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Abstract

Formation of modulated phase patterns can be modelized by a modi�ed Cahn-Hilliard equa-

tion which includes a non local term preventing the formation of macroscopic domains. Using

stationnary solutions of the original Cahn-Hilliard equation as analytical ansatzs, we compute the

thermodynamically stable period of a 1D modulated phase pattern. We �nd that the period scales

like the power -1/3 of the strength of the long range interaction
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When a homogenous system is led suddenly into a linearly unstable con�guration, it

will spontaneously segregate into two di¤erent states, more stable, characterized by two

distinct values of an order parameter. The leading instability selects a modulation of the

order parameter at a well de�ned wave length. This instability will grow exponentially and,

due to nonlinearity, rapidly saturate. The resulting micro-segregated pattern is composed of

well de�ned interfaces (or interphases) delimiting monophasic domains containing one of the

two stable phases. These interfaces will then interact with each other and coalesce, during

a much slower, self-inhibiting process, where the number of domains will reduce whereas

their typical size increase. The result of this so-called Ostwald ripening can be of two sorts,

depending on the presence of long range interaction or not. Either the process goes until

remains a single interface separating two semi in�nite domains, one for each new stable phase

(macro-segregation). Or, due to the long range interactions, the coarsening is interrupted:

the �nal pattern is micro-segregated with a spatially modulated order parameter of �nite

period [1]. The thermodynamical stability of such a modulated phase results from the

competition between two types of interactions : a short-range interaction which tends to

make the system locally homogeneous together and a long-range one, or a non-local one,

which allows domain walls preventing the formation of macroscopic domains when they are

energetically disadvantageous. The aim of this letter is to use a family of exact solutions of

Ginzburg-Landau equation as an ansatz to look at the micro-segregation and to compute

the period of these thermodynamically stable modulated patterns in the 1D case.

The Cahn-Hilliard (or Conservative Time Dependant Ginzburg Landau) equation is a

modi�ed di¤usion equation [2] which reads in its dimensionless form:

@	

@t
(r; t) = r2 �FGL(	)

�	
= r2(�"	=2 + 2	3 �r2	):

The real order parameter 	 can correspond to the �uctuation of density of a �uid around its

mean value during a phase separation or to the local concentration of one of the components

of a binary solution. This equation has also been retrieved by Langer [3] from microscopic

considerations. A conservative noise can be added to account for thermal �uctuations [4] ;

but in this article, we will only consider the original noiseless (C-H) equation.

It admits homogeneous stationary solutions which are extrema of the symmetric Landau

potential V (	) = �"
4
	2+ 1

2
	4. For negative ", there is only one homogenous solution 	 = 0

which is linearly stable. A pitchfork bifurcation can be experienced when quenching the
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system from a negative control parameter " to a positive one : the 	 = 0 solution becomes

unstable ; two other symmetric stable solutions appear 	b = �
p
"
2
.

If we look for symmetric solutions satisfying < 	 >= 0, there exists, for " > 0, a whole

family of solution of the one dimensional (G-L) equation [5] :

�"
2
	 + 2	3 �r2	 = 0 (1)

These solutions, the so-called soliton-lattice solutions, are :

	k;"(x) = k�Sn(
x

�
; k) with � = ��1 =

r
2
k2 + 1

"
(2)

where Sn(x; k) is the Jacobian elliptic function sine-amplitude, or cnoidal mode. This family

of solutions is parametrized by " and by the Jacobian modulus k 2 [0; 1], or �segregation
parameter�. These solutions satisfy equation (1) and its integrated version writes :

(r	)2 = 	4 � "
2
	2 +

k2

�4
(3)

They describe periodic patterns of period

� = 4K(k)�, where K(k) =
Z �

2

0

dtp
1� k2 sin2 t

(4)

is the complete Jacobian elliptic integral of the �rst kind. K(k) together with k, characterize

the segregation, de�ned as the ratio between the size of the homogeneous domains, L = �=2,

and the width of the interface separating them, 2�.

This family of solutions interpolates between the sinusoidal function (when k = 0), corre-

sponding to the distribution of the order parameter near the critical temperature [6], and the

periodic step function (when k = 1), more appropriate to describe to the strong segregation

of the modulated phase in the low temperature region [7].

The equation (4) and the relation � = ��1, enable to rewrite this family as :

	k;�(x) =
4K(k) � k

�
Sn(

4K(k)

�
x; k):

Moreover, using equations (2) and (4), we �nd that �, k and " are related to one another

through the state equation

" = 2(1 + k2)

�
4K(k)

�

�2
: (5)
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This implicit equation tells us that if we impose the temperature ", then � and k are linked

together. As a consequence, the amplitude of the modulation, or the energy per unit length

are functions of only one variable, k or �.

For this family of solution, using equation (3), together with
R K
0
Sn2(x; k)dx = K�E

k2
andR K

0
Sn4(x; k)dx = 2+k2

3k4
K � 2E 1+k2

3k4
, we �nd for the energy density when " > 0

FGL(k; �) =
1

�

Z �

0

1

2
(r	(r))2 � "

4
	2(r) +

1

2
	4(r)dr =

= (
4K

�
)2
�
�"
4
(1� E

K
) +

�
1 + 2k2

6
� E

6K
(1 + k2)

�
(
4K

�
)2
�

(6)

So F(k = cste; �) is minimum when�
�k
4K

�2
=
4

"

 
1 + k2

3
+

k2

3(1� E
K
)

!
;

whereas F(k; � = cste) is minimum for equation (5) Thus, as nowhere in the (k; �) space�
@F
@k

�
�
and

�
@F
@�

�
k
vanish simultaneously, there is no global minimum, except for k ! 1 and

�!1, i.e for complete phase segregation, (see Figure 1).

Fig. 1. Plot of F(k; �). One sees that in the (k; �) space, the partial derivatives
�
@F
@k

�
�
and�

@F
@�

�
k
never vanish simultaneously. As a consequence, there is no global minimum except

for k ! 1 and �!1, i.e. for complete phase segregation .
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If we now want to treat the e¤ect of a long-range interaction, or a non-local one, respon-

sible of the stabilization of the modulated phase, we could start from a Ginzburg-Landau

approach where the interactions are describe by local term, such as gradient expansion with

(r	)2 and (r2	)2 like in the Swift Hohenberg model. It then as been shown that below

a certain temperature, the macroscopic or global segregation into two semi in�nite region

(one unique interface) will always be energetically favored compared to the microphase sep-

aration [8, 9]. The reason a Ginzburg-Landau type of expansion fails to describe correctly

the strong segregation limit is due to the truncation in the gradient expansion [9, 10] : such

an approximation is unable to take into account the long range interaction between more

and more lamellae (in the case of Langmuir monolayer, an in�nite number of domains have

to be taken into account[11]). As it has been shown that the modulated phase structure

remains the thermodynamical stable phase even far below Tc [7], an e¤ective description

using a simple GL equation cannot be used anymore.

An alternative approach has been proposed by Oono [13]. It relies on the study of dy-

namics of the phase transition. Following the description of Leibler [12], Oono has obtained

the following modi�ed Cahn-Hilliard dynamics, which is often use for numerical simulations:

@	

@t
= (r2 �FGL(	)

�	
)� �2	 = r2(

�"
2
	 + 2	3 �r2	)� �2	: (7)

��2	 models in the Cahn-Hilliard equation the long-range interactions, which prevent the
formation of macroscopic domains and thus favors the modulation : if 	 is constant over

a macroscopic domain, the �rst part of the right hand side might vanish, but the second

part will lead to a dynamics of pinching or splitting of the homogeneous domain. We could

have chosen other ways of representing this long-range interaction, but the inclusion of such

a term, following Oono, enables to describe the behavior of modulated systems at T much

lower than Tc, as we will show below.

Let�s consider a free energy density written as :

F (	) = FGL + Fint =
1

2
(r	(r))2 � "

4
	2(r) +

1

2
	4(r) +

Z
	(r0)g(r0; r)	(r)dr0 ,

where the long range interaction are described by g(r0; r) = �2

4�jr0�rj in D=3, or ��
2 jx0 � xj

in D=1 [12]. It corresponds to a repulsive interaction when 	(r0) and 	(r) are of the same

sign and thus favors the formation of interphases. If we want to study the conservative
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dynamics of this phase separation, we use the Cahn-Hilliard equation :

@	

@t
= r2

r

�
�F (	)

�	

�
= r2

r

�
�"
2
	 + 2	3 �r2	+

Z
	(r0)g(r0; r)dr0

�
:

If one recalls that the Green�s function associated with the Laplacian operator r2
r is

�1
4�jr0�rj

in 3D, and jx0 � xj =2 in 1D, the preceding equation then transforms into

r2
r

�Z
	(r0)g(r0; r)dr0

�
=

Z
	(r0)r2

rg(r
0; r)dr0 = ��2

Z
	(r0)�(r0; r)dr0 = ��2	(r):

which leads to equation (7). Note that even with the new term added to the usual Cahn-

Hilliard dynamics, this equation remains in the class of the conservative models, as it derives

from a conservation equation.For simplicity, we will assume in the following that " = 1. If

we look at the linear stability analysis of the homogenous solution 	 = 0, considering 	 as

a sum of Fourier modes:

	(r; t) =
X
q

	qe
iq�r+�t

where 	q is the Fourier coe¢ cient at t = 0, we found almost the same results as in the

original work of Cahn and Hilliard, except that the ampli�cation factor �(q) now writes :

�(q) = (
1

2
� q2)q2 � �2

This shows immediately that 	 = 0 is linearly instable (�(q) > 0) if � < 0:25, with a band

of unstable Fourier modes 1 �
p
1� 16�2 < 4q2 < 1 +

p
1� 16�2. The most unstable

mode remains qC�H = 0:5 independently of �. Therefore, during the initial stage of the

dynamics (the spinodal decomposition), the homogeneous domains appear with a size close

to LC�H = 2�, as in the usual Cahn-Hilliard dynamics.

The stationary state composed of domains of size LC�H which ends the spinodal decom-

position is unstable with respect to period doubling [3]. This leads to the process of Ostwald

ripening. But one sees that, contrary to the simple Cahn-Hilliard case where this process

goes until complete phase segregation, the long wave length modulations are now stable for

4q2 < 1�
p
1� 16�2 : because the interaction is long range, no matter how small �, there

will always be a �nite region around q = 0 where �(q) < 0. So a modulated phase should

always end the dynamics. This explains qualitatively why, for any �nite value of �, the

dynamics will end in a micro segregated regime, as it is observes numerically and as we will

now discuss quantitatively. In D=1, this long range interaction term can be rewritten [14]

Fint =
��2
�

Z �
2

0

Z �
2

0

	(r0) jr0 � rj	(r)drdr0 ,

6



If we look for solution in the ansatz family 	k;�(x);we then get

Fint =
��2
�

Z �
2

0

Z �
2

0

k2(
4K

�
)2 jr0 � rj Sn(4K(k)

�
r; k)Sn(

4K(k)

�
r0; k)drdr0

=
�k2�2
4K

Z 2K

0

Z 2K

0

jx0 � xj Sn(x; k)Sn(x0; k)dxdx0

So it turns that this contribution is independent of � and depends only of k. Thus, the

minimization of the free energy with respect to � takes place only on FGL and gives �k =

8K
q

1+k2

3
+ k2

3(1� E
K
)
as in equation (6). Taking into account Fint, we only have to minimize

with respect to k the function FGL(k)+Fint(k), which can be done numerically for di¤erent

values of �. One sees in Figure 2 that the resulting � (�2) scales like (�2)�1=3.

Fig. 2. Graph of �, the period of the modulated phase, as a function of the strength of the

long range interaction. This period is obtained by numerical minimization in k of the total

energy density FGL(k) + Fint(k; �2). One sees that the resulting points scale like (�2)
�1=3.
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Even if the Oono equation is singular in � = 0, taking the family 	k;�(x) as an ansatz

leads to a good description of the 1D pro�le. Numerically (especially for small �) we �nd that

the solution is close to 	k;�k(x), with k given by the minimization of FGL(k; �k) + Fint(k).

Nevertheless, if one looks carefully, the domains are not homogeneous anymore but present

a small concavity. If we impose boundary conditions (i.e. if we impose a �xed periodicity),

this concavity becomes more and more pronounced when � grows, and with eventually leads

to a non physical domain splitting (�! �=2)

Contrary to a gradient expansion approximation [8, 9] where, far enough from the critical

point, the macroscopic phase segregation is favored, we �nd here that the modulated phase

remains energetically favored even for large values of "=�2.
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