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Abstract: In this paper, we propose a new tensor-based approach to identify the structure of
a block-oriented nonlinear system (Hammerstein, Wiener, and Wiener-Hammerstein systems).
The proposed method makes use of one time-domain Volterra kernel of an arbitrary order
higher than two, which can be viewed as a tensor. We develop a tensor analysis for carrying out
the identification of the structure of block-oriented nonlinear systems. The performance of the
proposed identification scheme is illustrated by means of some simulation results.
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1. INTRODUCTION

The class of nonlinear dynamic systems which can be
represented by a cascade of linear dynamic and nonlinear
static subsystems, also called block-oriented models, plays
an important role in many fields of application. Three
kinds of block-oriented models are generally encountered:
the Wiener-Hammerstein (also called Sandwich or LNL
model, formed by a nonlinear static subsystem in sand-
wich between two linear dynamic subsystems), Wiener (a
linear dynamic subsystem followed by a nonlinear static
one), and Hammerstein (a nonlinear static subsystem
followed by a linear dynamic one) models. They have
been used to model fluid-structure dynamic interactions,
Bendat (1990), human ankle stiffness dynamics, Kearney
et al. (1997), biological systems, Korenberg and Hunter
(1986), digital communication systems, Feher (1993), and
chemical systems, Kalafatis et al. (1997), among other
applications.

Nonlinear system identification using block-oriented mod-
els has been studied for many years (see Giannakis and
Serpedin (2001) for an extensive bibliography). Existing
methods are in general structure dependent. Prior knowl-
edge about the structure of the nonlinear system to be
identified is required before selecting the adequate param-
eter estimation method.

Structure-independent identification procedures valid for
quite different models can be obtained by considering the
equivalent representations in Volterra series, Haber (1989).
It is indeed well known that any mild nonlinear system
with fading memory can be approximated with a given
degree of accuracy by a Volterra model, Boyd and Chua
(1985). Unlike the block-oriented models, the Volterra
model is linear in its parameters.

As pointed out in Haber (1989) and Chen (1995), the
analysis of the estimated Volterra kernels can reveal the
underlying structure of the unknown plant. For exam-
ple, if the second-order Volterra kernel is diagonal, then
the model is of Hammerstein type, Marmarelis and Naka
(1974); if it gives rise to a rank one matrix then the
model is of Wiener type, Haber (1989), else a Wiener-
Hammerstein structure can be adopted. Once the structure
is determined, one can make use of one of the structure-
dependent estimation algorithms developed in the litera-
ture. For a Wiener-Hammerstein structure, many of the
proposed algorithms begin by estimating the frequency
response of the linear subsystems from the first and second
order frequency-domain Volterra kernels (see Korenberg
and Hunter (1986); Weiss et al. (1998); Vandersteen and
Schoukens (1999); Hui Tan and Godfrey (2002)). In ad-
dition, they generally make use of Gaussian or multisine
input signals. As it is well known, the input signal design
is a very important step for system identification, since a
badly designed input can introduce unwanted distortions
and/or an excitation default in the considered frequency
range.

In this paper, by considering Volterra kernels of order
higher than two as tensors, or multi-way arrays, we show
that the analysis of such tensors can reveal the structure of
the system to be identified. The proposed scheme is more
general than that requiring first or second order Volterra
kernels in time or frequency domain.

The rest of this paper is organized as follows. Section 2
briefly recalls a very useful tensor decomposition called
PARAFAC, Harshman (1970); Caroll and Chang (1970).
In Section 3, we derive a tensor analysis based on a pth-
order time-domain Volterra kernel that allows determining
the structure of the nonlinear plant to be identified. The



proposed identification method is illustrated by means of
some simulation results in Section 4, before concluding the
paper in Section 5.

Notations : Vectors are written as boldface lower-case let-
ters (a,b,· · · ), matrices as boldface capitals (A,B,· · · ) and
tensors as blackboard letters (A, B,· · · ). AT stands for
the transpose of the matrix A. diag(.) is the operator
that forms a diagonal matrix from its vector argument.
The symbol ◦ denotes the vector outer product defined as
follows:

u ∈ ℜI , v ∈ ℜJ → u ◦ v ∈ ℜI×J ↔ (u ◦ v)ij = uivj .

The Kronecker product is denoted by ⊗, whereas ⊙
denotes the Khatri-Rao product defined for two arbitrary
matrices A and B, having the same number of columns N ,
as A⊙B = ( A.1 ⊗ B.1 · · · A.N ⊗ B.N ). ⊙pA stands for
the Khatri-Rao product of A p times by itself. We have
the following property:

(Adiag (c)) ⊙ B = A ⊙ (Bdiag (c)) = (A ⊙ B) diag (c)
(1)

We also make use of the following property: for matrices
A, B, and C, with respective dimensions M ×N , N × P ,
and Q×M , if C is full column rank and B is full row rank
then:

rank(AB) = rank(CA) = rank(A) (2)

For a vector a = (a1 · · · aM )
T
, with a1 6= 0 and aM 6= 0,

we denote by TM+N−1,N (a) the (M +N −1)×N Toeplitz
matrix of rank N , given by:

TM+N−1,N (a) =


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










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
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... a1
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0 · · · · · · aM
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
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












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
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.

Assuming x(j) = 0 ∀j < 0 and ∀j > N − 1, x(0) 6= 0 and

x(N − 1) 6= 0, the set of equations y(j) =
M
∑

i=1

aix(j − i) ,

j = 1, · · · , M + N − 1, can be written as:

y = TM+N−1,N (a)x = TM+N−1,M (x)a, (3)

where

y = (y(1) · · · y(M + N − 1))
T

and

x = (x(0) · · · x(N − 1))
T

with rank(TM+N−1,N (a)) = N , rank(TM+N−1,M (x)) =
M .

2. THE PARAFAC DECOMPOSITION

Let X be a tensor of order N , also called a N -way array,
with dimensions I1×I2×· · ·×IN and entries xi1,··· ,iN

. This
tensor is diagonal if xi1,··· ,iN

= 0 unless i1 = i2 = · · · = iN .
We shall say that a N -way array is cubical if its N
dimensions are identical (In = I, n = 1, · · · , N) Kolda and
Bader (2009). A cubical array is called supersymmetric if
its entries do not change under any permutation of its N
indices, i.e. xi1,··· ,iN

= xπ(i1),··· ,π(iN ), where π(.) is any
permutation of the indices i1,· · · , iN (See Comon (2000)).

Any real valued tensor X, of order N , can always be
decomposed as:

X =
R

∑

r=1

A(1)
.r ◦ · · · ◦ A(N)

.r , (4)

where A
(n)
.r is the r-th column of the matrix factor A(n) ∈

ℜIn×R, n = 1, · · · , N . The tensor rank is defined as the
smallest integer R such that this decomposition holds
exactly. This decomposition, called PARAFAC (PARAllel
FACtor analysis), Harshman (1970), or CANDECOMP
(CANonical DECOMPosition), Caroll and Chang (1970),
admits the following scalar formulation:

xi1,··· ,iN
=

R
∑

r=1

N
∏

n=1

a
(n)
in,r, (5)

a
(n)
in,r being the entries of the matrix factor A(n).

It is convenient to represent tensors by means of matrices.
Writing a tensor into a matrix form is called matriciza-
tion or unfolding. For a tensor X of an arbitrary order
N , we have N unfolded matrix representations Xn ∈
ℜIn+1···IN I1···In−1×In , corresponding to an unfolding of X

along each mode n = 1, · · · , N . There are different ways
to define the unfolded matrices Kolda and Bader (2009).
In this paper, the tensor element xi1,··· ,iN

is located in the
unfolded matrix Xn with the column number in and the
row number j given by:

j = 1 +

N
∑

k=1, k 6=n

(ik − 1)Jk, (6)

where

Jk =
























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








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











n−1
∏

m=k+1

Im, for k = 1, · · · , n − 2

1 for k = n − 1

JN

N
∏

m=k+1

Im, for k = n + 1, · · · , N − 1

n−1
∏

m=1

Im, for k = N

(7)

For a third-order tensor X, there are three unfolded ma-
trices: X1 ∈ ℜI2I3×I1 , X2 ∈ ℜI3I1×I2 , and X3 ∈ ℜI1I2×I3

defined as:

X1 =







X.1.

...
X.I2.






, X2 =







X..1

...
X..I3






, X3 =







X1..

...
XI1.






(8)

where



Xi1.. =







xi1,1,1 · · · xi1,1,I3
...

. . .
...

xi1,I2,1 · · · xi1,I2,I3






∈ ℜI2×I3

X.i2. =







x1,i2,1 · · · xI1,i2,1

...
. . .

...
x1,i2,I3 · · · xI1,i2,I3






∈ ℜI3×I1

X..i3 =







x1,1,i3 · · · x1,I2,i3
...

. . .
...

xI1,1,i3 · · · xI1,I2,i3






∈ ℜI1×I2 .

In general, slice-wise expressions do not easily extend
beyond three dimensions.

For an arbitrary order N , we have N unfolded matrices
Xn, n = 1, · · · , N , linked to the PARAFAC matrix factors
as follows:

Xn =
(

A(n+1) ⊙ A(n+2) ⊙ · · · ⊙ A(n+N−1)
)

A(n)T , (9)

with the convention

A(k+N) = A(k), k < N.

For a third-order tensor, we get:

X1 =
(

A(2) ⊙ A(3)
)

A(1)T ,

X2 =
(

A(3) ⊙ A(1)
)

A(2)T ,

X3 =
(

A(1) ⊙ A(2)
)

A(3)T .

while for N = 5 and n = 3 we get:

X3 =
(

A(4) ⊙ A(5) ⊙ A(1) ⊙ A(2)
)

A(3)T .

In some particular cases, the rank of the unfolded matrices
can reveal that of the tensor, as shown in the following
Lemma.

Lemma 1. Let X be a I1×I2×· · ·×IN tensor of rank R and
A(n) ∈ ℜIn×R, n = 1, · · · , N , the matrix factors associated
with its PARAFAC decomposition. If these matrices are
full column rank, i.e. rank(A(n)) = R, n = 1, · · · , N ,
then the unfolded matrices Xn, n = 1, · · · , N , are also
full column rank:

rank(Xn) = R = rank(X), n = 1, · · · , N. (10)

Proof : Since A(n) ∈ ℜIn×R, n = 1, · · · , N , are full column
rank matrices, then from property (2) we have:

rank(Xn) = rank(A(n+1) ⊙ A(n+2) ⊙ · · · ⊙ A(n+N−1)).

Applying the Lemma 1 in Sidiropoulos et al. (2000), we
can deduce that a matrix equal to Khatri-Rao products of
full column rank matrices is also full column rank, which
implies (10).�

3. TENSOR-BASED METHOD FOR IDENTIFYING
THE STRUCTURE OF A BLOCK-ORIENTED

NONLINEAR SYSTEM

Let us consider the block-oriented nonlinear model de-
picted in Fig. 1. We denote by u(n), y(n), v1(n), and v2(n),
the input, the output, and intermediate signals respec-
tively. Assuming that the nonlinearity is continuous within

the considered dynamic range, then, from the Weierstrass
theorem, it can be approximated to an arbitrary degree
of accuracy by a polynomial C(.) of finite degree P , with
coefficients cp. So, the model is constituted with a poly-

u(n) y(n)
l(.) C(.) g(.)

v1(n) v2(n)

Hammerstein model

Wiener model

Fig. 1. Block-oriented nonlinear model

nomial C(.), sandwiched between two linear filters with
impulse responses l(.) and g(.), and memories Ml and Mg

respectively, i.e.:

v1(n) =

Ml−1
∑

i=0

l(i)u(n − i), v2(n) =

P
∑

p=1

cpv
p
1(n),

y(n) =

Mg−1
∑

i=0

g(i)v2(n − i),

with l(0) = g(0) = 1, a standard constraint for guaranteing
the model uniqueness, and l(Ml−1) 6= 0 and g(Mg−1) 6= 0,
where Ml ≥ 1 and Mg ≥ 1, Ml = 1 corresponding to
a Hammerstein model whereas Mg = 1 corresponds to a
Wiener model.

The estimation of the parameters that characterize each
block of this model is not simple since this model is
not linear in its parameters. So, the equivalent Volterra
model, linear in its parameters, is easier to identify. The
parameters of both linear and nonlinear subsystems can
then be deduced from estimated Volterra kernels. In the
literature, several methods based on this approach were
proposed by considering first and second-order Volterra
kernels in time, Haber (1989), or frequency ,Weiss et al.
(1998); Vandersteen and Schoukens (1999); Hui Tan and
Godfrey (2002), domain. In the sequel, we do not study
the parameter estimation problem but only that of deter-
mining the model structure.

The output of the Volterra model associated with the
above block-oriented nonlinear system can be written as

y(n) =

P
∑

p=1

Mv
∑

i1,··· ,ip=1

hp(i1 − 1, · · · , ip − 1)

p
∏

j=1

u(n− ij + 1)

(11)
where hp(.) denotes the pth-order Volterra kernel given by
(see Kibangou and Favier (2006)):

hp(i1 − 1, · · · , ip − 1) = cp

Mg
∑

i=1

g(i − 1)

p
∏

k=1

l(ik − i), (12)

ik = 1, · · · , Mv, with Mv = Ml+Mg−1 the memory of the
nonlinear plant that is assumed to be known. Obviously,
this kernel is nonzero if cp 6= 0.

The block oriented nonlinear model depicted in Fig. 1
is of Wiener-Hammerstein type. Since Hammerstein and
Wiener models are subclasses of the Wiener-Hammerstein
one, from (12) we can deduce their corresponding Volterra



kernels. Indeed, we get a Wiener model by setting g(i −
1) = δi,1, with δ the Kronecker symbol, whereas a Ham-
merstein model is obtained by setting l(i − 1) = δi,1. So
we get respectively:

hp(i1 − 1, · · · , ip − 1) = cp

p
∏

k=1

l(ik − 1), (13)

hp(i1 − 1, · · · , ip − 1) =

{

cpg(i − 1) if i1 = · · · = ip = i
0 elsewhere

(14)

The first and second order Volterra kernels can respec-
tively be viewed as a vector and a matrix whereas higher
order kernels are supersymmetric tensors since their entries
remain unchanged under any permutation of their indices.

In the sequel, we assume that the pth-order Volterra
kernel is known. Note that the algorithms using second
order frequency-domain Volterra kernels such as those
in Weiss et al. (1998) and Hui Tan and Godfrey (2002)
assume the existence of a quadratic nonlinearity. Herein,
the considered nonlinearity is of arbitrary degree p. In
other words, our approach is able to deal with more general
systems including those for which there is no quadratic
term, as it is the case for nonlinear systems containing
only odd-order polynomial terms.

3.1 Volterra kernel based tensor construction

Now, we build a tensor whose analysis allows identifying
the structure of a block-oriented non-linear system.

Let f(i), i = 1, · · · , Mf , with Mf ≥ Mv, be a set of
nonzero coefficients randomly chosen. We denote by Fp

an M ×M ×· · ·×M pth-order tensor with entries fi1,··· ,ip
,

ik = 1, · · · , M , k = 1, · · · , p, obtained as follows:

fi1,··· ,ip
=

Mf
∑

i=1

f(i)hp(i1 − i, · · · , ip − i). (15)

Taking the memories of the kernel hp(.) and the filter f(.)
into account, we have :

M = Mf + Mv − 1 = Mf + Ml + Mg − 2

= Ml + µ − 1, (16)

where
µ = Mf + Mg − 1. (17)

By using (12), equation (15) can be rewritten as:

fi1,··· ,ip
= cp

Mf
∑

i=1

Mg
∑

j=1

f(i)g(j − 1)

p
∏

k=1

l(ik − i + 1 − j)

= cp

Mf
∑

i=1

i+Mg−1
∑

j=1

f(i)g(j − i)

p
∏

k=1

l(ik − j)

=

µ
∑

i=1

f̄p(i)

p
∏

k=1

l(ik − i), (18)

with

f̄p(i) = cp

Mf
∑

j=1

f(j)g(i − j). (19)

One can note that a simple analysis of the nonzero tensor
Fp reveals the structure of the block-oriented nonlinear
model. Indeed, according to (14) and (15), if the tensor
Fp is diagonal then the structure is of Hammerstein type.
Wiener and WH structures correspond to non-diagonal
tensors Fp. In the sequel we show that the evaluation of
the rank of the tensor Fp allows distinguishing the three
structures.

Defining a
(k)
ik,i = l(ik − i), k = 1, · · · , p − 1, and

a
(p)
ip,i = f̄p(i)l(ip − i), we can rewrite (18) as:

fi1,··· ,ip
=

µ
∑

i=1

p
∏

k=1

a
(k)
ik,i. (20)

Comparing (5) with (20), we conclude that (20) represents
the PARAFAC decomposition of the tensor Fp. The num-
ber of factors involved in this decomposition is equal to
µ. It is obvious that rank(Fp) ≤ µ and equality occurs
when all the p matrix factors are full column rank. These
p matrix factors, of dimensions M × µ, are given by:

A(n) =







L = TM,µ(l) for n = 1, · · · , p − 1,

Ldiag(f̄p) for n = p
(21)

with

l = (l(0) · · · l(Ml − 1))
T

,

f̄p =
(

f̄p(1) · · · f̄p(µ)
)T

Using equation (3), the vector f̄p, defined in (19), can be
written as :

f̄p = Tµ,Mg
(f)ḡp,

with

f = (f(1) · · · f(Mf))
T

,

ḡp = cpg = cp (g(0) · · · g(Mg − 1))
T

.

As l(0) 6= 0 and l(Ml − 1) 6= 0, L is full column rank,
implying that A(n), n = 1, · · · , p−1, are full column rank.
We note that the matrix factor A(p) is also full column
rank if the entries of f̄p are all nonzero, i.e. f̄p(i) 6= 0,
i = 1, · · · , µ.

Taking equation (19) into account, with nonzero randomly
chosen coefficients f(j), j = 1, · · · , Mf , we conjecture that
the coefficients f̄p(i) are all nonzero, which implies that all

the matrix factors A(n), n = 1, · · · , p, of Fp are full column
rank. Applying Lemma 1, we deduce that: rank(Fp) = µ.
Therefore, from (16) and (17), we can conclude that

rank(Fp) = M − Ml + 1, (22)

= Mg + Mf − 1. (23)

As we know that:

Ml = 1⇒Hammerstein structure

Mg = 1⇒Wiener structure

Ml > 1 and Mg > 1⇒WH structure

the rank of Fp can be used to determine the structure of the
block-oriented nonlinear system by means of the following
rules deduced from (22) and (23).



rank(Fp) = M ⇒Hammerstein structure

rank(Fp) = Mf ⇒Wiener structure

Mf < rank(Fp) < M ⇒WH structure

3.2 Structure identification algorithm

Unlike matrices, computing the rank of a tensor is not a
trivial task. However, as shown in Lemma 1, when all the
matrix factors are full column rank, the tensor rank can
be determined as the rank of one of its unfolded matrix
representations.

Let us consider the unfolded matrix of Fp along the pth
dimension:

Fp = (A(1) ⊙ A(2) ⊙ · · · ⊙ A(p−1))A(p)T

=
(

⊙(p−2)L
)

diag(f̄p)L
T .

We have:
rank(Fp) = µ = rank(Fp). (24)

Using this result, we derive the following tensor-based
algorithm for identifying the structure of block-oriented
nonlinear systems.

Algorithm: TENsor-based Structure IDentification algo-
rithm (TENSID):

Given the estimate of the pth-order kernel hp(.), with
p ≥ 3, of the Volterra model associated with the nonlinear
system to be identified, and its memory Mv.

(1) Generate the random coefficients f(i), i = 1, · · · , Mf ,
of a FIR filter, with Mf ≥ Mv.

(2) Generate the elements fi1,...,ip
of the pth-order ten-

sor Fp ∈ ℜM×M×···×M by convoluting the kernel
hp(., · · · , .) with the impulse response of the FIR filter
according to (15).

(3) Construct the unfolded matrix Fp of Fp, with dimen-
sions Mp−1×M and entries fj,ip

= fi1,··· ,ip−1,ip
, with

j given by (6) and (7).

(4) Determine the rank of the tensor Fp as rank(Fp) =
rank(Fp).

(5) Deduce the structure of the system:
• rank(Fp) = M ⇒ Hammerstein structure
• rank(Fp) = Mf ⇒ Wiener structure
• Mf < rank(Fp) < M ⇒ WH structure

and then the values of Mg and Ml using (23) and (22)
respectively.

In practice, the estimated Volterra kernel is corrupted by
estimation errors. Such errors can impact the rank evalua-
tion. So, we propose the following rule for determining the
numerical rank of the tensor, that consists in discarding
the less significant singular values of Fp. Denoting by σi,
i = 1, · · · , M , the computed singular values of Fp, ranged
in a non-increasing order, the rank r is chosen as the
smallest integer k such that:

k−1
∑

i=1

σi < ǫ

M
∑

i=1

σi ≤
k

∑

i=1

σi, (25)

where ǫ is a constant close to 1.

4. SIMULATION RESULTS

In this section, we evaluate the TENSID algorithm by
considering third-order block-oriented nonlinear systems,
with memory Mv = 5, drawn from a Gaussian distribution.
For systems with a Wiener-Hammerstein structure we have
Ml = Mg = 3. In order to carry out such an evalu-
ation independently from the Volterra kernel estimation
method, we build the exact associated third-order Volterra
kernel and then we add a Gaussian noise to simulate the
estimation errors. We consider different levels of estimation
error evaluated by means of the NMSE (Normalized mean
square error):

NMSE = 10 log10

‖h3(., ., .)‖
2
F

‖e3(., ., .)‖
2
F

,

where ‖.‖F denotes the Frobenius norm, e3(.) being the
additive tensor of estimation errors.

The Mf coefficients of the FIR filter were generated with
a Gaussian distribution, and Mf = Mv.

Tables 1, 2 and 3 present the probability of good structure
identification obtained in averaging the results over 100
independent Monte Carlo runs, and using the criterion
(25), for each class of block-oriented systems and for
different values of NMSE and ǫ.

First of all, without using the numerical rank given by
the criterion (25), the TENSID algorithm always gives the
actual structure in the noiseless case. When an estimation
error is added to the exact Volterra kernel, the structure
provided by the TENSID algorithm is almost always the
Hammerstein structure, which corresponds to a full rank
Fp.

By using the criterion (25), even in very noisy cases, the
TENSID algorithm can provide the actual structure (see
Tables 1, 2, and 3).

Obviously, the probability of good structure identification
increases with the NMSE for the three considered values of
ǫ. For NMSE values lower than 40 dB, decreasing ǫ allows
increasing the total probability of good identification. On
the contrary, for NMSE values higher than 40 dB, the total
probability of good identification slightly decreases with ǫ.
In addition, identification of the Hammerstein structure is
more sensitive to the value of ǫ. The best performance of
Hammerstein structure identification is obtained for higher
values of ǫ, while identification of Wiener structures is
degraded when epsilon increases.



Table 1. Structure identification performance
for ǫ = 0.999

Structure NMSE (dB)
10 20 30 40 50 60

Hammerstein 98% 97% 97% 95% 87% 88%

Wiener 0% 3% 21% 42% 76% 92%

WH 8% 40% 70% 85% 95% 100%

Total 35% 47% 62% 74% 86% 93%

Table 2. Structure identification performance
for ǫ = 0.997

Structure NMSE (dB)
10 20 30 40 50 60

Hammerstein 89% 86% 86% 81% 73% 70%

Wiener 2% 19% 60% 79% 88% 95%

WH 44% 78% 92% 95% 98% 98%

Total 45% 61% 79% 85% 86% 87%

Table 3. Structure identification performance
for ǫ = 0.995

Structure NMSE (dB)
10 20 30 40 50 60

Hammerstein 81% 84% 70% 68% 60% 64%

Wiener 9% 31% 60% 78% 96% 95%

WH 67% 77% 88% 92% 98% 96%

Total 52% 64% 72% 79% 84% 85%

5. CONCLUSION

In this paper, we have presented a new scheme for identi-
fying block-oriented nonlinear systems with a nonlinearity
degree higher than two. It is based on the PARAFAC de-
composition of a pth-order tensor obtained by convoluting
a random FIR filter with the pth-order Volterra kernel
associated with the block-oriented nonlinear system. The
analysis of this tensor reveals the structure of the nonlin-
ear system to be identified. The structure identification
is carried out through the evaluation of the tensor rank
determined as the numerical rank of a given unfolded
matrix representation of the considered tensor. The sen-
sitivity of the proposed criterion is to be studied and the
derivation of a more robust criterion is to be investigated.
In addition, the estimation of the linear subsystems can
be achieved by estimating the PARAFAC decomposition
of the involved tensor whose matrix factors are in Toeplitz
form. The authors have shown in Kibangou and Favier
(2008) that such a decomposition can be estimated in
using a closed-form solution. Recalling that the proposed
identification method relies on the estimation of only one
Volterra kernel of a given order higher than or equal to
3, the possibility for estimating separately the Volterra
kernels by means of robust closed form expressions makes
the proposed identification method very attractive.
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