ ∈ H σ (R d ) and η ∈ H s+ 1 2 (R d ) where 1 ≤ σ ≤ s, s > 2 + d 2 , dist(Σ, Γ) > 0. Then ∇v, ∂ z v ∈ L 2 z [-1, 0]; H σ-1 2 x (R d ) .
It follows from Lemma 2.10 and a classical interpolation argument that (∇v, ∂ z v) are continuous in z ∈ [-1, 0] with values in H σ-1 (R d ). Now note that, by definition,

G(η)ψ = 1 + |∇η| 2 h ∂ z v -∇η • ∇v    z=0 .
Therefore, we conclude that G(η)ψ ∈ H σ-1 (R d ). Moreover we have the desired estimate. This completes the proof of Proposition 2.7.

2.3. Linearization of the Dirichlet-Neumann operator. The next proposition gives an explicit expression of the shape derivative of the Dirichlet-Neumann operator, that is, of its derivative with respect to the surface parametrization.

Proposition 2.11.

Let ψ ∈ H σ (R d ) and η ∈ H s+ 1 2 (R d ) with 1 ≤ σ ≤ s, s > 2 + d 2 be such that dist(Σ, Γ) > 0. Then there exists a neighborhood U η ⊂ H s+ 1 2 (R d ) of η such that the mapping σ ∈ U η ⊂ H s+ 1 2 (R d ) → G(σ)ψ ∈ H σ-1 (R d ) is differentiable. Moreover, for all h ∈ H s+ 1 2 (R d ), we have dG(η)ψ • h := lim ε→0 1 ε G(η + εh)ψ -G(η)ψ = -G(η)(Bh) -div(V h),
where

B = ∇η • ∇ψ + G(η)ψ 1 + |∇η| 2 , V = ∇ψ -B∇η.
The above result goes back to Zakharov [START_REF] Zakharov | Weakly nonlinear waves on the surface of an ideal finite depth fluid[END_REF]. Notice that in the previous paragraph we reduced the analysis to studying an elliptic equation in a flat strip R d × [-1, 0]. As a consequence, the proof of this result by Lannes [START_REF] Lannes | Well-posedness of the water-waves equations[END_REF] applies (see also [START_REF] Bona | Asymptotic models for internal waves[END_REF][START_REF] Iooss | Small divisor problem in the theory of three-dimensional water gravity waves[END_REF][START_REF] Alazard | Paralinearization of the Dirichlet to Neumann operator, and regularity of three dimensional water waves[END_REF]).

Let us mention a key cancellation in the previous formula, which is proved in [6, Lemma 1] (see also [START_REF] Lannes | Well-posedness of the water-waves equations[END_REF]). Lemma 2.12. We have G(η)B =div V .

Proof. Recalling that, by definition,

G(η)ψ = (∂ y φ -∇η • ∇φ)  
y=η , and using the chain rule to write

∇ψ = ∇(φ| y=η ) = (∇φ + ∂ y φ∇η)   y=η , we obtain B := ∇η • ∇ψ + G(η)ψ 1 + |∇η| 2 = 1 1 + |∇η| 2 {∇η • (∇φ + ∂ y φ∇η) + ∂ y φ -∇η • ∇φ}   y=η = (∂ y φ)   y=η .
Therefore the function Φ defined by Φ(x, y) = ∂ y φ(x, y) is the solution to the system ∆ x,y Φ = 0, Φ| y=η = B, ∂ n Φ| Γ = 0.

Consequently, directly from the definition of the Dirichlet-Neumann operator, we have

G(η)B = ∂ y Φ -∇η • ∇Φ   y=η . Now we have ∂ y Φ = ∂ 2 y φ = -∆φ and hence G(η)B = -∆φ -∇η • ∇Φ   y=η .
On the other hand, directly from the definition of V , we have div V = div(∇ψ -B∇η) = ∆ψdiv(B∇η).

Using that ψ(x) = φ(x, η(x)), we check that

∆ψ = div ∇ψ = div ∇φ   y=η + ∂ y φ   y=η ∇η = (∆φ + ∇∂ y φ • ∇η)   y=η + div ∂ y φ   y=η ∇η = (∆φ + ∇∂ y φ • ∇η)   y=η + div(B∇η) so that div V = ∆ψ -div(B∇η) = (∆φ + ∇∂ y φ • ∇η)   y=η = (∆φ + ∇Φ • ∇η)   y=η = -G(η)B
, which is the desired identity.

Paralinearization

3.1. Paradifferential calculus. In this paragraph we review notations and results about Bony's paradifferential calculus. We refer to [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF][START_REF] Hörmander | Lectures on nonlinear hyperbolic differential equations[END_REF][START_REF] Métivier | Para-differential calculus and applications to the cauchy problem for nonlinear systems[END_REF][START_REF] Meyer | Remarques sur un théorème de J.-M. Bony[END_REF][START_REF] Taylor | Pseudodifferential operators and nonlinear PDE[END_REF] for the general theory. Here we follow the presentation by Métivier in [START_REF] Métivier | Para-differential calculus and applications to the cauchy problem for nonlinear systems[END_REF].

For ρ ∈ N, according to the usual definition, we denote by W ρ,∞ (R d ) the Sobolev spaces of L ∞ functions whose derivatives of order ρ are in L ∞ . For ρ ∈]0, +∞[\N, we denote by W ρ,∞ (R d ) the space of bounded functions whose derivatives of order [ρ] are uniformly Hölder continuous with exponent ρ -[ρ]. Recall also that, for all

C ∞ function F , if u ∈ W ρ,∞ (R d ) for some ρ ≥ 0 then F (u) ∈ W ρ,∞ (R d ). Definition 3.1. Given ρ ≥ 0 and m ∈ R, Γ m ρ (R d
) denotes the space of locally bounded functions a(x, ξ) on R d × (R d \ 0), which are C ∞ with respect to ξ for ξ = 0 and such that, for all α ∈ N d and all ξ = 0, the function x → ∂ α ξ a(x, ξ) belongs to W ρ,∞ (R d ) and there exists a constant C α such that,

(3.1) ∀ |ξ| ≥ 1 2 , ∂ α ξ a(•, ξ) W ρ,∞ ≤ C α (1 + |ξ|) m-|α| .
We next introduce the spaces of (poly)homogeneous symbols.

Definition 3.2. i) Γm ρ (R d ) denotes the subspace of Γ m ρ (R d ) which consists of symbols a(x, ξ) which are homogeneous of degree m with respect to ξ. ii) If a = 0≤j<ρ a (m-j) (j ∈ N),
where a (m-j) ∈ Γm-j ρ-j (R d ), then we say that a (m) is the principal symbol of a.

Given a symbol a, we define the paradifferential operator T a by

(3.2) T a u(ξ) = (2π) -d χ(ξ -η, η) a(ξ -η, η)ψ(η) u(η) dη,
where a(θ, ξ) = e -ix•θ a(x, ξ) dx is the Fourier transform of a with respect to the first variable; χ and ψ are two fixed C ∞ functions such that:

ψ(η) = 0 for |η| ≤ 1, ψ(η) = 1 for |η| ≥ 2,
and χ(θ, η) is homogeneous of degree 0 and satisfies, for 0 < ε 1 < ε 2 small enough,

χ(θ, η) = 1 if |θ| ≤ ε 1 |η| , χ(θ, η) = 0 if |θ| ≥ ε 2 |η| .
We shall use quantitative results from [START_REF] Métivier | Para-differential calculus and applications to the cauchy problem for nonlinear systems[END_REF] about operator norms estimates in symbolic calculus. To do so, introduce the following semi-norms.

Definition 3.3. For m ∈ R, ρ ≥ 0 and a ∈ Γ m ρ (R d ), we set (3.3) M m ρ (a) = sup |α|≤ d 2 +1+ρ sup |ξ|≥1/2 (1 + |ξ|) |α|-m ∂ α ξ a(•, ξ) W ρ,∞ (R d ) . Remark 3.4. If a is homogeneous of degree m in ξ, then M m ρ (a) ≤ K d,m sup |α|≤ d 2 +1+ρ sup |ξ|=1 ∂ α ξ a(•, ξ) W ρ,∞ (R d ) .
The main features of symbolic calculus for paradifferential operators are given by the following theorems.

Definition 3.5. Let m ∈ R. An operator T is said of order m if, for all µ ∈ R, it is bounded from H µ to H µ-m . Theorem 3.6. Let m ∈ R. If a ∈ Γ m 0 (R d )
, then T a is of order m. Moreover, for all µ ∈ R there exists a constant K such that

(3.4) T a H µ →H µ-m ≤ KM m 0 (a). Theorem 3.7 (Composition). Let m ∈ R and ρ > 0. If a ∈ Γ m ρ (R d ), b ∈ Γ m ′ ρ (R d ) then T a T b -T a#b is of order m + m ′ -ρ where a#b = |α|<ρ 1 i |α| α! ∂ α ξ a∂ α x b.
Moreover, for all µ ∈ R there exists a constant K such that

(3.5) T a T b -T a#b H µ →H µ-m-m ′ +ρ ≤ KM m ρ (a)M m ′ ρ (b).
Remark 3.8. We have the following corollary for poly-homogeneous symbols: if

a = 0≤j<ρ a (m-j) ∈ 0≤j<ρ Γ m-j ρ-j (R d ), b = 0≤k<ρ b (m-k) ∈ 0≤k<ρ Γ m ′ -k ρ-k (R d ), with m, m ′ ∈ R and ρ > 0, then T a T b -T c is of order m + m ′ -ρ with c = |α|+j+k<ρ 1 i |α| α! ∂ α ξ a (m-j) ∂ α x b (m ′ -k) .
Remark 3.9. Clearly a paradifferential operator is not invertible (T a u = 0 for any function u whose spectrum is included in the ball |ξ| ≤ 1/2). However, the previous result implies that there are left and right parametrix for elliptic symbols. Namely, assume that a ∈ Γ m ρ is an elliptic symbol (such that |a| ≥ K |ξ| m for some K > 0), then there exists b, b ′ ∈ Γ -m ρ such that T b T a -I and T a T b ′ -I are of order -ρ.

Consequently, if u ∈ H s and T a u ∈ H µ then u ∈ H r with r = min{µ + m, s + ρ}. Theorem 3.10 (Adjoint). Let m ∈ R, ρ > 0 and a ∈ Γ m ρ (R d ).
Denote by (T a ) * the adjoint operator of T a and by a the complex-conjugated of a. Then (T a ) * -T a * is of order m -ρ where

a * = |α|<ρ 1 i |α| α! ∂ α ξ ∂ α x a.
Moreover, for all µ there exists a constant K such that

(3.6) (T a ) * -T a * H µ →H µ-m+ρ ≤ KM m ρ (a).
If a = a(x) is a function of x only, the paradifferential operator T a is a called a paraproduct. It follows from Theorem 3.7 and Theorem 3.10 that:

(i) If a ∈ H α (R d ) and b ∈ H β (R d ) with α > d 2 , β > d 2 , then (3.7) T a T b -T ab is of order -min{α, β} - d 2 . (ii) If a ∈ H α (R d ) with α > d 2 , then (3.8) (T a ) * -T a is of order -α - d 2 .
We also have operator norm estimates in terms of the Sobolev norms of the functions.

A first nice feature of paraproducts is that they are well defined for functions a = a(x) which are not in L ∞ but merely in some Sobolev spaces H r with r < d/2.

Lemma 3.11. Let m ≥ 0. If a ∈ H d 2 -m (R d ) and u ∈ H µ (R d ) then T a u ∈ H µ-m (R d ). Moreover, T a u H µ-m ≤ K a H d 2 -m u H µ , for some positive constant K independent of a and u.
On the other hand, a key feature of paraproducts is that one can replace nonlinear expressions by paradifferential expressions, to the price of error terms which are smoother than the main terms.

Theorem 3.12. Let α, β ∈ R be such that α > d 2 , β > d 2 , then (i) For all C ∞ function F , if a ∈ H α (R d ) then F (a) -F (0) -T F ′ (a) a ∈ H 2α-d 2 (R d ). (ii) If a ∈ H α (R d ) and b ∈ H β (R d ), then ab -T a b -T b a ∈ H α+β-d 2 (R d ). Moreover, ab -T a b -T b a H α+β-d 2 (R d ) ≤ K a H α (R d ) b H β (R d ) ,
for some positive constant K independent of a, b.

We also recall the usual nonlinear estimates in Sobolev spaces (see chapter 8 in [START_REF] Hörmander | Lectures on nonlinear hyperbolic differential equations[END_REF]):

• If u j ∈ H s j (R d ), j = 1, 2, and s 1 + s 2 > 0 then u 1 u 2 ∈ H s 0 (R d ) and (3.9) u 1 u 2 H s 0 ≤ K u 1 H s 1 u 2 H s 2 , if s 0 ≤ s j , j = 1, 2, and s 0 ≤ s 1 + s 2 -d/2, where the last inequality is strict if s 1 or s 2 or -s 0 is equal to d/2. • For all C ∞ function F vanishing at the origin, if u ∈ H s (R d ) with s > d/2 then (3.10) F (u) H s ≤ C ( u H s ) ,
for some non-decreasing function C depending only on F .

Symbol of the Dirichlet

-Neumann operator. Given η ∈ C ∞ (R d ), con- sider the domain (without bottom) Ω = {(x, y) ∈ R d × R : y < η(x)}.
It is well known that the Dirichlet-Neumann operator associated to Ω is a classical elliptic pseudo-differential operator of order 1, whose symbol has an asymptotic expansion of the form

λ (1) (x, ξ) + λ (0) (x, ξ) + λ (-1) (x, ξ) + • • •
where λ (k) are homogeneous of degree k in ξ, and the principal symbol λ (1) and the sub-principal symbol λ (0) are given by (cf [START_REF] Iooss | Small divisor problem in the theory of three-dimensional water gravity waves[END_REF])

(3.11) λ (1) = (1 + |∇η| 2 ) |ξ| 2 -(∇η • ξ) 2 , λ (0) = 1 + |∇η| 2 2λ (1)
div α (1) ∇η + i∂ ξ λ (1) • ∇α (1) ,

with α (1) = 1 1 + |∇η| 2 λ (1) + i∇η • ξ .
The symbols λ (-1) , . . . are defined by induction and we can prove that λ (k) involves only derivatives of η of order |k| + 2.

In our case the function η will not be C ∞ but only at least C 2 , so we shall set (3.12) λ = λ (1) + λ (0) , which will be well-defined in the C 2 case.

The following observation contains one of the key dichotomy between 2D waves and 3D waves.

Proposition 3.13. If d = 1 then λ simplifies to λ(x, ξ) = |ξ| .
Also, directly from (3.11), one can check the following formula (which holds for all d ≥ 1) (1) , which reflects the fact that the Dirichlet-Neumann operator is a symmetric operator.

(3.13) Im λ (0) = - 1 2 (∂ ξ • ∂ x )λ
3.3. Paralinearization of the Dirichlet-Neumann operator. Here is the main result of this section. Following the analysis in [START_REF] Alazard | Paralinearization of the Dirichlet to Neumann operator, and regularity of three dimensional water waves[END_REF], we shall paralinearize the Dirichlet-Neumann operator. The main novelties are that we consider the case of finite depth (with a general bottom) and that we lower the regularity assumptions.

Proposition 3.14.

Let d ≥ 1 and s > 2 + d/2. Assume that (η, ψ) ∈ H s+ 1 2 (R d ) × H s (R d ),
and that η is such that dist(Σ, Γ) > 0. Then

(3.14) G(η)ψ = T λ ψ -T B η -T V • ∇η + f (η, ψ),
where λ is given by (3.11) and (3.12),

B := ∇η • ∇ψ + G(η)ψ 1 + |∇η| 2 , V := ∇ψ -B∇η, and f (η, ψ) ∈ H s+ 1 2 (R d )
. Moreover, we have the estimate

f (η, ψ) H s+ 1 2 ≤ C ∇η H s-1 2 ∇ψ H s-1 ,
for some non-decreasing function C depending only on dist(Σ, Γ) > 0.

Remark 3.15. It is well known that B and V play a key role in the study of the water waves (these are simply the projection of the velocity field on the vertical and horizontal directions). The reason to introduce the unknown ψ -T B η, which is related to the so-called good unknown of Alinhac ([2]), is explained in [START_REF] Alazard | Paralinearization of the Dirichlet to Neumann operator, and regularity of three dimensional water waves[END_REF] (see also [START_REF] Lannes | Well-posedness of the water-waves equations[END_REF][START_REF] Trakhinin | Local existence for the free boundary problem for the non-relativistic and relativistic compressible euler equations with a vacuum boundary condition[END_REF]).

3.4. Proof of Proposition 3.14. Let v be given by (2.7). According to (2.9), v solves

α∂ 2 z v + ∆v + β • ∇∂ z v -γ∂ z v = g, where g ∈ C 2 z ([-1, 0]; H s+ 1 2 (R d )) is given by (2.8) and (3.15) α := 1 + |∇η| 2 h 2 , β := -2 ∇η h , γ := ∆η h .
Also v satisfies the boundary conditions

v   z=0 = ψ, v| z=-1 = 0, ∂ z v| z=-1 = 0.
Henceforth we make intensive use of the following notations.

Notation 3.16. C 0 z H r x denotes the space of continuous functions in z ∈ [-1, 0] with values in H r (R d ).
It follows from Proposition 2.10 and a classical interpolation argument that

(∇v, ∂ z v) ∈ C 0 z H s-1 x .
In addition, directly from the equation (2.9) and the usual product rule in Sobolev spaces (cf (3.9)), we obtain

∂ 2 z v ∈ C 0 z H s-2 x .
3.4.1. The good unknown of Alinhac. Below, we use the tangential paradifferential calculus, that is the paradifferential quantization T a of symbols a(z; x, ξ) depending on the phase space variables (x, ξ) ∈ T * R d and the parameter z ∈ [-1, 0]. In particular, denote by T a u the operator acting on functions u = u(z; x) so that for each fixed z, (T a u)(z) = T a(z) u(z).

Note that a simple computation shows

G(η)ψ = 1 + |∇ρ| 2 h ∂ z v -∇η • ∇v    z=0 .
Our purpose is to express ∂ z v| z=0 in terms of tangential derivatives. To do this, the key technical point is to obtain an equation for ψ -

T B η. Note that ψ -T B η = v -T ∂z v h ρ   z=0 . We thus introduce b := ∂ z v h and u := v -T b ρ = v -T b η, since T b (hz) = 0, so that ψ -T B η = u| z=0 .
Lemma 3.17. The good unknown u = v -T b ρ satisfies the paradifferential equation

(3.16) T α ∂ 2 z u + ∆u + T β • ∇∂ z u -T γ ∂ z u = g + f,
where α, β, γ are as defined in (3.15), g ∈ C 1 z (H

s+ 1 2 x
) is given by (2.8) and

f ∈ C 0 z H 2s-5+d 2 x .
Proof. We shall use the notation

f 1 ∼ f 2 to say that f 1 -f 2 ∈ C 0 z H 2s-5+d 2 
x . Introduce the operators

E := α∂ 2 z + ∆ + β • ∇∂ z -γ∂ z , and 
P := T α ∂ 2 z + ∆ + T β • ∇∂ z -T γ ∂ z .
We shall prove that P u ∼ g 1 , where

g 1 ∈ C 0 z H s+ 1 2 x
. To do so, we begin with the paralinearization formula for products. Recall that

η ∈ H s+ 1 2 (R d ) and ∂ k z v ∈ C 0 z H s-k x for k ∈ {1, 2}.
According to Theorem 3.12, ii), we have

Ev ∼ P v + T ∂ 2 z v α + T ∇∂zv • β -T ∂zv γ. Since Ev = g ∈ C 0 z H s+ 1 2 x
and since v = u + T b η, this yields

P u + P T b η + T ∂ 2 z v α + T ∇∂zv • β -T ∂zv γ ∼ g.
Hence, we need only prove that (3.17)

P T b η + T ∂ 2 z v α + T ∇∂zv • β -T ∂zv γ ∼ g 2 ∈ C 0 z H s+ 1 2 x
.

By using the Leibniz rule and (3.7), we have

P T b η ∼ T Eb η + 2T ∇b • ∇η + T β∂zb • ∇η + T b ∆η.
The first key observation is that

Eb = ∂ z g h ∈ C 0 z H s+ 1 2 x .
To establish this identity, note that by definition (cf (2.8)) we have

Eb = 1 h ∂ z 2 + ∇ - ∇η h ∂ z 2 1 h ∂ z v = 1 h ∂ z Ev, = 1 h ∂ z g. It follows that T Eb η ∈ C 0 z H s+ 1 2 x .
On the other hand, according to (3.15), we have

T ∂zv γ = T b ∆η, T ∇∂zv β = -2T ∇b ∇η, T β∂zb ∇η = - 2 h 2 T ∂ 2 z v∇η ∇η ∼ -T ∂ 2 z v α,
where the last equivalence is a consequence of (i) in Theorem 3.12 and (3.7).

Consequently, we end up with the second key cancelation

T ∂ 2 z v α + T ∇∂zv • β -T ∂zv γ + 2T ∇b • ∇η + T β∂zb • ∇η + T b ∆η ∼ g 3 ∈ C 0 z H s+ 1 2 x .
This concludes the proof of (3.17) and hence of the lemma.

3.4.2.

Reduction to the boundary. Our next task is to perform a decoupling into forward and backward elliptic evolution equations.

Lemma 3.18. Assume that η ∈ H s+ 1 2 (R d ). Set δ = min 1 2 , s -2 - d 2 > 0.
There exist two symbols a = a(x, ξ), A = A(x, ξ) (independent of z) with

a = a (1) + a (0) ∈ Γ1 3/2+δ (R d ) + Γ0 1/2+δ (R d ), A = A (1) + A (0) ∈ Γ1 3/2+δ (R d ) + Γ0 1/2+δ (R d ), such that, (3.18) T α ∂ 2 z + ∆ + T β • ∇∂ z -T γ ∂ z = T α (∂ z -T a )(∂ z -T A )u + R 0 + R 1 ∂ z , where R 0 is of order 1/2 -δ and R 1 is of order -1/2 -δ.
Proof. We seek a and A such that

(3.19) a (1) A (1) + 1 i ∂ ξ a (1) • ∂ x A (1) + a (1) A (0) + a (0) A (1) = - |ξ| 2 α , a + A = 1 α (-iβ • ξ + γ) .
According to Theorem 3.7 and (3.7),

R 0 := T α T a T A -∆ is of order 2 - 3 2 -δ = 1 2 -δ,
while the second equation gives

R 1 := -T α (T a + T A ) + T β • ∇ -T γ is of order 1 - 3 2 -δ = - 1 2 -δ.
We thus obtain the desired result (3.18) from (3.16).

To solve (3.19), we first solve the principal system:

a (1) A (1) = - |ξ| 2 α , a (1) + A (1) = - iβ • ξ α ,
by setting

a (1) (z, x, ξ) = 1 2α -iβ • ξ -4α |ξ| 2 -(β • ξ) 2 , A (1) (z, x, ξ) = 1 2α -iβ • ξ + 4α |ξ| 2 -(β • ξ) 2 .
Directly from the definition of α and β note that

4α |ξ| 2 -(β • ξ) 2 ≥ 2 h |ξ| ,
so that the symbols a (1) , A (1) belong to Γ1 3/2+δ (R d ) (actually a (1) , A (1) belong to Γ1

s-(d+1)/2 (R d ) provided that s -(d + 1)/2 is not an integer).

We next solve the system

a (0) A (1) + a (1) A (0) + 1 i ∂ ξ a (1) ∂ x A (1) = 0, a (0) + A (0) = γ α .
It is found that

a (0) = 1 A (1) -a (1) i∂ ξ a (1) • ∂ x A (1) - γ α
a (1) , (1) , so that the symbols a (0) , A (0) belong to Γ0

A (0) = 1 a (1) -A (1) i∂ ξ a (1) • ∂ x A (1) - γ α A
1/2+δ (R d ).

We shall need the following elliptic regularity result.

Proposition 3.19. Let a ∈ Γ 1 1 (R d ) and b ∈ Γ 0 0 (R d ), with the assumption that Re a(x, ξ) ≥ c |ξ| , for some positive constant c. If w ∈ C 1 z (H -∞ x ) solves the elliptic evolution equa- tion ∂ z w + T a w = T b w + f, with f ∈ C 0 z H r x for some r ∈ R, then (3.20) w(0) ∈ H r+1-ε (R d ),
for all ε > 0.

Remark 3.20. This is a local result which means that the conclusion (3.20) remains true if we only assume that, for some δ > 0,

f | -1≤z≤-δ ∈ C 0 ([-1, -δ]; H -∞ (R d )), f | -δ≤z≤0 ∈ C 0 ([-δ, 0]; H r (R d )).
In addition, the result still holds true for symbols depending on z, such that a ∈ C 0 z (Γ 1 1 ) and b ∈ C 0 z (Γ 0 0 ), with the assumption that Re a ≥ c |ξ|, for some positive constant c.

Proof. The following proof gives the stronger conclusion that w is continuous in z ∈] -1, 0] with values in H r+1-ε (R d ). Therefore, by an elementary induction argument, we can assume without loss of generality that b = 0 and w ∈ C 0 z H r x . In addition one can assume that there exists δ > 0 such that w(x, z) = 0 for z ≤ -1/2. 

T 1 w(0) = 0 -1 (T ∂ze -T e T a )w(y) dy + 0 -1 (T e f )(y) dy. Since w(0) -T 1 w(0) ∈ H +∞ (R d ) it remains only to prove that the right-hand side belongs to H r+1-ε (R d ). Set w 1 (0) = 0 -1 (T ∂ze -T e T a )w(y) dy, w 2 (0) = 0 -1
(T e f )(y) dy.

To prove that w 2 (0) belongs to H r+1-ε (R d ), the key observation is that, since Re a ≥ c |ξ|, the family

(|y| |ξ|) 1-ε e(y; x, ξ) : -1 ≤ y ≤ 0 is bounded in Γ 0 1 (R d ).
According to the operator norm estimate (3.4), we thus obtain that there is a constant K such that, for all -1 ≤ y ≤ 0 and all v ∈ H r (R d ),

(|y|

|D x |) 1-ε (T e v) H r ≤ K v H r . Consequently, there is a constant K such that, for all y ∈ [-1, 0[, (T e f )(y) H r+1-ε ≤ K |y| 1-ε f (y) H r . Since |y| -(1-ε) ∈ L 1 (] -1, 0[), this implies that w 2 (0) ∈ H r+1-ε (R d ).
With regards to the first term, we claim that, similarly,

(T ∂z e -T e T a )(y) H r →H r+1-ε ≤ K |y| 1-ε .
Indeed, since ∂ z e = ea, this follows from (3.5) applied with (m, m ′ , r) = (-1 + ε, 1, 1) and the fact that M -1+ε 1 ((|y| 1-ε e(y; •, •)) is uniformly bounded for -1 ≤ y ≤ 0. This yields the desired result.

We are now in position to describe the boundary value of ∂ z u up to an error in H s+ 1 2 (R d ).

Corollary 3.21. Let A be as given by Lemma 3.18. Then, on the boundary {z = 0}, there holds

(∂ z u -T A u)| z=0 ∈ H s+ 1 2 (R d ).
Proof. Introduce w := (∂ z -T A )u and write

∂ z w -T a (1) w = T a (0) w + f ′ , with f ′ ∈ C 0 z H s-1 2 +δ x
. Since Re a (1) < -c |ξ|, the previous proposition applied with a = -a (1) , b = a (0) and ε = δ > 0 implies that w| z=0 ∈ H s+ 1 2 (R d ).

By definition

G(η)ψ = 1 + |∇η| 2 h ∂ z v -∇η • ∇v    z=0 .
As before, we find that

1 + |∇η| 2 h ∂ z v -∇η • ∇v = T 1+|∇η| 2 h ∂ z v + 2T b∇η • ∇η -T b 1+|∇η| 2 h h -(T ∇η • ∇v + T ∇v • ∇η) + R, where R ∈ C 0 z H 2s-3+d 2 x
. We next replace ∂ z v and ∇v by ∂ z (u + T b ρ) and ∇(u + T b ρ) in the right hand-side to obtain, after a few computations,

1 + |∇η| 2 h ∂ z v -∇η • ∇v = T 1+|∇η| 2 h ∂ z u -T ∇η • ∇u -T ∇v-b∇η • ∇ρ -T div(∇v-b∇η) ρ + R ′ , with R ′ ∈ C 0 z H 2s-3+d 2 x
. Furthermore, Corollary 3.21 implies that

(3.21) T 1+|∇η| 2 h ∂ z u -T ∇η • ∇u    z=0 = T λ U + r, with U = u| z=0 = v -T b ρ| z=0 = ψ -T B η, r ∈ H s+ 1 2 (R d ) and (3.22) λ = 1 + |∇η| 2 h A -i∇η • ξ    z=0 .
After a few computations, we check that λ is as given by (3.11)-(3.12). This concludes the analysis of the Dirichlet-Neumann operator. Indeed, we have obtained

G(η)ψ = T λ U -T ∇v-b∇η • ∇η -T div(∇v-b∇η) ρ + f (η, ψ), with f (η, ψ) ∈ H s+ 1 2 (R d ). This yields the first equation in (3.14) since V = ∇v -b∇η| z=0 , ∇η| z=0 = ∇η,
and since

T div V η ∈ H s+ 1 2 (R d ). 3.5. A simpler case. Let us remark that if (η, ψ) ∈ H s+ 1 2 (R d ) × H s-1 (R d
), the expressions above can be simplified and we have the following result that we shall use in Section 6.2.

Proposition 3.22. Let d ≥ 1, s > 2 + d/2 and 1 ≤ σ ≤ s -1. Assume that (η, ψ) ∈ H s+ 1 2 (R d ) × H σ (R d ),
and that η is such that dist(Σ, Γ) > 0. Then

G(η)ψ = T λ (1) ψ + F (η, ψ),
where F (η, ψ) ∈ H σ (R d ) (and recall that λ (1) denotes the principal symbol ,of the Dirichlet-Neumann operator). Moreover,

F (η, ψ) H σ ≤ C ∇η H s-1 2 ∇ψ H σ-2 ,
for some non-decreasing function C depending only on dist(Σ, Γ) > 0.

Remark 3.23. Notice that the proof below would still work assuming only

η ∈ H s+ε (R d ), v ∈ C 0 z H σ
x , with the same conclusion. A more involved proof (using regularized lifting for the function η following Lannes [START_REF] Lannes | Well-posedness of the water-waves equations[END_REF]) would give the result assuming only

(η, ψ) ∈ H s (R d ) × H σ (R d ).
Proof. We follow the proof of Proposition 3.14. Let v be as given by (2.7): v solves

α∂ 2 z v + ∆v + β • ∇∂ z v -γ∂ z v = g, where g ∈ C 0 ([-1, 0]; H s+ 1 2 (R d )
) is given by (2.8) and

α := (1 + |∇η| 2 ) h 2 , β := -2 ∇η h , γ := ∆η h .
Comparing with the proof of Proposition 3.14, an important simplification is that we need only in this proof to paralinearize with respect to v. In this direction, we claim that

(3.23) T α ∂ 2 z v + ∆v + T β • ∇∂ z v -T γ ∂ z v ∈ C 0 z H σ-1 2 x .
To see this we first apply point (ii) in Theorem 3.12 to obtain

α∂ 2 z v -T α ∂ 2 z v -T ∂ 2 z v α ∈ C 0 z H (s-1 2 )+σ-2-d/2 x ⊂ C 0 z H σ-1 2 x
, and similarly

β • ∇∂ z v -T β • ∇∂ z v -T ∇∂zv • β ∈ C 0 z H σ-1 2 x , γ∂ z v -T γ ∂ z v -T ∂zv γ ∈ C 0 z H σ-1 2 x . Moreover, writing σ -2 = d/2 -(d/2 + 2 -σ), using Lemma 3.11 with m = d/2 + 2 -σ, we obtain T ∂ 2 z v α ∈ C 0 z H s-1 2 -(d/2+2-σ) x ⊂ C 0 z H σ-1 2 x , and 
T ∇∂zv • β ∈ C 0 z H σ-1 2 x
.

Similarly, we have

T ∂zv γ ∈ C 0 z H σ-1 2 x .
Therefore, summing up directly gives the desired result (3.23). Now, by applying Lemma 3.18, we obtain that

T α ∂ 2 z + ∆v + T β • ∇∂ z v -T γ ∂ z v = T α (∂ z -T a )(∂ z -T A )v + f with f = R 0 v + R 1 ∂ z v ∈ C 0 z H σ-1+δ
x where δ = min 1 2 , s -2 -d 2 > 0. Then, as in Corollary 3.21, we deduce that

(∂ z v -T A v)| z=0 ∈ H σ (R d ). Since v(0) ∈ H s-1 (R d ) we deduce T A (0) v| z=0 ∈ H s-1 (R d ) (A (0)
is the subprincipal symbol of A, which is of order 0) and hence

(∂ z v -T A (0) v)| z=0 ∈ H σ (R d ).
The rest of the proof is as in the proof of Proposition 3.14 3.6. Paralinearization of the full system. Consider a given solution (η, ψ) of (1.2) on the time interval [0, T ] with 0 < T < +∞, such that

(η, ψ) ∈ C 0 [0, T ]; H s+ 1 2 (R d ) × H s (R d ) ,
for some s > 2 + d/2, with d ≥ 1.

In the sequel we consider functions of (t, x), considered as functions of t with values in various spaces of functions of x. In particular, denote by T a u the operator acting on u so that for each fixed t, (T a u)(t) = T a(t) u(t).

Our first result is a paralinearization of the water-waves system (1.2).

Proposition 3.24. Introduce

U := ψ -T B η.
Then (η, U ) satisfies a system of the form

(3.24) ∂ t η + T V • ∇η -T λ U = f 1 , ∂ t U + T V • ∇U + T h η = f 2 , with f 1 ∈ L ∞ 0, T ; H s+ 1 2 (R d ) , f 2 ∈ L ∞ 0, T ; H s (R d ) . Moreover, (f 1 , f 2 ) L ∞ (0,T ;H s+ 1 2 ×H s ) ≤ C (η, ψ) L ∞ (0,T ;H s+ 1 2 ×H s )
, for some function C depending only on dist(Σ 0 , Γ).

We have already performed the paralinearization of the Dirichlet-Neumann operator. We now paralinearize the nonlinear terms which appear in the dynamic boundary condition. This step is much easier.

Lemma 3.25. There holds

H(η) = -T h η + f,
where h = h (2) + h (1) with 2) ,

(3.25) h (2) = 1 + |∇η| 2 -1 2 |ξ| 2 - (∇η • ξ) 2 1 + |∇η| 2 , h (1) = - i 2 (∂ x • ∂ ξ )h ( 
and f ∈ L ∞ (0, T ; H 2s-2-d/2
) is such that

(3.26) f L ∞ (0,T ;H 2s-2-d 2 ) ≤ C( η L ∞ (0,T ;H s+1/2 ) ),
for some non-decreasing function C.

Proof. Theorem 3.12 applied with α = s -1/2 implies that ∇η

1 + |∇η| 2 = T M ∇η + f where M = 1 1 + |∇η| 2 I - ∇η ⊗ ∇η (1 + |∇η| 2 ) 3/2 , and f ∈ L ∞ (0, T ; H 2s-1-d 2 ) is such that f L ∞ (0,T ;H 2s-1-d 2 )
≤ C( η

L ∞ (0,T ;H s+ 1 2 )
),

for some non-decreasing function C. Since

div(T M ∇η) = T -M ξ•ξ+i div M ξ η,
we obtain the desired result with h (2) = M ξ • ξ, h (1) = -i div M ξ and f = div f .

Recall the notations

B = ∇η • ∇ψ + G(η)ψ 1 + |∇η| 2 , V = ∇ψ -B∇η.
Lemma 3.26. We have

1 2 |∇ψ| 2 - 1 2 (∇η • ∇ψ + G(η)ψ) 2 1 + |∇η| 2 = T V • ∇ψ -T B T V • ∇η -T B G(η)ψ + f ′ , with f ′ ∈ L ∞ (0, T ; H 2s-2-d 2 (R d )) satisfies f ′ L ∞ (0,T ;H 2s-2-d 2 ) ≤ C (η, ψ) L ∞ (0,T ;H s+ 1 2 ×H s )
, for some non-decreasing function C.

Proof. Again, we shall use the paralinearization lemma. Note that for

F (a, b, c) = 1 2 (a • b + c) 2 1 + |a| 2 (a ∈ R d , b ∈ R d , c ∈ R)
there holds

∂ a F = (a • b + c) 1 + |a| 2 b - (a • b + c) 1 + |a| 2 a , ∂ b F = (a • b + c) 1 + |a| 2 a, ∂ c F = (a • b + c) 1 + |a| 2 .
Using these identities for a = ∇η, b = ∇ψ and c = G(η)ψ, the paralinearization lemma (cf (i) in Theorem 3.12) implies that

1 2 (∇η • ∇ψ + G(η)ψ) 2 1 + |∇η| 2 = {T V B • ∇η + T B∇η ∇ψ + T B G(η)ψ} + r, with r ∈ L ∞ (0, T ; H 2s-2-d 2 (R d )) satisfies the desired estimate. Since V = ∇ψ - B∇η, this yields 1 2 |∇ψ| 2 - 1 2 (∇η • ∇ψ + G(η)ψ) 2 1 + |∇η| 2 = {T V • ∇ψ -T V B • ∇η -T B G(η)ψ} + r ′ with r ′ ∈ L ∞ (0, T ; H 2s-2-d 2 (R d ))
. Since by (3.7)

T BV -T B T V is of order -s -1 - d 2 ,
this completes the proof.

Lemma 3.27. There exists a function C such that,

T ∂tB η H s ≤ C (η, ψ) H s+ 1 2 ×H s . Proof. a) We claim that (3.27) ∂ t η H s-1 + ∂ t ψ H s-3 2 + B H s-1 + V H s-1 ≤ C (η, ψ) H s+ 1
2 ×H s . The proof of this claim is straightforward. Indeed, recall that

B = ∇η • ∇ψ + G(η)ψ 1 + |∇η| 2 .
It follows from Proposition 2.7 that we have the estimate

G(η)ψ H s-1 ≤ C (η, ψ)
H s+ 1 2 ×H s . Using that H s-1 is an algebra since s -1 > d/2, we thus get the desired estimate for B. This in turn implies that V = ∇ψ -B∇η satisfies the desired estimate. In addition, since ∂ t η = G(η)ψ, this gives the estimate of ∂ t η H s-1 . To estimate ∂ t ψ we simply write that

∂ t ψ = F (∇ψ, ∇η, ∇ 2 η),
for some C ∞ function F vanishing at the origin. Consequently, since s -3/2 > d/2, the usual nonlinear rule in Sobolev space implies that

∂ t ψ H s-3/2 ≤ C (∇ψ, ∇η, ∇ 2 η) H s-3/2 ≤ C (η, ψ) H s+ 1 2 ×H s . b) We are now in position to estimate ∂ t B. We claim that (3.28) ∂ t B H s-5 2 ≤ C (η, ψ)
H s+ 1 2 ×H s . In view of (3.27) and the product rule (3.9), the only non trivial point is to estimate ∂ t [G(η)ψ]. To do so, we use the identity for the shape derivative of the Dirichlet-Neumann (see §2.3) to obtain

∂ t [G(η)ψ] = G(η) (∂ t ψ -B∂ t η) -div(V ∂ t η).
Therefore (3.27) and the boundedness of G(η) on Sobolev spaces (cf Proposition 2.7) imply that

∂ t [G(η)ψ] H s-5 2 ≤ C (η, ψ) H s+ 1 2 ×H s . This proves (3.28). c) Next we use Lemma 3.11 with m = 1/2 (which asserts that if a ∈ H d 2 -1 2 (R d )
then the paraproduct T a is of order 1/2). Therefore, since by assumption s -5/2 > d/2 -1/2 for all d ≥ 1, we conclude

T ∂tB η H s ≤ T ∂tB H s+ 1 2 →H s η H s+ 1 2 ≤ C (η, ψ)
H s+ 1 2 ×H s . This completes the proof.

Symmetrization

Consider a given solution (η, ψ) of (1.2) on the time interval [0, T ] with 0 < T < +∞, such that

(η, ψ) ∈ C 0 [0, T ]; H s+ 1 2 (R d ) × H s (R d
) , for some s > 2 + d/2, with d ≥ 1. We proved in Proposition 3.24 that η and U = ψ -T B η satisfy the system (4.1)

(∂ t + T V • ∇) η U + 0 -T λ T h 0 η U = f, where f ∈ L ∞ (0, T ; H s+ 1 2 (R d )× H s (R d ))
. The main result of this section is that there exists a symmetrizer S of the form

S = T p 0 0 T q , which conjugates 0 -T λ T h 0
to a skew-symmetric operator. Indeed we shall prove that there exists S such that, modulo admissible remainders,

S 0 -T λ T h 0 ≃ 0 -T γ (T γ ) * 0 S.
In addition, we shall obtain that the new unknown Φ = S η U satisfies a system of the form

(4.2) ∂ t Φ + T V • ∇Φ + 0 -T γ (T γ ) * 0 Φ = F, with F ∈ L ∞ (0, T ; H s (R d ) × H s (R d )); morevoer (η, ψ) H s+ 1 2 ×H s is controlled by means of Φ H s .
This symmetrization has many consequences. In particular, in the following sections, we shall deduce our two main results from this symmetrization. where (i) a (m) is a real-valued elliptic symbol, homogenous of degree m in ξ and depends only on the first order-derivatives of η; (ii) a (m-1) is homogenous of degree m -1 in ξ and depends also, but only linearly, on the second order-derivatives of η.

Recall that in this section η ∈ C 0 ([0, T ]; H s+ 1 2 (R d )) is a fixed given function. with

a (m) (t, x, ξ) = F (∇η(t, x), ξ), a (m-1) (t, x, ξ) = |α|=2 G α (∇η(t, x), ξ)∂ α x η(t, x),
such that (i) T a maps real-valued functions to real valued functions;

(ii) F is a C ∞ real-valued function of (ζ, ξ) ∈ R d × (R d \ 0)
, homogeneous of order m in ξ; and such that there exists a continuous function

K = K(ζ) > 0 such that F (ζ, ξ) ≥ K(ζ) |ξ| m , for all (ζ, ξ) ∈ R d × (R d \ 0); (iii) G α is a C ∞ complex-valued function of (ζ, ξ) ∈ R d × (R d \ 0), homogeneous of order m -1 in ξ.
Notice that, as we only assume s > 2+d/2, some technical difficulties appear. To overcome these problems, the observation that for all our symbols, the subprincipal terms have only a linear dependence on the second order derivative of η will play a crucial role.

Our first result contains the important observation that the previous class of symbols is stable by the standard rules of symbolic calculus (this explains why all the symbols which we shall introduce below are of this form). We shall state a symbolic calculus result modulo admissible remainders. To clarify the meaning of admissible remainder, we introduce the following notation. 

{A(t) : t ∈ [0, T ]}, {B(t) : t ∈ [0, T ]}.
We shall say that A ∼ B if A -B is of order m -3/2 (see Definition 3.5) and satisfies the following estimate: for all µ ∈ R, there exists a continuous function C such that A(t) -B(t)

H µ →H µ-m+ 3 2 ≤ C η(t) H s+ 1 2 , for all t ∈ [0, T ]. Proposition 4.3. Let m, m ′ ∈ R. Then (1) If a ∈ Σ m and b ∈ Σ m ′ then T a T b ∼ T a♯b where a♯b ∈ Σ m+m ′ is given by a♯b = a (m) b (m ′ ) + a (m-1) b (m ′ ) + a (m) b (m ′ -1) + 1 i ∂ ξ a (m) • ∂ x b (m ′ ) . (2) If a ∈ Σ m then (T a ) * ∼ T b where b ∈ Σ m is given by b = a (m) + a (m-1) + 1 i (∂ x • ∂ ξ )a (m) .
Proof. It follows from (3.5) applied with ρ = 3/2 that

T a (m) T b (m ′ ) -T a (m) b (m ′ ) + 1 i ∂ ξ a (m) •∂xb (m ′ ) H µ →H µ-m-m ′ +3/2 ≤ C( ∇η W 3/2,∞
). On the other hand, (3.5) applied with ρ = 1/2 implies that

T a (m) T b (m ′ -1) -T a (m) b (m ′ -1) H µ →H µ-m-m ′ +3/2 ≤ C( ∇η W 3/2,∞ ), T a (m-1) T b (m ′ ) -T a (m-1) b (m ′ ) H µ →H µ-m-m ′ +3/2 ≤ C( ∇η W 3/2,∞ ). Eventually (3.4) implies that T a (m-1) T b (m ′ -1) H µ →H µ-m-m ′ +2 ≤ C( ∇η W 1,∞ ).
The first point in the proposition then follows from the Sobolev embedding

H s+ 1 2 (R d ) ⊂ W 5 2 ,∞ (R d )
. Furthermore, we easily verify that a♯b ∈ Σ m+m ′ . Similarly, the second point is a straightforward consequence of Theorem 3.10 and the fact that a (m) is, by assumption, a real-valued symbol.

Given that a ∈ Σ m , since a (m-1) involves two derivatives of η, the usual boundedness result for paradifferential operators and the embedding H s (R d ) ⊂ W 2,∞ (R d ) implies that we have estimates of the form

(4.3) T a(t) H µ →H µ-m sup |ξ|=1 a(t, •, ξ) L ∞ ≤ C ( η(t) H s ) .
Our second observation concerning the class Σ m is that one can prove a continuity result which requires only an estimate of η H s-1 .

Proposition 4.4. Let m ∈ R and µ ∈ R. Then there exists a function C such that for all symbol a ∈ Σ m and all t ∈ [0, T ],

T a(t) u H µ-m ≤ C( η(t) H s-1 ) u H µ .
Remark 4.5. This result is obvious for s > 3+d/2 since the L ∞ -norm of a(t, •, ξ) is controlled by η(t) H s-1 in this case. As alluded to above, this proposition solves the technical difficulty which appears since we only assume s > 2 + d/2.

Proof. By abuse of notations, we omit the dependence in time. a) Consider a symbol p = p(x, ξ) homogeneous of degree r in ξ such that

x → ∂ α ξ p(•, ξ) belongs to H s-3 (R d ) ∀α ∈ N d . Let q be defined by q(θ, ξ) = χ 1 (θ, ξ)ψ 1 (ξ) |ξ| p(θ, ξ)
where

χ 1 = 1 on supp χ, ψ 1 = 1 on supp ψ (see (3.2)), ψ 1 (ξ) = 0 for |ξ| ≤ 1 3 , χ 1 (θ, ξ) = 0 for |θ| ≥ |ξ| and f (θ, ξ) = e -ix•θ f (x, ξ) dx. Then (4.4) T q |D x | = T p , and 
∂ α ξ q(θ, ξ) θ -1 β≤α ∂ β ξ p(θ, ξ) .
Therefore we have

(4.5) ∂ α ξ q(•, ξ) H s-2 β≤α ∂ β ξ p(•, ξ) H s-3 .
Now, it follows from the above estimate and the embedding

H s-2 (R d ) ⊂ L ∞ (R d ) that q is L ∞ in x and hence q ∈ Γ r-1 0 ⊂ Γ r 0 .
Then, according to (3.4) applied with m = r (and not m = r -1), we have for all σ ∈ R,

T q v H σ-r sup |α|≤ d 2 +1 sup |ξ|≥ 1 2 |ξ| |α|-r ∂ α ξ q(•, ξ) L ∞ v H σ .
Applying this inequality with v = |D x | u, σ = µ -1 and using again the Sobolev embedding and (4.4), (4.5), we obtain

(4.6) T p u H µ-r-1 sup |α|≤ d 2 +1 sup |ξ|=1 ∂ α ξ p(•, ξ) H s-3 u H µ . b) Consider a symbol a ∈ Σ m of the form (4.7) a = a (m) + a (m-1) = F (∇η, ξ) + |α|=2 G α (∇η, ξ)∂ α x η.
Up to substracting the symbol of a Fourier multiplier of order m, we can assume without loss of generality that F (0, ξ) = 0. It follows from the previous estimates that 

T a (m) u H µ-m sup |ξ|=1 a (m) (•, ξ) H s-2 u H µ , and 
T a (m-1) u H µ-m sup |ξ|=1 a (m-
a (m) (•, ξ) H s-2 = sup |ξ|=1 F (∇η, ξ) H s-2 ≤ C ( η H s-1 ) .
On the other hand, by using the product rule (3.9) with (s 0 , s 1 , s 2 ) = (s -3, s -2, s -3) we obtain

a (m-1) (•, ξ) H s-3 ≤ |α|=2 G α (∇η, ξ)∂ α x η H s-3 |G α (0, ξ)| + |α|=2 G α (∇η, ξ) -G α (0, ξ) H s-2 ∂ α x η H s-3 ,
for all |ξ| ≤ 1. Therefore, (3.10) implies that

a (m-1) (•, ξ) H s-3 ≤ C( η H s-1 ).
This completes the proof.

Similarly we have the following result about elliptic regularity where one controls the various constants by the H s-1 -norm of η only. Proposition 4.6. Let m ∈ R and µ ∈ R. Then there exists a function C such that for all a ∈ Σ m and all t ∈ [0, T ], we have

u H µ+m ≤ C( η(t) H s-1 ) T a(t) u H µ + u L 2 .
Remark 4.7. As mentionned in Remark 3.9, the classical result is that, for all elliptic symbol a ∈ Γ m ρ (R d ) with ρ > 0, there holds

f H m ≤ K { T a f L 2 + f L 2 } ,
where K depends only on M m ρ (a). Hence, if we use the natural estimate

M m-1 ρ (a (m-1) (t)) ≤ C( η(t) W 2+ρ ) ≤ C( η(t) H s )
for ρ > 0 small enough, then we obtain an estimate which is worse than the one just stated for 2 + d/2 < s < 3 + d/2.

Proof. Again, by abuse of notations, we omit the dependence in time. Introduce b = 1/a (m) and consider ε such that

0 < ε < min{s -2 -d/2, 1}.
By applying (3.5) with ρ = ε we find that T b T a (m) = I + r where r is of order -ε and satisfies

ru H µ+ε ≤ C( ∇η W ε,∞ ) u H µ ≤ C( η H s-1 ) u H µ . Then u = T b T a u -ru -T b T a (m-1) . Set R = -r -T b T a (m-1)
.

Then (I -R)u = T b T a u.
We claim that there exists a function C such that

T a (m-1) u H µ-m+ε ≤ C( η H s-1 ) u H µ .
To see this, notice that the previous proof applies with the decomposition

T p = T q |D x | 1-ε where q(θ, ξ) = χ 1 (θ, ξ)ψ 1 (ξ) |ξ| 1-ε p(θ, ξ).
Once this claim is granted, since T b is of order -m, we find that R satisfies

Ru H µ+ε ≤ C( η H s-1 ) u H µ .
Writing

(I + R + • • • + R N )(I -R)u = (I + R + • • • + R N )T b T a u we get u = (I + R + • • • + R N )T b T a u + R N +1 u.
The first term in the right hand side is estimated by means of the obvious inequality

(I + R + • • • + R N )T b H µ →H µ+m ≤ (I + R + • • • + R N ) H µ+m →H µ+m T b H µ →H µ+m , so that (I + R + • • • + R N )T b T a u H µ+m ≤ C( η H s-1 ) T a u H µ .
Choosing N so large that (N + 1)ε > µ + m, we obtain that

R N +1 H µ →H µ+m R H µ+m-ε →H µ+m • • • R H µ →H µ+ε ≤ C( η H s-1 ),
which yields the desired estimate for the second term. 4.2. Symmetrization. The main result of this section is that one can symmetrize the equations. Namely, we shall prove that there exist three symbols p, q, γ such that (4.8)

     T p T λ ∼ T γ T q , T q T h ∼ T γ T p , T γ ∼ (T γ ) * ,
where recall that the notation A ∼ B was introduced in Definition 4.2.

We want to explain how we find p, q, γ by a systematic method. We first observe that if (4.8) holds true then γ is of order 3/2. To be definite, we chose q of order 0, and then necessarily p is of order 1/2. Therefore we seek p, q, γ under the form (4.9)

p = p (1/2) + p (-1/2) , q = q (0) + q (-1) , γ = γ (3/2) + γ (1/2) ,
where a (m) is a symbol homogeneous in ξ of order m ∈ R.

Let us list some necessary contrainsts on these symbols. Firstly, we seek real elliptic symbols such that,

p (1/2) ≥ K |ξ| 1/2 , q (0) ≥ K, γ (3/2) ≥ K |ξ| 3/2 ,
for some positive constant K. Secondly, in order for T p , T q , T γ to map real valued functions to real valued functions, we must have (4.10) p(t, x, ξ) = p(t, x, -ξ), q(t, x, ξ) = q(t, x, ξ), γ(t, x, ξ) = γ(t, x, -ξ).

According to Proposition 4.3, in order for T γ to satisfy the last identity in (4.8), γ (1/2) must satisfy (4.11) Im

γ (1/2) = - 1 2 (∂ ξ • ∂ x )γ (3/2) .
Our strategy is then to seek q and γ such that (4.12)

T q T h T λ ∼ T γ T γ T q .
The idea is that if this identity is satisfied then the first two equations in (4.8) are compatible; this means that if any of these two equations is satisfied, then the second one is automaticaly satisfied. Therefore, once q and γ are so chosen that (4.12) is satisfied, then one can define p by solving either one of the first two equations. The latter task being immediate.

Recall that the symbol λ = λ (1) + λ (0) (resp. h = h (2) + h (1) ) is defined by (3.11) (resp. (3.25)). In particular, by notation, (4.13) 1) ,

λ (1) = (1 + |∇η| 2 ) |ξ| 2 -(∇η • ξ) 2 , h (2) = 1 + |∇η| 2 -1 2 |ξ| 2 - (∇η • ξ) 2 1 + |∇η| 2 . Introduce the notations h♯λ = h (2) λ (1) + h (1) λ (1) + h (2) λ (0) + 1 i ξ h (2) • ∂ x λ (
and γ♯γ = γ (3/2) 2 + 2γ (1/2) γ (3/2) + 1 i ∂ ξ γ (3/2) • ∂ x γ (3/2) .
By symbolic calculus, to solve (4.12), it is enough to find q and γ such that

(4.14) q (0) (h♯λ) + q (-1) h (2) λ (1) + 1 i ∂ ξ q (0) • ∂ x (h (2) λ (1) ) = (γ♯γ)q (0) + γ (3/2) 2 q (-1) + 1 i ∂ ξ (γ (3/2) γ (3/2) ) • ∂ x q (0) .
We set γ (3/2) = h (2) λ (1) , so that the leading symbols of both sides of (4.14) are equal. Then Im γ (1/2) has to be fixed by means of (4.11). We set

Im γ (1/2) = - 1 2 (∂ x • ∂ ξ )γ (3/2) .
It next remains only to determine q (0) , q (-1) and Re γ (1/2) such that

(4.15) τ q (0) = 1 i h (2) λ (1) , q (0) = 1 i ∂ ξ (h (2) λ (1) ) • ∂ x q (0) - 1 i ∂ ξ q (0) • ∂ x (h (2) λ (1) ),
where

τ = 1 i ∂ ξ h (2) • ∂ x λ (1) + h (1) λ (1) + h (2) λ (0) -2γ (1/2) γ (3/2) + i∂ ξ γ (3/2) • ∂ x γ (3/2) .
Since q (-1) does not appear in this equation, one can freely set q (-1) = 0. We next take the real part of the right-hand side of (4.15). Since q (0) , h (2) , λ (1) are real-valued symbol we find Re τ = 0. Since h (1) (t, x, ξ) ∈ iR, we deduce that Re γ (1/2) must be given by solving the equation

h (2) Re λ (0) = 2γ (3/2) Re γ (1/2) , that is Re γ (1/2) = h (2) Re λ (0) 2γ (3/2) = h (2)
λ (1) Re λ (0) 2 .

It remains only to define q (0) such that (4.16) q (0) Im τ = -h (2) λ (1) , q (0) .

Since

h (1) = - i 2 (∂ x • ∂ ξ )h (2) , Im λ (0) = - 1 2 (∂ x • ∂ ξ )λ (1) , Im γ (1/2) = - 1 2 (∂ x • ∂ ξ )γ (3/2) ,
we find

Im τ = -∂ ξ h (2) • ∂ x λ (1) - 1 2 λ (1) (∂ ξ • ∂ x )h (2) - 1 2 h (2) (∂ ξ • ∂ x )λ (1) + γ (3/2) (∂ ξ • ∂ x )γ (3/2) + ∂ ξ γ (3/2) • ∂ x γ (3/2) .
Writing

γ (3/2) (∂ ξ • ∂ x )γ (3/2) + ∂ ξ γ (3/2) • ∂ x γ (3/2) = 1 2 ∂ x • ∂ ξ γ (3/2) 2 = 1 2 ∂ x • ∂ ξ (h (2) λ (1) ),
we thus obtain 1) , and hence (4.16) simplifies to (4.17) 1 2 h (2) , λ (1) q (0) + h (2) λ (1) , q (0) = 0.

Im τ = 1 2 ∂ ξ λ (1) • ∂ x h (2) - 1 2 ∂ ξ h (2) • ∂ x λ (
The key observation is the following relation between h (2) and λ (1) (see (4.13)):

h (2) = cλ (1) 2 with c = 1 + |∇η| 2 -3 4 .
Consequently (4.17) reduces to

-q (0) (λ (1) ) 2 ∂ x c 2 • ∂ ξ λ (1) + 3c 2 (λ (1) ) 2 ∂ ξ λ (1) • ∂ x q (0) -∂ ξ q (0) • ∂ x c 2 (λ (1) ) 3 = 0.
Seeking a solution q (0) which does not depend on ξ, we are led to solve

∂ ξ λ (1) • ∂ x q (0) q (0) = 1 3 ∂ ξ λ (1) • ∂ x c c .
We find the following explicit solution:

q (0) = c 1 3 = 1 + |∇η| 2 -1 2 .
Then, we define p by solving the equation

T q T h ∼ T γ T p .
By symbolic calculus, this yields

qh (2) + qh (1) = γ (3/2) p (1/2) + γ (1/2) p (1/2) + γ (3/2) p (-1/2) + 1 i ∂ ξ γ (3/2) • ∂ x p (1/2) .
Therefore, by identifying terms with the same homogeneity in ξ, we successively find that 1) , and

p (1/2) = q (0) h (2) γ (3/2) = q (0) h (2) λ (1) = 1 + |∇η| 2 -5 4 λ ( 
(4.18) p (-1/2) = 1 γ (3/2) q (0) h (1) -γ (1/2) p (1/2) + i∂ ξ γ (3/2) • ∂ x p (1/2) .
Note that the precise value of p (-1/2) is meaningless since we have freely imposed q (-1) = 0.

Gathering the previous results, and noting that γ (1/2) and p (-1/2) depend only linearly on the second order derivatives of η, we have proved the following result.

Proposition 4.8. Let q ∈ Σ 0 , p ∈ Σ 1/2 , γ ∈ Σ 3/2 be defined by

q = 1 + |∇η| 2 -1 2 , p = 1 + |∇η| 2 -5 4 λ (1) + p (-1/2) , γ = h (2) λ (1) + h (2)
λ (1) Re 1) , where p (-1/2) is given by (4.18).

λ (0) 2 - i 2 (∂ ξ • ∂ x ) h (2) λ (
Then      T p T λ ∼ T γ T q , T q T h ∼ T γ T p , T γ ∼ (T γ ) * .
By combining this symmetrization with the paralinearization, we thus obtain the following symmetrization of the equations. Corollary 4.9. Introduce the new unknowns

Φ 1 = T p η and Φ 2 = T q U. Then Φ 1 , Φ 2 ∈ C 0 ([0, T ]; H s (R d )) and (4.19) ∂ t Φ 1 + T V • ∇Φ 1 -T γ Φ 2 = F 1 , ∂ t Φ 2 + T V • ∇Φ 2 + T γ Φ 1 = F 2 ,
where

F 1 , F 2 ∈ L ∞ (0, T ; H s (R d )). Moreover (F 1 , F 2 ) L ∞ (0,T ;H s ×H s ) ≤ C (η, ψ) L ∞ (0,T ;H s+ 1 2 ×H s )
, for some function C depending only on dist(Σ 0 , Γ).

To prove Corollary 4.9, we first note that it follows from Proposition 4.8 and Proposition 3.24 that

∂ t Φ 1 + T V • ∇Φ 1 -T γ Φ 2 = B 1 η + f 1 , ∂ t Φ 2 + T V • ∇Φ 2 + T γ Φ 1 = B 2 U + f 2 , with f 1 , f 2 ∈ L ∞ (0, T ; H s (R d )), (f 1 , f 2 ) L ∞ (0,T ;H s (R d )) ≤ C (η, ψ) L ∞ (0,T ;H s+ 1 2 (R d )×H s (R d ))
, and

B 1 := [∂ t , T p ] + [T V • ∇, T p ] , B 2 := [∂ t , T q ] + [T V • ∇, T q ] .
Writing

B 1 η H s ≤ B 1 H s+ 1 2 →H s η H s+ 1 2 , B 2 U H s ≤ B 2 H s →H s U H s , it remains only to estimate B 1 H s+ 1
2 →H s and B 2 H s →H s . To do so, the only non trivial point is to prove the following lemma. Lemma 4.10. For all µ ∈ R there exists a non-decreasing function C such that, for all t ∈ [0, T ],

T ∂tp(t) H µ →H µ-1 2 + T ∂tq(t) H µ →H µ ≤ C (η(t), ψ(t)) H s+ 1 2 ×H s .
Proof. It follows from the Sobolev embedding and (3.27) that

∂ t η W 1,∞ ∂ t η H s-1 ≤ C (η, ψ) H s+ 1 2 ×H s .
This implies that

∂ t q(t, •) L ∞ + sup |ξ|=1 ∂ t p (1/2) (t, •, ξ) L ∞ ≤ C (η, ψ) H s+ 1 2 ×H s .
On applying Theorem 3.6, this bound implies that

T ∂tp (1/2) (t) H µ →H µ-1 2 + T ∂tq(t) H µ →H µ ≤ C (η(t), ψ(t)) H s+ 1 2 ×H s .
It remains only to estimate

T ∂tp (-1/2) (t) H µ →H µ-1 2
. Since we only assume

s > 2 + d/2
, a technical difficulty appears. Indeed, since ∂ t has the weight of 3/2 spatial derivatives, and since the explicit definition of p (-1/2) involves 2 spatial derivatives of η, the symbol ∂ t p (-1/2) do not belong to L ∞ in general. To overcome this technical problem, write p (-1/2) under the form

p (-1/2) = |α|=2 P α (∇η, ξ)∂ α x η,
where the P α are smooth functions of their arguments for ξ = 0, homogeneous of degree -1/2 in ξ. Now write (4.20)

T ∂tp (-1/2) = |α|=2 T (∂tPα(∇η,ξ))∂ α x η + |α|=2 T Pα(∇η,ξ)∂t∂ α x η .
As above, we obtain

sup |ξ|=1 ∂ t P α (∇η(t), ξ) L ∞ ≤ C (η, ψ) H s+ 1 2 ×H s .
On the other hand we have the obvious estimate

∂ α x η L ∞ η H s+ 1
2 . On applying Theorem 3.6, these bounds imply that the first term in the right hand side of (4.20) is uniformly of order -1/2.

The analysis of the second term in the right hand side of (4.20) is based on the operator norm estimate (4.6). By applying this estimate with r = -1/2, we obtain

T Pα(∇η,ξ)∂t∂ α x η H µ →H µ-1/2 P α (∇η, ξ)∂ t ∂ α x η H s-3 .
Now the product rule (3.9) implies that

P α (∇η, ξ)∂ t ∂ α x η H s-3 {|P α (0, ξ)| + P α (∇η, ξ) -P α (0, ξ) H s-1 } ∂ t ∂ α x η H s-3 ,
and hence

T Pα(∇η,ξ)∂t∂ α x η H µ →H µ-m ≤ C( η H s ) ∂ t η H s-1 ≤ C (η, ψ) H s+ 1 2 ×H s .
This completes the proof.

A priori estimates

Consider the Cauchy problem (5.1)

     ∂ t η -G(η)ψ = 0, ∂ t ψ + gη -H(η) + 1 2 |∇ψ| 2 - 1 2 ∇η • ∇ψ + G(η)ψ 2 1 + |∇η| 2 = 0,
with initial data η| t=0 = η 0 , ψ| t=0 = ψ 0 . In this section we prove a priori estimates for solutions to the system (5.1) and approximates systems. These estimates are crucial in the proof of existence and uniqueness of solutions to (5.1) .

5.1.

Reformulation. The first step is the following reformulation, whose proof is an immediate computation. 

I 0 -T B I (∂ t + T V • ∇) η ψ + 0 -T λ T h 0 I 0 -T B I η ψ = f 1 f 2 ,
where (5.2)

f 1 = G(η)ψ -T λ (ψ -T B η) -T V • ∇η , f 2 = - 1 2 |∇ψ| 2 + 1 2 (∇η • ∇ψ + G(η)ψ) 2 1 + |∇η| 2 + H(η) + T V ∇ψ -T B T V • ∇η -T B G(η)ψ + T h η -gη. Since I 0 T B I I 0 -T B I = I 0 0 I ,
we thus find that (η, ψ) solves (5.1) if and only if

(5.3)    (∂ t + T V • ∇ + L) η ψ = f (η, ψ), (η, ψ)| t=0 = (η 0 , ψ 0 ), with L := I 0 T B I 0 -T λ T h 0 I 0 -T B I , f (η, ψ) := I 0 T B I f 1 f 2 .
5.2. Approximate equations. We shall seek solutions of the Cauchy problem (5.3) as limits of solutions of approximating systems. The definition depends on two operators. The first one is a well-chosen mollifier. The second one is an approximate right-parametrix for the symmetrizer S = Tp 0 0 Tq defined in Section 4.

Mollifiers.

To regularize the equations, we cannot use usual mollifiers of the form χ(εD x ). Instead we use the following variant. Given ε ∈ [0, 1], we define J ε as the paradifferential operator with symbol  ε =  ε (t, x, ξ) given by

 ε =  (0) ε +  (-1) ε = exp -εγ (3/2) - i 2 (∂ x • ∂ ξ ) exp -εγ (3/2) .
The important facts are that

 ε ∈ C 0 ([0, T ]; Γ 0 3/2 (R d )), { (0) ε , γ (3/2) } = 0, Im  (-1) ε = - 1 2 (∂ x • ∂ ξ ) (0) ε . Of course, for any ε > 0,  ε ∈ C 0 ([0, T ]; Γ m 3/2 (R d )) for all m ≤ 0. However, the important fact is that  ε is uniformly bounded in C 0 ([0, T ]; Γ 0 3/2 (R d )) for all ε ∈ [0, 1]
. Therefore, we have the following uniform estimates:

J ε T γ -T γ J ε H µ →H µ ≤ C( ∇η W 3/2,∞ ), (J ε ) * -J ε H µ →H µ+3/2 ≤ C( ∇η W 3/2,∞ ),
for some non-decreasing function C independent of ε ∈ [0, 1]. In other words, we have

J ε T γ ∼ T γ J ε , (J ε ) * ∼ J ε , uniformly in ε.
Parametrix for the symmetrizer. Recall that the class of symbols Σ m have been defined in Definition 4.1. We seek

℘ = ℘ (-1/2) + ℘ (-3/2) ∈ Σ -1/2 such that p♯℘ = p (1/2) ℘ (-1/2) + p (1/2) ℘ (-3/2) + p (-1/2) ℘ (-1/2) + 1 i ∂ ξ p (1/2) • ∂ x ℘ (-1/2) = 1.
To solve this equation we explicitely set (5.4)

℘ (-1/2) = 1 p (1/2) , ℘ (-3/2) = - 1 p (1/2) ℘ (-1/2) p (-1/2) + 1 i ∂ ξ ℘ (-1/2) • ∂ x p (1/2) . Therefore T p T ℘ ∼ I,
where recall that the notation A ∼ B is as defined in Definition 4.2.

On the other hand, since q = 1 + |∇η| 2 -1 2 does not depend on ξ, it follows from (3.7) that we have

T q T 1/q ∼ I.
Hence, with ℘ and q as defined above, we have

T p 0 0 T q T ℘ 0 0 T 1/q ∼ I 0 0 I .
Approximate system. We then define

L ε := I 0 T B I 0 -T λ T h 0 T ℘ J ε T p 0 0 T 1/q J ε T q I 0 -T B I
.

(At first one may not expect to have to introduce J ε and L ε . We explain the reason to introduce these operators in §5.4 below.) We seek solutions (η, ψ) of (5.3) as limits of solutions of the following Cauchy problems (5.5)

   (∂ t + T V • ∇J ε + L ε ) η ψ = f (J ε η, J ε ψ), (η, ψ)| t=0 = (η 0 , ψ 0 ).

Uniform estimates.

Our main task will consist in proving uniform estimates for this system. Namely, we shall prove the following proposition.

Proposition 5.2. Let d ≥ 1 and s > 2 + d/2. Then there exist a non-decreasing function C such that, for all ε ∈]0, 1, all T ∈]0, 1] and all solution (η, ψ) of (5.5) such that

(η, ψ) ∈ C 1 ([0, T ]; H s+ 1 2 (R d ) × H s (R d )), the norm M (T ) = (η, ψ) L ∞ (0,T ;H s+ 1 2 ×H s )
, satisfies the estimate

M (T ) ≤ C(M 0 ) + T C(M (T )),
with M 0 := (η 0 , ψ 0 )

H s+ 1
2 ×H s . Remark 5.3. Notice that the estimates holds for ǫ = 0. In particular this proposition contains a priori estimates for the water waves system itself.

5.4.

The key identities. To ease the reading, we here explain what are the key identities in the proof of Proposition 5.2.

By definition of L ε , using that

I 0 -T B I I 0 
T B I = I 0 0 I , we have T p 0 0 T q I 0 -T B I L ε = T p 0 0 T q 0 -T λ T h 0 T ℘ J ε T p 0 0 T 1/q J ε T q I 0 -T B I . Now recall that T p 0 0 T q 0 -T λ T h 0 ∼ 0 -T γ (T γ ) * 0 T p 0 0 T q , so that T p 0 0 T q I 0 -T B I L ε ∼ 0 -T γ (T γ ) * 0 T p 0 0 T q T ℘ J ε T p 0 0 T 1/q J ε T q I 0 -T B I
uniformly in ε (notice that the remainders associated to the notation ∼ are uniformly bounded). We next use

T p 0 0 T q T ℘ 0 0 T 1/q ∼ I 0 0 I ,
to obtain that, uniformly in ε, we have the key identity

T p 0 0 T q I 0 -T B I L ε ∼ 0 -T γ J ε (T γ ) * J ε 0 T p 0 0 T q I 0 -T B I .
In other words, the symmetrizer

T p 0 0 T q I 0 -T B I
conjugates L ε to a simple operator which is skew symmetric in the following sense:

0 -T γ J ε (T γ ) * J ε 0 * ∼ - 0 -T γ J ε (T γ ) * J ε 0 .
This is our second key identity, which comes from the fact that

(T γ ) * ∼ T γ , J * ε ∼ J ε , T γ J ε ∼ J ε T γ .
In particular, it is essential to chose a good mollifier so that the last two identities hold true.

We could mention that, in the proof of Proposition 5.2 below, the main argument is the fact that the term F 2,ε in (5.8) is uniformly bounded in L ∞ (0, T ; H s × H s ). The other arguments are only technical arguments. However, since we only assume that s > 2 + d 2 , this requires some care and we give a complete proof. 

U = ψ -T B η, Φ = T p η T q U = T p 0 0 T q I 0 -T B I η ψ .
We claim that Φ satisfies an equation of the form

(5.6) (∂ t + T V • ∇J ε ) Φ + 0 -T γ J ε T γ J ε 0 Φ = F ε ,
where the remainder satisfies

(5.7) F ε L ∞ (0,T ;H s ×H s ) ≤ C (η, ψ) L ∞ (0,T ;H s+ 1 2 ×H s )
, for some non-decreasing function C independent of ε. To prove this claim, we begin by commuting the equation (5.5) with the matrix

T p 0 0 T q I 0 -T B I ,
to obtain that Φ satisfies (5.6) with F ε = F 1,ε + F 2,ε + F 3,ε where (cf §5.4)

(5.8)

F 1,ε = T p f 1 (J ε η, J ε ψ) T q f 2 (J ε η, J ε ψ) , F 2,ε = 0 -(T p T λ T 1/q J ε -T γ J ε ) (T q T h T ℘ J ε -T γ J ε ) 0 Φ, F 3,ε = ∂ t + T V • ∇J ε , T p 0 0 T q I 0 -T B I η ψ .
The estimate of the first term follows from Proposition 3.14, Lemma 3.25 and Lemma 3.26 (clearly, these results applies with (η, ψ) replaced by (J ε η, J ε ψ)).

For the second term we use that,

T p T λ ∼ T γ T q , T q T h ∼ T γ T p , T p T ℘ ∼ I, T q T 1/q ∼ I, to obtain T p T λ T 1/q ∼ T γ , T q T h T ℘ ∼ T γ .
Eventually, we estimate the last term as in the proof of Corollary 4.9.

b)

We next claim that (5.9) (η, ψ)

L ∞ (0,T ;H s-1 ×H s-3 2 ) ≤ C(M 0 ) + T C(M (T )).
We prove the desired estimate for ∂ t η only. To do so, using the obvious inequality

η(t) H s-1 ≤ η(0) H s-1 + t 0 ∂ t η H s-1 ≤ M 0 + T ∂ t η L ∞ (0,T ;H s-1 ) ,
we see that it is enough to prove that (5.10)

∂ t η L ∞ (0,T ;H s-1 ) ≤ C(M (T )).
This in turn follows directly from the equation for η. Indeed, directly from (5.5), write

∂ t η = -T V • ∇J ε η + T λ T 1/q J ε T q (ψ -T B η) + f 1 (J ε η, J ε ψ).
The last term is estimated by means of Proposition 3.14. Moving to the first two terms, by the usual continuity estimate for paradifferential operators (3.4), we have

T V • ∇J ε η H s-1 ≤ V L ∞ J ε η H s , and 
T λ T 1/q J ε T q (ψ -T B η) H s-1 ≤ T λ T 1/q J ε T q H s →H s-1 { ψ H s + B L ∞ η H s } , and hence, since H s-1 (R d ) ⊂ L ∞ (R d
), the estimates for B and V in (3.27) imply that ∂ t η satisfies the desired estimate (5.10). The estimate of ψ H s-3/2 is analoguous. This completes the proof of the claim. c) To obtain estimates in Sobolev, we shall commute the equation with an elliptic operator of order s and then use an L 2 -energy estimate. Again, one has to chose carefully the elliptic operator. The most natural choice consists in introducing the paradifferential operator T β with symbol (5.11)

β := γ (3/2) 2s 3 ∈ Σ s .
The key point is that, since β and 

ε are (nonlinear) functions of γ (3/2) , we have

∂ ξ β • ∂ x γ (3/2) = ∂ ξ γ (3/2) • ∂ x β, ∂ ξ β • ∂ x  (0) ε = ∂ ξ  (0) ε • ∂ x β.
Therefore, as above, we find that [T β , T γ ] is of order s, while [T β , J ε ] is of order s -3/2. Also the commutator [T β , T V • ∇J ε ] is clearly of order s. With regards to the commutator [T β , T ∂t ] = -T ∂tβ notice that there is no difficulty. Indeed, since β is of the form β = B(∇η, ξ), the most direct estimate shows that the L ∞

x (R d )norm of ∂ t β is estimated by the L ∞

x (R d )-norm of (∇η, ∂ t ∇η) and hence by C(M (T )) in view of (5.10) and the Sobolev embedding

H s-1 (R d ) ⊂ W 1,∞ (R d ).
We thus end up with the following uniform estimates

[T β , T γ ] J ε H s →L 2 ≤ C(M (T )), T γ [T β , J ε ] H s →L 2 ≤ C(M (T )), [T β , T V • ∇J ε ] H s →L 2 ≤ C(M (T )), [T β , ∂ t ] H s →L 2 ≤ C(M (T )),
for some non-decreasing function C independent of ε ∈ [0, 1]. Therefore, by commuting the equation (5.6) with T β , we find that

ϕ := T β Φ satisfies (5.12) (∂ t + T V • ∇J ε ) ϕ + 0 -T γ J ε T γ J ε 0 ϕ = F ′ ε , with F ′ ε L ∞ (0,T ;L 2 ×L 2 ) ≤ C(M (T )),
for some non-decreasing function

C independent of ε ∈ [0, 1]. d) Since by assumption (η, ψ) is C 1 in time with values in H s+ 1 2 (R d ) × H s (R d ), we have ϕ ∈ C 1 ([0, T ]; L 2 (R d ) × L 2 (R d )),
and hence we can write d dt ϕ, ϕ = 2 Re ∂ t ϕ, ϕ , where •, • denotes the scalar product in L 2 (R d ) × L 2 (R d ). Therefore, (5.12) implies that

d dt ϕ, ϕ = 2 Re -T V • ∇J ε ϕ - 0 -T γ J ε T γ J ε 0 ϕ + F ′ ε , ϕ and hence d dt ϕ, ϕ = R ε ϕ, ϕ + 2 Re F ′ ε , ϕ ,
where R ε is the matrix-valued operator

R ε := -{(T V • ∇J ε ) * + T V • ∇J ε } I + 0 -T γ J ε T γ J ε 0 + 0 -T γ J ε T γ J ε 0 * . Now recall that (T γ ) * ∼ T γ , (J ε ) * ∼ J ε , T γ J ε ∼ J ε T γ .
Moreover, we easily verify that sup

ε∈[0,1] sup t∈[0,T ] R ε (t) L 2 ×L 2 →L 2 ×L 2 ≤ C(M (T )).
Therefore, integrating in time we conclude that for all t ∈ [0, T ],

ϕ(t) 2 L 2 ×L 2 -ϕ(0) 2 L 2 ×L 2 ≤ C(M (T )) T 0 ϕ 2 L 2 ×L 2 + F ′ ε 2 L 2 ×L 2 dt ′ , which immediately implies that ϕ L ∞ (0,T ;L 2 ×L 2 ) ≤ C(M 0 ) + T C(M (T )).
By definition of ϕ, this yields (5.13)

T β T p η L ∞ (0,T :L 2 ) + T β T q U L ∞ (0,T ;L 2 ) ≤ C(M 0 ) + T C(M (T )).
First of all, we use Proposition 4.6 to obtain (5.15) where K depends only on η L ∞ (0,T ;H s-1 ) .

η L ∞ (0,T ;H s+ 1 2 ) ≤ K T β T p η L ∞ (0,T ;L 2 ) + η L ∞ (0,T ;H 1 2 ) , (5.14) ψ L ∞ (0,T ;H s ) ≤ K T β T q ψ L ∞ (0,T ;L 2 ) + ψ L ∞ (0,T ;L 2 ) ,
Let us prove that the constant K satisfies an inequality of the form (5.16)

K ≤ C(M 0 ) + T C(M (T )).
To see this, notice that one can assume without loss of generality that

K ≤ F ( η 2 L ∞ (0,T ;H s-1 ) )
for some non-decreasing function F ∈ C 1 (R). Set C (t) = F ( η(t) 2 H s-1 ). We then obtain the desired bound (5.16) from (5.10) and the inequality

K ≤ C (0) + T 0 C ′ (t) dt ≤ F (M 0 ) + T 0 2F ′ ( η 2 H s-1 ) ∂ t η H s-1 η H s-1 dt.
Consequently, (5.13) and (5.14) imply that we have

η L ∞ (0,T ;H s+ 1 2 )
≤ C(M 0 ) + T C(M (T )).

It remains to prove an estimate for ψ. To do this, we begin by noting that, since ψ = U + T B η, we have

T β T q ψ L ∞ (0,T ;L 2 ) ≤ T β T q U L ∞ (0,T ;L 2 ) + T β T q T B L ∞ (0,T ;H s →L 2 ) η L ∞ (0,T ;H s ) .

Now we have

T β T q T B L ∞ (0,T ;H s →L 2 ) ≤ sup t∈[0,T ] sup |ξ|=1 β(t, •, ξ) L ∞ x q L ∞ (0,T ;L ∞ ) B L ∞ (0,T ;L ∞ )
and hence (5.17)

ψ H s ≤ K ′ T q U H s + ψ L 2 + η H s ,
where K ′ depends only on (η, ψ) L ∞ (0,T ;H s-1 ×H s-3/2 ) . By using the inequality (5.13) for T β U L 2 , the estiumate (5.9) for ψ L 2 , the previous estimate for η, and the fact that K ′ satisfies the same estimate as K does, we conclude that

ψ L ∞ (0,T ;H s ) ≤ C(M 0 ) + T C(M (T )).
We end up with M (T ) ≤ C(M 0 ) + T C(M (T )). This completes the proof of Proposition 5.2.

5.6. Consider (η, ψ) ∈ C 0 ([0, T ];

H s+ 1 2 (R d ) × H s (R d )) solution to the system    (∂ t + T V • ∇J ε + L ε ) η ψ = f (J ε η, J ε ψ), (η, ψ)| t=0 = (η 0 , ψ 0 ).
We now prove uniform estimates for solutions (η, ψ) to the linear system (5.18)

     (∂ t + T V • ∇J ε + L ε ) η ψ = F, (η, ψ)| t=0 = (η 0 , ψ0 ).
To clarify notations, write (5.5) in the compact form

E(ε, η, ψ) η ψ = f (J ε η, J ε ψ)
Then, with this notations, we shall prove estimates for the system

E(ε, η, ψ) η ψ = F.
We shall also use the following notation: given r ≥ 0, T > 0 and two real-valued functions u 1 , u 2 , we set

(5.19) (u 1 , u 2 ) X r (T ) := (u 1 , u 2 ) L ∞ (0,T ;H r+ 1 2 ×H r )
We shall prove the following extension of Proposition 5.2.

Proposition 5.4. Let d ≥ 1, s > 2 + d/2 and 0 ≤ σ ≤ s. Then there exist a non-decreasing function C such that, for all ε ∈ [0, 1], all T ∈]0, 1] and all η, ψ, η, ψ, F such that

E(ε, η, ψ) η ψ = f (J ε η, J ε ψ), E(ε, η, ψ) η ψ = F,
and such that

(η, ψ) ∈ C 0 ([0, T ]; H s+ 1 2 (R d ) × H s (R d )), (η, ψ) ∈ C 1 ([0, T ]; H σ+ 1 2 (R d ) × H σ (R d )), F = (F 1 , F 2 ) ∈ L ∞ ([0, T ]; H σ+ 1 2 (R d ) × H σ (R d )), we have (5.20) (η, ψ) X σ (T )
≤ C (η 0 , ψ0 )

H σ+ 1 2 ×H σ + T C (η, ψ) X s (T ) (η, ψ) X σ (T ) + T F X σ (T ) ,
where C := C (η 0 , ψ 0 )

H s+ 1 2 ×H s + T C (η, ψ) X s (T ) .
Remark 5.5. By applying this proposition with (η, ψ) = (η, ψ) we obtain Propositon 5.2.

Proof. We still denote by p, q, γ, ℘ the symbols already introduced above. They are functions of η only. Similarly, B and V are functions of the coefficient (η, ψ).

We use tildas to indicate that the new unknowns we introduce depend linearly on (η, ψ), with some coefficients depending on the coefficients (η, ψ). i) Let us set

Ũ = ψ -T B η, Φ = T p η T q Ũ .
As above, we begin by computing that Φ satisfies

(∂ t + T V • ∇J ε ) Φ + 0 -T γ J ε T γ J ε 0 Φ = F , with F = F1 + F2 + F3 where F1 = T p F 1 T q F 2 , F2 = 0 -(T p T λ T 1/q J ε -T γ J ε ) (T q T h T ℘ J ε -T γ J ε ) 0 Φ, F3 = ∂ t + T V • ∇J ε , T p 0 0 T q I 0 -T B I η ψ .
Then we find that F

L ∞ (0,T ;H σ ×H σ ) ≤ C (η, ψ) X s (T ) (η, ψ) X σ (T ) + F X σ (T ) ,
for some non-decreasing function C independent of ε.

ii) Next, we introduce the symbol

β := γ (3/2) 2σ 3 ∈ Σ σ .
As above, we find that

[T β , T γ ] J ε H σ →L 2 ≤ C( (η, ψ) X s (T ) ), T γ [T β , J ε ] H σ →L 2 ≤ C( (η, ψ) X s (T ) ), [T β , T V • ∇J ε ] H σ →L 2 ≤ C( (η, ψ) X s (T ) ), [T β , ∂ t ] H σ →L 2 ≤ C( (η, ψ) X s (T ) ),
for some non-decreasing function C independent of ε ∈ [0, 1]. Therefore, by commuting the equation (5.6) with T β , we find that

φ := T β Φ satisfies (∂ t + T V • ∇J ε ) φ + 0 -T γ J ε T γ J ε 0 φ = F ′ , with F ′ L ∞ (0,T ;L 2 ×L 2 ) ≤ C( (η, ψ) X s (T ) ) (η, ψ) X σ (T ) + F X σ (T ) ,
for some non-decreasing function

C independent of ε ∈ [0, 1].
iii) Therefore, we obtain that for all t ∈ [0, T ], φ(t

) 2 L 2 ×L 2 -φ(0) 2 L 2 ×L 2 is bounded by C( (η, ψ) X s (T ) ) T 0 φ(t ′ ) 2 L 2 ×L 2 + F ′ (t ′ ) 2 L 2 ×L 2 dt ′ which immediately implies that φ L ∞ (0,T ;L 2 ×L 2 ) is bounded by φ(0) L 2 ×L 2 + T C( (η, ψ) X s (T ) ) φ L ∞ (0,T ;L 2 ×L 2 ) + T F X σ (T ) .
Once this is granted, we end the proof as above.

Cauchy problem

In this section we conclude the proof of Theorem 1.1. We divide the proof into two independent parts: (a) Existence; (b) Uniqueness. We shall prove the uniqueness by an estimate for the difference of two solutions. With regards to the existence, as mentioned above, we shall obtain solutions to the system (1.2) as limits of solutions to the approximate systems (5.5) which were studied in the previous section. To do that, we shall begin by proving that:

(1) For any ε > 0, the approximate systems (5.5) are well-posed locally in time (ODE argument). (2) The solutions (η ε , ψ ε ) of the approximate system (5.5) are uniformly bounded with respect to ε (by means of the uniform estimates in Proposition 5.2).

The next task is to show that the functions {(η ε , ψ ε )} converge to a limit (η, ψ) which is a solution of the water-waves system (1.2). To do this, one cannot apply standard compactness results since the Dirichlet-Neumann operator is not a local operator, at least with our very general geometric assumptions (notice however that in the case of infinite depth or flat bottom, one can show this local property). To overcome this difficulty, as in [START_REF] Lannes | Well-posedness of the water-waves equations[END_REF], we shall prove that (3) The solutions (η ε , ψ ε ) form a Cauchy sequence in an appropriate bigger space (by an estimate of the difference of two solutions (η ε , ψ ε ) and (η ε ′ , ψ ε ′ )).

We next deduce that (4) (η, ψ) is a solution to (1.2).

The next task is to prove that

(5) (η, ψ) ∈ C 0 ([0, T ]; H s+ 1 2 (R d ) × H s (R d ))
. Notice that, as usual once we know the uniqueness of the limit system, one can assert that the whole family {(η ε , ψ ε )} converges to (η, ψ).

Clearly, to achieve these various goals, the main part of the work was already accomplished in the previous section.

6.1. Existence. Lemma 6.1. For all (η 0 , ψ 0 ) ∈ H s+ 1 2 (R d ) × H s (R), and any ε > 0, the Cauchy problem    (∂ t + T V • ∇J ε + L ε ) η ψ = f (J ε η, J ε ψ), (η, ψ)| t=0 = (η 0 , ψ 0 ). has a unique maximal solution (η ε , ψ ε ) ∈ C 0 ([0, T ε [; H s+ 1 2 (R d ) × H s (R d ))
Proof. Write (5.5) in the compact form (6.1)

∂ t Y = F ε (Y ), Y | t=0 = Y 0 .
Since J ε is a smoothing operator, (6.1) is an ODE with values in a Banach space for any ε > 0. Indeed, it is easily checked that the function

F ε is C 1 from H s+ 1 2 (R d ) × H s (R d
) to itself (the only non trivial terms come from the Dirichlet-Neumann operator, whose regularity follows from Proposition 2.11). The Cauchy Lipschitz theorem then implies the desired result. Lemma 6.2. There exists T 0 > 0 such that T ε ≥ T 0 for all ε ∈]0, 1] and such that {

(η ε , ψ ε )} ε∈]0,1] is bounded in C 0 ([0, T 0 ]; H s+ 1 2 (R d ) × H s (R d )).
Proof. The proof is standard. For ε ∈]0, 1] and T < T ε , set

M ε (T ) := (η ε , ψ ε ) L ∞ (0,T ;H s+ 1 2 ×H s ) . Notice that automatically (η ε , ψ ε ) ∈ C 1 ([0, T ε [; H s+ 1 2 (R d ) × H s (R d ))
, so that one can apply Proposition 5.2 to obtain that there exists a continuous function C such that, for all ε ∈]0, 1] and all T < T ε

(6.2) M ε (T ) ≤ C(M 0 ) + T C(M ε (T )),
where we recall that M 0 = (η 0 , ψ 0 )

H s+ 1 2 ×H s . Let us set M 1 = 2C(M 0 ) and choose 0 < T 0 ≤ 1 small enough such that C(M 0 ) + T 0 C(M 1 ) < M 1 . We claim that M ε (T ) < M 1 , ∀T ∈ I := [0, min{T 0 , T ε }[. Indeed, since M ε (0) = M 0 < M 1 , assume that there exists T ∈ I such that M ε (T ) = M 1 then M 1 = M ε (T ) ≤ C(M 0 ) + T C(M ε (T )) ≤ C(M 0 ) + T 0 C(M 1 ) < M 1 ,
hence the contradiction.

The continuation principle for ordinary differential equations then implies that T ε T 0 for all ε ∈]0, 1], and we have

sup ε∈]0,1] sup T ∈[0,T 0 ] M ε (T ) ≤ M 1 .
This completes the proof.

Lemma 6.3. Let s ′ < s -3 2 . Then there exists 0 < T 1 ≤ T 0 such that {(η ε , ψ ε )} ε∈]0,1] is a Cauchy sequence in C 0 ([0, T 1 ]; H s ′ + 1 2 (R d ) × H s ′ (R d )).
Proof. The proof is sketched in §6.3 below.

Then, as explains in the introduction to this section, the existence of a classical solution follows from standard arguments. 6.2. Uniqueness. To complete the proof of Theorem 1.1, it remains to prove the uniqueness.

Lemma 6.4. Let (η j , ψ j ) ∈ C 0 ([0, T ]; H s+ 1 2 (R d ) × H s (R d )), j = 1, 2
, be two solutions of system (1.2) with the same initial data, and such that the assumption H t is satisfied for all t ∈ [0, T ]. Then (η 1 ψ 1 ) = (η 2 , ψ 2 ).

As we shall see, the proof of Lemma 6.4 requires a lot of care. Recall (see §5.1) that (η, ψ) solves (1.2) if and only if

(∂ t + T V • ∇ + L) η ψ = f (η, ψ), with (6.3) 
L := I 0 T B I 0 -T λ T h 0 I 0 -T B I , f (η, ψ) := I 0 T B I f 1 f 2 .
where

f 1 = G(η)ψ -T λ (ψ -T B η) -T V • ∇η , f 2 = 1 2 |∇ψ| 2 + 1 2 (∇η • ∇ψ + G(η)ψ) 2 1 + |∇η| 2 + H(η) + T V ∇ψ -T B T V • ∇η -T B G(η)ψ + T h η -gη.
Introduce the notation (6.4)

B j = ∇η j • ∇ψ j + G(η j )ψ j 1 + |∇η j | 2 , V j = ∇ψ j -B j ∇η j ,
and denote by λ j , h j the symbols obtained by replacing η by η j in (3.11), (3.25) respectively. Similarly, denote by L 1 the operator obtained by replacing (B, λ, h) by (B 1 , λ 1 , h 1 ) in (6.3). To prove the uniqueness, the main technical lemma is the following.

Lemma 6.5. The differences δη := η 1 -η 2 and δψ := ψ 1 -ψ 2 satisfy a system of the form

(∂ t + T V 1 • ∇ + L 1 ) δη δψ = f, for some remainder term such that f L ∞ (0,T ;H s-1 ×H s-3 2 ) ≤ C(M 1 , M 2 )N,
where

M j := (η j , ψ j ) L ∞ (0,T ;H s+ 1 2 ×H s )
, N := (δη, δψ)

L ∞ (0,T ;H s-1 ×H s- 3 2 ) 
.

where B t = B(η t , ψ 2 ), V = V (η t , ψ 2 ). Using again Proposition 2.7 we obtain (6.5) B

H s-5 2 ≤ C(M 1 , M 2 ) δη H s-3
2 , which completes the proof. Corollary 6.7. We have

T V 1 -V 2 • ∇η 2 H s-1 ≤ C (δη, δψ) H s-1 ×H s-3 2 , T V 1 -V 2 • ∇ψ 2 H s-3 2 ≤ C (δη, δψ) H s-1 ×H s-3 2 , T λ 1 -λ 2 ψ 2 H s-1 ≤ C (δη, δψ) H s-1 ×H s-3 2 , T h 1 -h 2 η 2 H s-3 2 ≤ C (δη, δψ) H s-1 ×H s- 3 
2 , for some constant C depending only on M 1 and M 2 .

Proof. According to Lemma 3.11, we have

T a u H µ a H d 2 -1 2 u H µ+ 1 
2 . so using the previous lemma we obtain the first two estimates. The last two estimates comes from the bounds for λ 1 -λ 2 and h 1 -h 2 and Proposition 4.4 (again it suffices to apply the usual operators norm estimate (3.4) for s > 3 + d/2).

Similarly, we obtain that, for any

u ∈ H s+ 1 2 , T B 1 -B 2 u H s ≤ C (δη, δψ) H s-1 ×H s-3 2 u H s+ 1 2 .
Therefore, to prove Lemma 6.5, it remains only to estimate the difference

f (η 1 , ψ 1 ) -f (η 2 , ψ 2 ),
where f (η, ψ) is defined in (6.3). To do this, the most delicate part is to obtain an estimate for f 1 (η 1 , ψ 1 ) -f 1 (η 2 , ψ 2 ), where recall the notation (6.6)

f 1 (η, ψ) = G(η)ψ -T λ ψ -T B η -T V • ∇η .
We claim that

f 1 (η 1 , ψ 1 ) -f 1 (η 2 , ψ 2 ) H s-1 ≤ C(M 1 , M 2 ) (δη, δψ) H s-1 ×H s-3 2 .
To prove this claim, we shall prove an estimate for the partial derivative of f 1 (η, ψ) with respect to η (since f 1 (η, ψ) is linear with respect to ψ, the corresponding result for the partial derivative with respect to ψ is easy). Let (η, ψ) ∈ H s+ 1 2 (R d )×H s (R d ) (again we forget the time dependence) and consider η ∈ H s-1 (R d ). Introduce the notation

d η f 1 (η, ψ) • η = lim ε→0 1 ε (f (η + ε η, ψ) -f (η, ψ)) .
Then, to complete the proof of the uniqueness, it remains only to prove the following technical lemma.

Lemma 6.8. Let s > 2 + d/2. Then, for all (η, ψ) ∈ H s+ 1 2 (R d ) × H s (R d ), and for all η ∈ H s+ 1 2 (R), d η f 1 (η, ψ) • η H s-1 ≤ C η H s-1 ,
for some constant C which depends only on the H s+ 1 2 (R d ) × H s (R d )-norm of (η, ψ). Remark 6.9. The assumption η ∈ H s+ 1 2 (R) ensures that d η f 1 (η, ψ) η is well defined. However, of course, a key point is that we estimate the latter term in H s-1 by means of only the H s-1 norm of η.

Proof. To prove this estimate we begin by computing d η f 1 (η, ψ) η. Given a coefficient c = c(η, ψ) we use the notation

ċ = lim ε→0 1 ε (c(η + ε η, ψ) -c(η, ψ)) .
Using this notation for λ, Ḃ, V , we have (6.7)

d η f 1 (η, ψ) • η = -G(η)(B η) -div(V η) -T λ ψ -T B η -T λ T Ḃη -T λ T B η -T V • ∇η -T V • ∇ η ,
We split the right-hand side into four terms (three of which are easy to estimate, whereas the last one requires some care): set

I 1 = V • ∇ η -T V • ∇ η, I 2 = -T λ ψ -T B η , I 3 = -T λ T Ḃη, I 4 = -G(η)(B η) -(div V ) η + T λ T B η.
To estimate I 1 , we use that, for all function a ∈ H s 0 (R d ) with

s 0 > 1 + d/2, we have au -T a u H µ+1 ≤ K a H s 0 u H µ , whenever u ∈ H µ (R d ) for some 0 ≤ µ ≤ s 0 -1.
By applying this estimate with s 0 = s -1, we obtain

I 1 H s-1 = (V -T V ) • ∇ η H s-1 V H s-1 ∇ η H s-1-1 ≤ C η H s-1 .
With regards to the second term, we use the arguments in the proof of Proposition 4.4 (notice that here, our symbol λ has not exactly the form (4.7), but rather F (∇η, ξ)∇ η + G(∇η, ξ)∇ 2 η + K(∇η, ξ)∇ η∇ 2 η and the proof of Proposition 4.4 applies.) We obtain

I 2 H s -1 ≤ C η H s-1 .
To estimate I 3 , notice that (3.4) implies that

I 3 H s-1 M 1 0 (λ) T Ḃη H s-1+1 ≤ C T Ḃη H s-1+1 . Next, using the general estimate T a u H µ ≤ K a H d 2 -m u H µ+m , we conclude I 3 H s-1 ≤ C Ḃ H s-5 2 η H s+ 1 
2 . Therefore, the desired result for I 3 will follow from the claim Ḃ

H s-5 2 ≤ C η H s-1 .
To see this, the only non-trivial point is to bound dG(η)ψ • η, which was precisely done above (cf (6.5)).

It remains to estimate I 4 , which is the most delicate part. Indeed, one cannot estimate the terms separately, and we have to use a cancellation which comes from the identity G(η)B =div V (see Lemma 2.12). 

I 4 = J 1 + J 2 ,
where

J 1 = -T λ (1) B η -T ηB -T B η J 2 = -T λ (0) (B η) + [T η, T λ ]B + T ηF (η, B) + ( η -T η) div V -F (η, B η).
Now both terms J 1 and J 2 are estimated using symbolic calculus (namely we estimate the first term by means of (ii) in Theorem 3.12; and we estimate J 2 by means of (3.4), (3.5) and (ii) in Theorem 3.12).

6.3. Sketch of the proof of Lemma 6.3. Let 0 < ε 1 < ε 2 and consider two solutions (η ε j , ψ ε j ) ∈ C 0 ([0, T ]; H s+ 1 2 (R d ) × H s (R d )) of (5.5). Introduce the notation (6.8) B ε j = ∇η ε j • ∇ψ ε j + G(η ε j )ψ ε j 1 + ∇η ε j 2 , V ε j = ∇ψ ε j -B j ∇η ε j , and denote by λ j , h j the symbols obtained by replacing η by η ε j in (3.11), (3.25) respectively. Here, the main technical lemma is the following. Lemma 6.10. Let 0 < ε 1 < ε 2 , consider s ′ such that

1 2 + d 2 < s ′ < s - 3 2 ,
and set a = s -3 2 s ′ .

Then the differences δη := η ε 1 -η ε 2 and δψ := ψ ε 1 -ψ ε 2 satisfy a system of the form (6.9)

∂ t + T Vε 1 • ∇J ε 1 + L ε 1 δη δψ = f,
for some remainder term such that f X s ′ (T ) ≤ C (δη, δψ) X s ′ (T ) + (ε 2 -ε 1 ) a , for some constant C depending only on sup ε∈]0,1] (η ε , ψ ε ) X s (T ) .

Proof. Consider an increasing function φ ∈ C ∞ (R) such that 0 ≤ φ ≤ 1 and φ(y) = 1 for y ≥ 2, φ(y) = 0 for y ≤ 1.

Now with ε > 0 a small constant chosen later on we set Using (7.7) and (7.4) we see that

I 4 = f ′ (|a 0 |) c |ξ| 3 2 , a 0 ψ + + f ′ (-a 0 ) c |ξ| 3 
2 , a 0 ψ -, so by (7.9) and (7.6), (7.12)

I 4 = 1 x -1-δ 3 2 c |ξ| 1 2 (ψ + + ψ -) .
Finally, Using (7.9) and (7.10) we see that if ε is small enough,

I 5 = [2ε + f (|a 0 |)] c |ξ|
I 1 + I 2 ≥ c |ξ| 1 2
x 1+δ ψ 0 .

Therefore by (7.12) we have

I 1 + I 2 + I 4 ≥ c |ξ| 1 2
x 1+δ (ψ 0 + ψ + + ψ -) ≥ c |ξ| x 1+δ , which proves the proposition since c ≥ K 1 (1 + η 2 L ∞ (0,T ;H s-1 ) ) -3 4 > 0.

We are now in position to prove Proposition 7.1.

Proof of Proposition 7.1. We begin by remarking that we can assume without loss of generality that ϕ ∈ C 1 (I; L 2 (R)) (A word of caution: to do so, instead of using the usual Friedrichs mollifiers, we need to use the operators J ε introduced in §5. 

+ | T a f, ϕ | ≤ K ϕ 2 L 2 + K f 2 L 2
, for some positive constant K. One easily obtains similar bounds for the second and third terms in the right hand-side of (7.16). Indeed, by definition of γ we know that T * γ -T γ is of order 0. On the other hand, as alredy seen, it follows from Theorems 3.7 that ∂ x (T V T a •) -T a T V ∂ x is of order 0. Therefore, integrating (7.16) in time, we end up with

T 0 Cϕ, ϕ dt ≤ M ϕ(0) 2 L 2 + ϕ(T ) 2 L 2 + T 0 ϕ 2 L 2 + f 2 L 2 dt ,
where M depends only on the L ∞ (0, T ; H s+ 1 2 (R) × H s (R))-norm of (η, ψ). Hence to complete the proof it remains only to obtain a lower bound for the left hand-side. To do so, write

iT γ = iT c |D x | 3 2 + 3 4 T ξ |ξ| ∂xc |D x | 1 2 ,
and recall that, by definition of a (see Lemma 7.2) there exists a constant K such that c(t, x) |ξ| -A ϕ 2 L 2 ,

H 3 ) Assume that the time dependence of the domain (i.e. the function k) decays sufficiently fast near infinity, so that dm dt

• n(m)g(m) 1/2 = k(m, t)g(m) 1/2 ∈ L ∞ (0, T ; L 2 (Γ)).

Then, according to Corollary A.4 the second term of the r.h.s. of (A.3) is a bounded linear form on H 1,0 (Ω) (uniformly with respect to time), and consequently (A.3) has a unique variational solution.

We now define φ = φ + ψ and G(η, k)ψ(x) = 1 + |∇η| 2 ∂ n φ| y=η(x) , = (∂ y φ)(x, η(x)) -∇η(x) • (∇φ)(x, η(x)).

Notice that as in the previous section, a simple calculation shows that this definition is independent on the choice of the lifting function ψ as long as it remains bounded in H 1 and localized in the strip -h < y ≤ 0. Now, the proof of Theorem 1.4 is exactly the same as the proof of Theorems 1.1 and 1.3, using this new definition of the Dirichlet-Neumann operator.
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 22 There exists a positive weight g ∈ L ∞ loc (Ω), equal to 1 near the top boundary of Ω and a positive constant C such that (2.1) Ω g(x, y)|u(x, y)| 2 dxdy ≤ C Ω |∇ x,y u(x, y)| 2 dxdy, for all u ∈ D 0 .

  For z ∈ [-1, 0], introduce the symbol e(z; x, ξ) := exp (za(x, ξ)) , so that e| z=0 = 1 and ∂ z e = ea. According to our assumption that Re a ≥ c |ξ|, we have the simple estimates (|z| |ξ|) m e(z; x, ξ) ≤ C m . Write ∂ z (T e w) = T e f + (T ∂z e -T e T a )w, and integrate on [-1, 0] to obtain

4. 1 .

 1 Symbolic calculus with low regularity. All the symbols which we consider below are of the form a = a (m) + a(m-1) 

Definition 4 . 1 .

 41 Given m ∈ R, Σ m denotes the class of symbols a of the form a = a (m) + a(m-1) 

Definition 4 . 2 .

 42 Let m ∈ R and consider two families of operators order m,

Lemma 5 . 1 .

 51 (η, ψ) solves (5.1) if and only if
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 5 Proof of Proposition 5.2. We now prove Proposition 5.2. a) Let us set

  It follows from Proposition 3.22 thatG(η)(B η) = T λ (1) (B η) + F (η, B η), G(η)B = T λ (1) B + F (η, B), where F (η, B η) H s-1 ≤ C η H s-1 , F (η, B) H s-1 ≤ C. Therefore I 4 = -G(η)(B η) -(div V ) η + T λ T B η = -T λ (B η) -F (η, B η)η div V + T λ T B η = -T λ (B η) -F (η, B η) -T η div V -( η -T η ) div V + T λ T B ηand hence using div V = -G(η)BI 4 = -T λ (B η) -F (η, B η) + T ηG(η)B + ( η -T η) div V + T λ T B ηand paralinearizing G(η)B and gathering terms we concludeI 4 = -T λ (B η) -F (η, B η) + T η T λ B + F (η, B) + ( η -T η) div V + T λ T B ηthen commuting T η and T λ we conclude that

I 4 = c |ξ| 3 2 3 2 , ψ + -c |ξ| 3 2x 2 ψ 0 .

 43330 (y) = φ -y ε = φ + (-y), φ 0 (y) = 1 -(φ + (y) + φ -(y)) .These are C ∞ -functions and we see easily that, φ+ (y) -φ -(y) = sgn(y)φ + (|y|) (y ∈ R), φ ′ + (y) -φ ′ -(y) = φ ′ + (|y|) (y ∈ R), φ ′ 0 (y) =sgn(y)φ ′ + (|y|) (y ∈ R). Now we set (7.6) a 0 (x, ξ) = x ξ |ξ| , x ∈ R, ξ = 0,and we introduce (7.7)ψ 0 (x, ξ) = φ 0 a 0 x , ψ ± (x, ξ) = φ ± a 0 x .Let us note that on the support of ψ + (resp. ψ -) we have a 0 ≥ ε x (resp. a 0 ≤ -ε x ) and that |a| a small function on R × R \ 0. Finally we set(7.8) a(x, ξ) = a 0 x ψ 0 (x, ξ) + [2ε + f (|a 0 |)] (ψ + (x, ξ) -ψ -(x, ξ)) , , f (|a 0 |) (ψ + (x, ξ) -ψ -(x, ξ)) I 5 = [2ε + f (|a 0 |)] c |ξ| , ψ -.Using the obvious identity ∂ ξ (ξ/ |ξ|) = 0 for ξ = 0, we have On the support of ψ 0 we have, by (7.7) and (7.4), |a 0 | ≤ ε x . It follows that (

I 5 =

 5 [2ε + f (|a 0 |)] c |ξ|

3 2 3 2 , a ≥ c |ξ| 1 2

 332 Now by(7.11) and (7.13) we have,(7.14)I 3 + I 5 = 2ε + f (|a 0 |) -The function φ + being increasing one has φ ′ + ≥ 0. On the support of φ ′+ a 0 x we have ε ≤ |a 0 | / x ≤ 2/ε so 2ε -|a 0 | / x ≥ 0. By definition, f ′ ≥ 0.Finally, by (7.9) and (7.10) we have c |ξ| , a 0 / x ≥ 0. This ensures that (7.15)I 3 + I 5 ≥ 0.We conclude, using (7.14) and (7.15) that c |ξ|

2 ).

 2 This allows us to writed dt T a ϕ, ϕ = T ∂ta ϕ, ϕ + T a ∂ t ϕ, ϕ + T a ϕ, ∂ t ϕ = T ∂ta ϕ, ϕ -T a T V ∂ x ϕ + T a iT γ ϕ -T a f, ϕ -T a ϕ, +T V ∂ x ϕ + iT γ ϕ -f ,where •, • denotes the L 2 scalar product. Introduce the commutatorC := [iT γ , T a ] .Since ∂ t a = 0, the previous identity yields(7.16)d dt T a ϕ, ϕ = Cϕ, ϕ + i(T * γ -T γ )T a ϕ, ϕ + ∂ x (T V T a ϕ) -T a T V ∂ x ϕ, ϕ + T a f, ϕ + T a ϕ, f Since a ∈ Γ0 0 , itfollows from the usual estimates for paradifferential operators that | T a ϕ, ϕ | ϕ 2 L 2 , and | T a ϕ, f |

3 4 2 , 2 is of order 0 ,-δ ϕ 2 H 1 4

 3220214 , a(x, ξ) ≥ K x -1-2δ |ξ| 1 for some positive constant K > 0. Since T a , T ξ |ξ| ∂xc |D x | 1 Proposition 7.3 below then implies that Cϕ, ϕ ≥ a x -1 2

  

Assume this technical lemma for a moment, and let us deduce the desired result: (η 1 , ψ 1 ) = (η 2 , ψ 2 ). To see this we use our previous analysis. Introducing δU := δψ -T B 1 δη = ψ 1 -ψ 2 -T B 1 (η 1 -η 2 ), and δΦ := T p 1 δη T q 1 δU , we obtain that δΦ solves a system of the form

Then it follows from the estimate (5.20) applied with

that N satisfies and estimate of the form

By chosing T small enough, this implies N = 0 which is the desired result. Now clearly it suffices to prove the uniqueness for T small enough, so that this completes the proof. It remains to prove Lemma 6.5. To do this, we begin with the following lemma. Lemma 6.6. We have

1 (•, ξ) -λ

(1)

for all α ∈ N d and some constant C depending only on M 1 , M 2 and α.

Proof. The last two estimates are obtained from the product rule in Sobolev spaces (using similar arguments as in the end of the proof of Lemma 4.10). With regards to the first two estimates, notice that, by definition of B j , V j (see (6.4)), to prove them the only non trivial point is to prove that

It follows from Proposition 2.7 that

Now thanks to Proposition 2.11 we can write

To prove Lemma 6.10, we proceed as in the previous paragraph. The only difference is that we use the fact that

Now, since for t = 0 we have δη = 0 = δψ, it follows from Lemma 6.10 and (5.20) applied with

that N satisfies and estimate of the form

By chosing T and ε 2 small enough, this implies N = O((ε 2 -ε 1 ) a ), which proves Lemma 6.3.

The Kato smoothing effect

We consider a given solution (η, ψ) of (1.2) on the time interval [0, T ] with 0 < T < +∞, such that the assumption H t is satisfied for all t ∈ [0, T ] and such that (η, ψ)

In this section we prove Theorem 1.3. Namely, we shall prove that

x

7.1. Reduction to an L 2 estimate. Let Φ 1 , Φ 2 be as defined in Corollary 4.9. Then the complex-valued unknown Φ = Φ 1 + iΦ 2 satisfies a scalar equation of the form (7.1)

. Recall from Proposition 3.13 and (3.25) that, if d = 1 then

and hence modulo an error term of order 0, T γ is given by 4 . In this paragraph we shall prove that one can deduce Theorem 1.3 from the following proposition.
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We postpone the proof of Proposition 7.1 to the next paragraph. The fact that one can deduce Theorem 1.3 from the above proposition, though elementary, contains the idea that one simplify hardly all the nonlinear analysis by means of paradifferential calculus. 

and hence,

). Therefore it follows from Proposition 7.1 that

). Since, by definition, Φ = T p η+iT q U where T p η and T q U are real valued functions, this yields

), and hence, since ψ = U + T B η,

are of order s -1/2 and s -1, respectively. Therefore, directly from (7.3) and the assumption

). Now since β, p, q are elliptic symbols of order s, 1/2, 0, respectively, we conclude (cf Remark 3.9 or Proposition 4.6)

). This proves Theorem 1.3. 7.2. Proof of Proposition 7.1. To complete the proof of Theorem 1.3, it remains to prove Proposition 7.1. To do so, following the Doi approach, we begin with the following lemma.

Lemma 7.2. There exists a symbol

such that, for any δ > 0 one can find K > 0 such that

for some positive constants a, A. This completes the proof of Proposition 7.1 and hence of Theorem 1.3.

) is such that, for some positive constant K, we have

Remark 7.4. This proposition has been used for d = 1. However, it might be useful for d ≥ 1.

Proof. Again, the difficulty comes from our low regularity assumption. Indeed, with more regularity (say d ∈ Γ

this follows from the sharp Gårding inequality proved in [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF].

Consider a partition of unity as a sum of squares, such that

Then

The following result is an illustration of the pseudo-local property of paradifferential operators (see [8, p435] for similar results in this direction).

Lemma 7.5. Let θ ∈ C ∞ 0 (]1/2, 4[) equal to 1 on the support of θ, and set θ j (x) = θ(2 -j |x|) for j ≥ 1. Also introduce θ 0 ∈ C ∞ 0 (R) equal to 1 on the support of θ 0 . Then for all µ ∈ R, all j ∈ N, and all N ∈ N, the operator

we have

We then obtain the desired result from a non-stationary phase argument. Indeed, using that on the support of this integral we have |x -y| > c2 j , we can integrate by parts using the operator

Since χ(ζ, η) is homogeneous of degree 0 in (ζ, η), we obtain that N such integration by parts gain N powers of 2 -j and of |η| -1 .

Appendix A. The case of time dependent bottoms

The purpose of this section is to show that our analysis is still valid in the case of a time-dependent bottom. The only difference is indeed the definition of the Dirichlet-Neumann operator. In this case, we make the additional Lipschitz regularity assumption on the domain

We assume that the domain Ω 2 depends now on the time variable and its boundary is locally the graph of a function which is continuous in time with values in Lipschitz functions of x, and moreover C 1 in time with values in L ∞ . Namely, for any point (x 0 , y 0 , t) ∈ Γ t = ∂Ω t \ Σ t , there exists an orthonormal coordinate system (x ′ , x d+1 ) and a function b

time with values Lipshitz function with respect to the x ′ variable such that near (x 0 , y 0 ), Ω t coincides with the set

In this setting, the natural boundary condition at the bottom is to ask the normal velocity of the fluid to be equal to the displacement velocity of the bottom. As a consequence, the water-wave problem reads (A.1)

where here dm dt is the time derivative of the point m on the boundary Γ t . Notice that clearly, this quantity is dependent on the choice of coordinates defining the domain, but dm dt • n(m) is not. In the coordinate system above, the point on the boundary is m

and the boundary condition reads

Consequently, to define the Dirichlet-Neumann operator, the crucial step is to solve the system

The Poincaré inequality obtained in Section 2.1 can be precised. We shall show that one can so chose the weight g = g(m) in Corollary corog so that g does not blow up as long as the point m remains in a bounded set. ' Recall (cf Notation 2.1) that D 0 is the space of functions u ∈ C ∞ (Ω) such that ∇ x,y u ∈ L 2 (Ω), and u equals to 0 near the top boundary Σ.

Lemma A.1. For any point m 0 ∈ Γ there exists m 1 ∈ Ω, C > 0 and δ 0 > 0 such that for any 0 < δ < δ 0 , and any u ∈ D 0 ,

Indeed, using assumption H2) and performing a Lipschitz change of variables near m 0 , we are reduced to the case where the domain is

and the point m 0 = (0, 0). Choosing m 1 = (ǫ, 0), Lemma 2.4 follows now from the same proof as for 2.4.

We now deduce easily using Lemma 2.3, Lemma A.2. Assume that the domain Ω satisfies the assumptions above. For any m 0 = (x 0 , y 0 ) ∈ Ω there exists a neighboorhood ω of m 0 in R d+1 and C > 0 such that for any function u ∈ D 0 , we have Here notice that the first term in the right hand side of (A.3) is, as in the time independent case, a bounded linear form on H 1,0 (Ω). Now, we make the additional assumption (which is always satisfied if the domain is time dependent only on a bounded zone).