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Abstract
Letk be a field of characteristic not2 or3. LetV be thek-space of binary cubic poly-
nomials. The natural symplectic structure onk2 promotes to a symplectic structure
ω onV and from the natural symplectic action of Sl(2, k) one obtains the symplectic
module(V, ω). We give a complete analysis of this symplectic module from the point
of view of the associated moment map, its norm squareQ (essentially the classical
discriminant) and the symplectic gradient ofQ. Among the results are a symplectic
derivation of the Cardano-Tartaglia formulas for the rootsof a cubic, detailed param-
eters for all Sl(2, k) and Gl(2, k)-orbits, in particular identifying a group structure
on the set of Sl(2, k)-orbits of fixed nonzero discriminant, and a purely symplectic
generalization of the classical Eisenstein syzygy for the covariants of a binary cubic.
Such fine symplectic analysis is due to the special symplectic nature inherited from
the ambient exceptional Lie algebraG2.

1 Introduction

Binary cubic polynomials have been studied since the nineteenth century, being the
natural setting for a possible extension of the rich theory of binary quadratic forms.
An historical summary of progress on this subject can be found in [5], especially
concerning results related to integral coefficients. Whilefor a fixed binary cubic in-
teresting questions remain open, e.g. its range in the integers, the number of solu-
tions, etc., it is the structure of the space of all binary cubics that is the topic of this
paper.

The space of binary cubics, we will take coefficients in a field, is an example of
a prehomogeneous vector space under Gl(2, k), and from this point of view has been
thoroughly investigated. Beginning with the fundamental paper by Shintani [14],
recast adelically in [16], an analysis of this pv sufficient to obtain the properties of the
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Sato-Shintani zeta function was done. Subsequently several descriptions of the orbit
structure were obtained, in particular relating them to extensions of the coefficient
field. A feature of this space, and some other prehomogeneousspaces, apparently
never exploited is the existence of a symplectic structure which is preserved by the
natural action of Sl(2, k).

The purpose of this paper is to expose the rich structure of the space of binary
cubics when viewed as a symplectic module using the standardtools of equivariant
symplectic geometry, viz. the moment map, its norm square, and its symplectic gra-
dient i.e. the natural Hamiltonian vector field. The advantages are several: somewhat
surprisingly, the techniques are universally applicable,with the only hypothesis that
the fields not be of characteristic 2 or 3; there are explicit symplectic parameters for
each orbit type (including the singular ones not studied previously) that are easily
computed for any specific field; the computations are natural; we obtain new results
for the space of binary cubics e.g. a group structure on orbits; we obtain ancient re-
sults for cubics, namely a symplectic derivation of the Cardano-Tartaglia formula for
a root.

This paper arose as a test case to see the extent that we might push a more gen-
eral project [15] on Heisenberg graded Lie algebras. A symplectic module can be
associated to every such graded Lie algebra and in the case ofthe split Lie algebra
G2, this symplectic module turns out to be isomorphic to the space of binary cubics
with the Sl(2, k) action mentioned above. Although our approach to binary cubics is
inspired by the general situation, in order to give an accessible and elementary pre-
sentation, we have made this paper essentially self-contained with only one or two
results quoted without proof from [15].

The symplectic technology consists of the following. The moment map,µ, maps
the space of binary cubicsS3(k2∗) to the Lie algebrasl(2, k) of Sl(2, k). By means
of the Killing form on sl(2, k) one obtains a scalar valued functionQ on S3(k2∗),
the norm square ofµ. Using the symplectic structure one constructsΨ , the symplec-
tic gradient ofQ, as the remaining piece of symplectic machinery. This symplectic
module appears to be ”special” in several ways, e.g. a consequence of our analysis is
that all the Sl(2, k) orbits inS3(k2∗) are co-isotropic (see [15] for the general case).
Let us recall that over the real numbers it has been shown thatthere is also a very
strong link between special symplectic connections (see [3]) and Heisenberg graded
Lie algebras (called2-graded in [3]).

Here is a more detailed overview of the paper. We will analyzeeach of the sym-
plectic objectsµ,Q, Ψ and determine for each of them their image, their fibre, the
Sl(2, k) orbits in each fibre, and explicit parameters and isotropy for each orbit type.
This is all done with symplectic methods, so that furthermore we identify the sym-
plectic geometric meaning of these fibres. For example, we show that the null space,
Z, of µ is the set of multiples of cubes of linear forms. As Sl(2, k) preserves the null
space, we obtain a decomposition into a collection of isomorphic Lagrangian orbits
which we show are parametrized byk∗/k∗3. Binary cubics whose moment lies in
the nonzero nilpotent cone ofsl(2, k) turn out to be those which contain a factor that
is the square of a linear form. For these there is only one orbit, whose image underµ
we characterize. The pullback by means ofµ of the natural symplectic structure on
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the image and the restriction of the symplectic form onS3(k2∗) essentially coincide.
The generic case is when the image of the moment map lies in thesemisimple orbits
of sl(2, k). In this case the Sl(2, k) orbits are different from the Gl(2, k) orbits, in
contrast to the earlier cases. Here each of the values ofQ in k∗ determine a collection
of Sl(2, k) orbits for which we give symplectic parameters using a ‘sum of cubes’
theorem. As a consequence we show that the orbits for a fixed nonzero value ofQ
form a group (overZ see [1]) which we explicitly identify. Interestingly, a binary
cubic is in the orbit corresponding to the identity of this group if and only if it is
reducible. The set of binary cubics corresponding to a fixed nonzero value ofQ is
not stable under Gl(2, k). However the set of binary cubics for which the value ofQ
belongs to a fixed nonzero square class ofk is stable under Gl(2, k) and we obtain
an explicit parametrisation of all Gl(2, k) orbits on this set.

If the field of coefficients is specialized to sayC then several of the results herein
are known. For example, that the zero set ofQ is the tangent variety toZ, or that the
generic orbit is the secant variety ofZ can be found in the complex algebraic geomet-
ric literature. For some other fields other results are in theliterature. However, the use
of symplectic methods is new to all these cases and gives a unifying approach that
seems to make transparent many classic results. For example, a careful analysis ofµ
andΨ in the generic case leads to a proof of the Cardano-Tartagliaformula for a root
of a cubic. As another application we conclude the paper witha symplectic gener-
alization of the classical Eisenstein syzygy for the covariants (compare to [12],[10])
of a binary cubic. This is interesting because there is an analogue of this form of the
Eisenstein syzygy for the symplectic module associated to any Heisenberg graded
Lie algebra ([15]). Finally, we remark that the symplectic methodology used in this
paper could be used to understand binary cubics over the integers or more general
rings.

We are very pleased to acknowledge the support of our respective institutions that
made possible extended visits. To the gracious faculty of the Université Louis Pasteur
goes a sincere merci beaucoup from RJS. In addition, RJS wants to acknowledge the
support of Max Planck Institut, Bonn, for an extended stay during which some of
this research was done.

2 Binary cubics as a symplectic space

Let k be a field such thatchar(k) 6= 2, 3. The vector spacek2∗ has a symplectic
structure

Ω(ax+ by, a′x+ b′y) = ab′ − ba′.
Functorially one obtains a symplectic structure on the set of binary cubics

S3(k2∗) = {ax3 + 3bx2y + 3cxy2 + dy3 : a, b, c, d ∈ k}.

Explicitly, if P = ax3+3bx2y+3cxy2+dy3 andP ′ = a′x3+3b′x2y+3c′xy2+d′y3,

ω(P, P ′) = ad′ − da′ − 3bc′ + 3cb′. (1)
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In particular, we have

ω(P, (ex + fy)3) = P (f,−e). (2)

Hence forex+ fy 6= 0,

(ex+ fy) | P ⇐⇒ ω(P, (ex+ fy)3) = 0. (3)

This indicates that one can use the symplectic formω to study purely algebraic prop-
erties of the space of binary cubics. More generally, the interplay of symplectic meth-
ods and the algebra of binary cubics will be the primary themeof this paper.

The group

Sl(2, k) = {
(
α β
γ δ

)
: αδ − βγ = 1}

acts onk2∗ via the transpose inverse:
(
α β
γ δ

)
· x = δx− βy,

(
α β
γ δ

)
· y = −γx+ αy, (4)

and this action identifies Sl(2, k) with the group of transformations ofk2∗ that pre-
serve the symplectic formΩ, i.e. Sp(k2∗, Ω). It follows that the functorial action
of Sl(2, k) on S3(k2∗) preserves the symplectic formω. There is no kernel of this
action thus Sl(2, k) →֒ Sp(S3(k2∗), ω).

The Lie algebrasl(2, k) acts onk2∗ via the negative transpose:
(
α β
γ −α

)
· x = −αx− βy,

(
α β
γ −α

)
· y = −γx+ αy, (5)

which in terms of differential operators acting on polynomial functions onk2 corre-
sponds to the action

(
α β
γ −α

)
· f = α(−x∂xf + y∂yf)− βy∂xf − γx∂yf. (6)

In particular, this gives the following action ofsl(2, k) on cubics:

x3 7→ −3αx3 − 3βx2y

x2y 7→ −γx3 − αx2y − 2βxy2

xy2 7→ −2γx2y + αxy2 − βy3

y3 7→ −3γxy2 + 3αy3.

2.1 Symplectic covariants

Among the basic tools of equivariant symplectic geometry are the moment map (µ),
its norm square (Q) and the symplectic gradient ofQ (Ψ ). The symplectic struc-
ture onS3(k2∗) is not generic as it is consistent with one inherited from an ambient
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Heisenberg graded Lie algebra, hence the description ”special”. In [15] in the setting
of Heisenberg graded Lie algebras we derive the fundamentalproperties of the basic
symplectic objects as well as give explanations for normalizing constants, and iden-
tify characteristic features of these special symplectic structures. For the purposes of
this paper the explicit formulae will suffice.

Definition 2.1 (i) The moment mapµ : S3(k2∗)→ sl(2, k) here is

µ(ax3 + 3bx2y + 3cxy2 + dy3) =

(
ad− bc 2(bd− c2)

2(b2 − ac) −(ad− bc)

)
. (7)

(ii) The cubic covariantΨ : S3(k2∗)→ S3(k2∗) is given by

Ψ(P ) = µ(P ) · P = (−3aα− 3bγ)x3 + (−3aβ − 3bα− 6cγ)x2y

+ (−6bβ + 3cα− 3dγ)xy2 + (−3cβ + 3dα)y3 (8)

whereP = ax3 + 3bx2y + 3cxy2 + dy3 and
(
α β
γ −α

)
=

(
ad− bc 2(bd− c2)

2(b2 − ac) −(ad− bc)

)
.

(iii) The normalised quartic invariantQn : S3(k2∗)→ k is

Qn(P ) = − detµ(P ) = (a2d2 − 3b2c2 − 6abcd+ 4b3d+ 4ac3). (9)

Notice thatQn(P ) is a multiple of the classic discriminant of the polynomialP .

Remark 2.2 The symmetric role of the coordinatesx andy is implemented by

J =

(
0 −1
1 0

)

which satisfies J· x = y, J · y = −x and

J · (ax3 + 3bx2y + 3cxy2 + dy3) = −dx3 + 3cx2y − 3bxy2 + ay3.

From (7) it follows thatµ(J · P ) is the cofactor matrix ofµ(P ).

Remark 2.3 The set of symplectic covariantsω, µ, Ψ,Q,Qn defined above is not
the only choice possible for the purposes of this article. One could just as well use

ωλ = λω, µλ = λµ, Ψλ = λΨ, Qλ = λ2Q

whereλ ∈ k∗.

The moment map is characterised by the identity

Tr(µ(P )ξ) = −1

3
ω(ξ · P, P ) ∀P ∈ S3(k2∗), ∀ξ ∈ sl(2, k), (10)
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which specialized toξ = µ(P ) gives a characterization ofΨ

Q(P ) = 8ω(P, Ψ(P )). (11)

From (10) one gets thatµ is Sl(2, k)-equivariant:

µ(g · P ) = gµ(P )g−1 ∀P ∈ S3(k2∗), ∀g ∈ Sl(2, k),

andsl(2, k)-equivariant:

dµP (ξ · P ) = [ξ, µ(P )] ∀P ∈ S3(k2∗), ∀ξ ∈ sl(2, k).

Here,dµP (Q) = 2Bµ(P,Q) whereBµ : S3(k2∗) × S3(k2∗) → sl(2, k) is the
unique symmetric bilinear map such thatµ(P ) = Bµ(P, P ).

From the Sl(2, k) and sl(2, k) equivariance ofµ one obtains the Sl(2, k) and
sl(2, k) equivariance ofΨ,Q andQn. Several useful relations amongµ, Ψ andQ are
derived in [15]. The following involves a relation between vanishing sets of sym-
plectic covariants.

Proposition 2.4 LetP be a binary cubic. Then

µ(P ) = 0 ⇒ Ψ(P ) = 0 ⇒ Q(P ) = 0.

Proof. SinceΨ(P ) = µ(P ) · P , it is obvious thatµ(P ) = 0⇒ Ψ(P ) = 0. Suppose
thatΨ(P ) = 0. Then by equation (10)

Tr(µ(P )2) = −1

3
ω(Ψ(P ), P ) = 0.

But µ(P )2 + detµ(P )Id = 0 by the Cayley-Hamilton theorem, sodetµ(P ) = 0
and henceQ(P ) = 0. QED

From the invariant theory point of view a covariant is an Sl(2, k) invariant in
S∗(S3(k2∗)) ⊗ S∗(k2∗). Concerning completeness of the symplectic invariants one
has the classic result of Eisenstein [8].

Proposition 2.5 (i) µ, Ψ , Q and the identity generate the Sl(2, k) invariants in
S3(k2∗)⊗ S∗(k2∗).

(ii) The only relation among them viewed as functions onk2 is

Ψ(P )(·)2 − 9Qn(P )P (·)2 = −9

2
Ωk2 (µ(P )·, ·)3,

hereΩ is extended by duality tok2 × k2.

Proof. We shall give a symplectic proof of the relation (ii) in§3. QED
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Remark 2.6 There are two interesting results related by a simple scaling to the
Eisenstein result. FixP ∈ S3(k2∗) with Qn(P ) 6= 0. One can associate toP a
type of Clifford algebra,CliffP , and in [9] it is shown that the center ofCliffP

is the coordinate algebra of the genus one curveX2 − 27Qn(P ) = Z3. The other
result arises from the observation that we could work over, say,Z instead ofk. Then
in [11] Mordell showed that all integral solutions(X,Y, Z) to X2 + kY 2 = Z3

with (X,Z) = 1 are obtained from someP ∈ S3(Q2∗) with Qn(P ) = −4k and
evaluating(ii) at a lattice point inQ2. We will not use these results in this paper but
we will give a symplectic proof at another time.

Remark 2.7 The Proposition gives a complete description of binary cubics from the
point of view of Sl(2, k) invariant theory. From the symplectic theory point of view,
in [15] we give characterizations of Sl(2, k) as the subgroup ofSp(S3(k2∗), ω) that
preservesQ(·) and as the subgroup ofSp(S3(k2∗), ω) that commutes withΨ .

2.2 The image of the moment map

As µ : S3(k2∗) → sl(2, k) is equivariant, the image ofµ is a union of Sl(2, k) in-
variant sets. Of course, the invariant functions onsl(2, k) are generated bydet. The
following description of the orbits of Sl(2, k) acting on level sets ofdet uses the
symplectic structure onk2∗. Lacking any reference for this probably known result
we include a proof. Subsequently, Paul Ponomarev brought toour attention the ma-
terial in [2] p.158-159 from which an alternate albeit non-symplectic proof can be
extracted.

Proposition 2.8 Let∆ ∈ k and set

sl(2, k)∆ = {X ∈ sl(2, k) \ {0} : detX = ∆},
k∗∆ = {x ∈ k∗ : ∃a, b ∈ k such thatx = a2 + b2∆}.

Then the orbits of Sl(2, k) acting onsl(2, k)∆ are in bijection withk∗/k∗∆ under the
mapν∆ : sl(2, k)∆ → k∗/k∗∆ defined by

ν∆(X) = [Ω(v,X · v)] (12)

wherev is any element ink2∗ which is not an eigenvector ofX .

Proof. We make some preliminary remarks before proving the result.First we ob-
serve that the definition ofν∆(X) is independent of choice ofv. Indeed, givenv
which is not an eigenvector ofX , then{v,X ·v} is a basis ofk2∗. Givenw any other
vector which is not an eigenvector thenw = av+bX ·v, and using Cayley-Hamilton
we obtain that[Ω(v,X · v)] = [Ω(w,X · w)].

Next, note that ifX ∈ sl(2, k) there existsg ∈ Sl(2, k) andβ, γ ∈ k such that

gXg−1 =

(
0 β
γ 0

)
.
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So to prove the result, we need only consider matrices insl(2, k)∆ of the formX =(
0 β
γ 0

)
with eitherβ or γ nonzero. Since

(
0 1
−1 0

)(
0 β
γ 0

)(
0 1
−1 0

)−1

=

(
0 −γ
−β 0

)
,

we can further suppose thatγ 6= 0. Then x is not an eigenvector ofX and
νdetX(X) = [Ω(x,X · x)] = [Ω(x, γx)] = [γ].

Suppose

(
0 β
γ 0

)
and

(
0 β′

γ′ 0

)
in sl(2, k)∆ have the same value ofν∆, i.e.,βγ =

−∆ = β′γ′ and[γ] = [γ′].
Then there existp, q in k such thatγ′ = (p2 + q2detX)γ. Take asAnsatz

(
a b
c d

)
=

(
p −q∆

γ′

γq p γ
γ′

)
.

Then

det

(
a b
c d

)
= p2 γ

γ′
+ q2∆ γ

γ′

= γ
γ′

(p2 + q2∆)

= 1.

A routine computation shows that
(
a b
c d

)(
0 β′

γ′ 0

)(
d −b
−c a

)
=

(
0 β
γ 0

)
,

and soν∆ separates orbits.
To show that givenα 6= 0, there is anX with detX = ∆ andν∆(X) = [α],

take

X =

(
0 −∆

α
α 0

)
.

Then detX = ∆ andν∆(X) = [α]. Finally, Sl(2, k) invariance ofν∆ follows from
the definition ofν∆. QED

Remark 2.9 We make some elementary observations concerning the Sl(2, k) adjoint
orbits. If −∆ ∈ k∗2, thenk∗∆ = k∗ and there is only one orbit. If∆ = 0 then
k∗∆ = k∗2 and there is one nilpotent orbit for every element ofk∗/k∗2. If −∆ 6∈ k∗2

is nonzero, thenk∗∆ is the set of values ink∗ taken by the norm function associated to
the quadratic extensionk(

√
−∆) or, equivalently, by the anisotropic quadratic form

x2 + ∆y2 on k2. It is well-known that this is a proper subgroup ofk∗, at least in
characteristic 0, (with thanks to P. Ponomarev for a discussion on characteristic p)
and so in characteristic zero there are at least two orbits.
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Remark 2.10 Sincek∗/k∗∆ is a group, the Proposition puts a natural group struc-
ture on the set of orbits of Sl(2, k) acting on trace free matrices of fixed determi-
nant. Alternatively,sl(2, k) can be Sl(2, k)-equivariantly identified withS2(k2∗),
the space of binary quadratic forms, by

X ←→ qX(v) = Ω(v,X · v).

By transport of structure, the Proposition then puts a natural group structure on the
set of orbits of Sl(2, k) acting on binary quadratic forms of fixed discriminant. One
can check that this is Gauss composition. In Theorems 3.34 and 3.46 we will put a
natural group structure on orbits of binary cubics with fixednonzero discriminant.

The image of the moment map can be characterized as follows.

Theorem 2.11 LetX ∈ sl(2, k) \ {0}. Then

X ∈ Imµ ⇐⇒ νdetX(X) = [2].

Proof. As before, we can suppose without loss of generality thatX =

(
0 β
γ 0

)
with

sayβ nonzero.
(⇒) : If X = µ(P ) andP = ax3 + 3bx2y + 3cxy2 + dy3, we have

ad− bc = 0
2(bd− c2) = β
2(b2 − ac) = γ.

Hencebβ = dγ and

−β = 2(c2 − d2 γ

β
) = 2(c2 + (

d

β
)2(−βγ)) = 2(c2 + (

d

β
)2detX)

so thatνdetX(X) = [−β] = [2].
(⇐): SinceνdetX(X) = [−β] and by hypothesisνdetX(X) = [2], there existp, q in
k such that

−β = 2(p2 + q2detX) = 2(p2 − q2βγ).
If we set

c = p, a =
γ

β
p, d = βq, b = γq

and
P = ax3 + 3bx2y + 3cxy2 + dy3,

it is easily checked that

µ(P ) =

(
ad− bc 2(bd− c2)

2(b2 − ac) −(ad− bc)

)
=

(
0 β
γ 0

)
= X.

QED
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Remark 2.12 This result is a weak form of the Eisenstein identity. Indeed, if one
cubes both sides ofνdetX(X) = [2] and uses Gauss composition, one obtains the
Eisenstein identity evaluated at a particular vector.

Remark 2.13 Varying the symplectic structure toωλ, λ ∈ k∗ one can sweep out the
other orbits with a moment map.

Corollary 2.14 Let P, P ′ be nonzero binary cubics such thatQn(P ) = Qn(P ′)
and such thatµ(P ) andµ(P ′) are nonzero. Then there existsg ∈ Sl(2, k) such that
g · µ(P ) = µ(P ′).

Proof. SinceQn(P ) = Qn(P ′), we have detµ(P ) = detµ(P ′). By the previous
theorem,

ν detµ(P )(µ(P )) = ν detµ(P ′)(µ(P ′))

and the result follows from Proposition 2.8. QED

2.3 The image and fibres ofΨ

Proposition 2.15 P ∈ S3(k2∗) withQn(P ) 6= 0 is in the image ofΨ if and only if
9Qn(P ) is a cube ink∗.

Proof. (⇒) : Suppose thatP = Ψ(B). The key to the argument is a result from
[15] that is special to Heisenberg graded Lie algebras, namely a formula forΨ2.
From this result one obtainsΨ2(B) = −(9Qn(B))2B. On the other hand we have
Ψ2(B) = Ψ(P ). HenceB = −(9Qn(B))−2Ψ(P ). ApplyingΨ again and using that
Ψ is cubic we obtainP = Ψ(B) = −η3(9Qn(P ))2P whereη = −(9Qn(B))−2.
So(−η)3 = (9Qn(P ))−2. Now (−η(9Qn(B))2)3 = 1 so(9Qn(B))6 = (−η)−3 =
(9Qn(P ))2. Thus we obtain9Qn(P ) = (±9Qn(B))3.
(⇐) : Suppose9Qn(P ) = λ3. SetB = − 1

λ2Ψ(P ). Then as above,Ψ(B) = P . QED

Corollary 2.16 For P ∈ S3(k2∗) with 9Qn(P ) ∈ k∗3 the fiberΨ−1(P ) consists of
one element.

Proof. From the previous proof, ifP = Ψ(B) thenB = −(9Qn(B))−2Ψ(P ). QED

Remark 2.17 We will see later that a nonzeroP ∈ S3(k2∗) with Qn(P ) = 0 is in
the image ofΨ if and only ifµ(P ) = 0 andIT (P ) = [6] (cf Proposition 3.19). The
fibre ofΨ is then given by Proposition 3.23.

3 Orbits and fibres

3.1 Symplectic covariants and triple roots

One has the natural ‘algebraic’ condition
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Definition 3.1 T = {P ∈ S3(k2∗) : P 6= 0 andP has a triple root},
and the natural ‘symplectic’ condition

Definition 3.2 Zµ = {P ∈ S3(k2∗) : P 6= 0 andµ(P ) = 0}.
The next proposition shows that the symplectic quantityµ detects the purely alge-
braic property of whether or not a binary cubic has a triple root.

Proposition 3.3 T = Zµ.

Proof. Let P = ax3 + 3bx2y + 3cxy2 + dy3. ThenP ∈ Zµ iff µ(P ) = 0 iff
ad = bc, bd = c2 andb2 = ac.

If bc = 0, thencbd = c3 = 0 andb3 = acb = 0. Henceb = c = 0 and either
a = 0 or d = 0. In the first caseP = dy3 and in the secondP = ax3.

If bc 6= 0, thena = b2

c andd = c2

b which meansP = 1
bc (bx+ cy)3. QED

In order to determine the Sl(2, k) orbit structure in the level setZµ = µ−1(0)\{0}
we need to construct an invariant that separates the orbits.We begin with the obser-
vation that the factorisation ofP ∈ T is not unique.

Lemma 3.4 Let λ, µ ∈ k∗ andφ, ψ ∈ k2∗ be such thatλφ3 = µψ3. Then λ
µ is a

cube andφ andψ are proportional.

Proof. Unique factorisation. QED
This means the following (algebraic) definition makes sense.

Definition 3.5 DefineIT : T → k∗/k∗3 by

IT (P ) = [λ]k∗/k∗3

whereP = λφ3, λ ∈ k∗ andφ ∈ k2∗.

One can formulate the definition using symplectic methods. Given a non-zero
φ ∈ k2∗ there is ag ∈ Sl(2, k) with Ω(φ, g · φ) = 1. If P = λφ3 then

ω(P, (g · φ)3) = λω(φ3, (g · φ)3) = λΩ(φ, g · φ)3 = λ. (13)

ThusIT (P ) = [ω(P, (g · φ)3)].

Proposition 3.6 (i) Let P1, P2 ∈ T . Then

Sl(2, k) · P1 = Sl(2, k) · P2 ⇐⇒ IT (P1) = IT (P2). (14)

(ii) The mapIT induces a bijection of the space of orbits

Zµ/Sl(2, k)←→ k∗/k∗3. (15)

(iii) Let P ∈ T and letGP = {g ∈ Sl(2, k) : g · P = P} be the isotropy subgroup

ofP . Then

GP = {g ∈ Sl(2, k) : ∃µ ∈ k∗ s.t.g · φ = µφ andµ3 = 1}
whereP = λφ3, λ ∈ k∗ andφ ∈ k2∗.



12 Marcus J. Slupinski and Robert J. Stanton

Proof. (i): Suppose thatP1 = λφ3 and that there existsg ∈ Sl(2, k) such that
g · P1 = P2. ThenP2 = g · (λφ3) = λ(g · φ)3 andIT (P2) = [λ] = IT (P1).

Conversely, supposeP1 = λ1φ
3
1, P2 = λ2φ

3
2 andIT (P1) = IT (P2). The action

of Sl(2, k) on nonzero vectors ofk2∗ is transitive so we can findg ∈ Sl(2, k) such
thatg · φ1 = φ2 and hence such that

g · P1 = λ1φ
3
2.

SinceIT (P1) = IT (P2), there existsρ ∈ k such thatλ1 = ρ3λ2 and

g · P1 = λ2(ρφ2)
3.

Choosingh ∈ Sl(2, k) such thath · (ρφ2) = φ2, we have(hg) · P1 = P2.
(ii): By (i), the mapIT induces an injection of the space of orbits of Sl(2, k) acting
onT into k∗/k∗3. This is in fact a surjection since ifλ ∈ k∗, IT (λx3) = [λ].
(iii): This follows from unique factorisation. QED

Remark 3.7 Extendingφ to a basis ofk2∗ we have the isomorphism

GP
∼= {
(
µ a
0 1

µ

)
: µ ∈ k∗, µ3 = 1 anda ∈ k}.

Consequently all the Sl(2, k) orbits in Zµ are isomorphic. HenceZµ is a smooth
variety, and in [15] we show that it is Lagrangian.

As the center of Gl(2, k) acts onZµ by ”cubes” it preservesIT , and thus the
Sl(2, k) orbits inZµ are the same as the Gl(2, k) orbits. From the point of view of
algebraic groups, the result by Demazure [4] characterizesSl(2, k) as the subgroup
of the automorphisms ofS3(k2∗) that preservesZµ.

3.2 Symplectic covariants and double roots

In a similar way next we consider the ‘algebraic’ condition

Definition 3.8 D = {P ∈ S3(k2∗) : P 6= 0 andP has a double root},
and the ‘symplectic’ condition

Definition 3.9 Nµ = {P ∈ S3(k2∗) : P 6= 0 andµ(P ) is nonzero nilpotent}.
Again it turns out that the symplectic quantityµ detects the purely algebraic

property of whether or not a binary cubic has a double root.

Theorem 3.10D = Nµ.

Proof. The inclusionD ⊆ Nµ follows from the

Lemma 3.11 LetP ∈ D and writeP = (ex + fy)2(rx + sy) with ex + fy and
rx + sy independent. Then

µ(P ) =
2

9
(es− fr)2

(
−ef −f2

e2 ef

)
.

In particular,Kerµ(P ) is spanned by the double rootex+ fy.
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Proof. Straightforward calculation. QED

To prove the inclusionNµ ⊆ D, supposeµ(P ) is a nonzero nilpotent. Then
Kerµ(P ) is one-dimensional, spanned by, say,v ∈ k2∗. Since Sl(2, k) acts tran-
sitively on nonzero vectors ink2∗, there existsg ∈ Sl(2, k) such thatg · v = x.
Thenµ(g · P ) = gµ(P )g−1 is nonzero nilpotent with kernel spanned byx. Let
g ·P = ax3 +3bx2y+3cxy2 +dy3. Then by the formulae (6) and (7), the condition
µ(g · P ) · x = 0 is equivalent to the system

ad− bc = 0

bd− c2 = 0.

If (c, d) 6= (0, 0) this implies there existsλ, ν ∈ k such that(a, b) = λ(c, d) and
(b, c) = ν(c, d). Hencec = νd, b = ν2d, a = ν3d andµ(g · P ) = 0 which is a
contradiction. Thusc = d = 0 andg · P = ax3 + 3bx2y = x2(ax+ 3by). We have
b 6= 0 (otherwiseµ(P ) = 0) sox andax + by form a basis ofk2. Applying g−1 to
g · P = x2(ax+ 3by) completes the proof. QED

Again, in order to obtain parameters for the orbit structureof Nµ we need stan-
dard representatives. The factorisation ofP ∈ Nµ given by Theorem 3.10 is not
unique. However we can use the symplectic formΩ on k2∗ to get a canonical form
for P .

Lemma 3.12 LetP ∈ Nµ. There exists a unique basis{φ, ξ} of k2∗ such thatP =
φ2ξ andΩ(φ, ξ) = 1.

Proof. If P ∈ Nµ thenP has a double root by Theorem 3.10. Fix a factorisation
P = φ2

1ξ1. By unique factorisation, any other factorisation is of theform P = φ2ξ
where

φ = λφ1, ξ =
1

λ2
ξ1

for someλ ∈ k∗. ThenΩ(φ, ξ) = 1 iff λ = Ω(φ1, ξ1) and this proves the
claim. QED

Proposition 3.13 The group Sl(2, k) acts simply transitively onNµ. Consequently,
Gl(2, k) has one orbit onNµ.

Proof. Let P,Q ∈ Nµ and writeP = φ2ξ andQ = φ′
2
ξ′ with Ω(φ, ξ) =

Ω(φ′, ξ′) = 1. The elementg of GL(2, k) defined byg · φ = φ′ andg · ξ = ξ′

is clearly in Sl(2, k), satisfiesg · P = Q and is the unique element of Sl(2, k) send-
ingP toQ. QED

Remark 3.14 In [15] when chark = 0 we show thatNµ is the tangent variety to
Zµ.
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Remark 3.15 From Proposition 3.3, Theorem 3.10 and(9) we see thatQn(P ) = 0
iff P has a multiple root, which is consistent with the classic discriminant interpre-
tation. Also, the open subset of double roots is isomorphic to Sl(2, k). Consequently
the varietyQn(P ) = 0 is not smooth, but has singular set which is a union over
k∗/k∗3 of isomorphic Lagrangian Sl(2, k)-orbits.

Image and Fibres ofµ : Nµ → sl(2, k)

The image of the moment map onNµ is given by Theorem 2.11:

Corollary 3.16 µ(Nµ) = {X ∈ sl(2, k) \ {0} : detX = 0 andν0(X) = [2]}.
Now we give two descriptions of the fibres ofµ : Nµ → sl(2, k): the first sym-

plectic, the second algebraic. Note that the fibres of the moment map are symplectic
objects so it is not a priori clear that they have a purely algebraic description.

Proposition 3.17 LetP ∈ Nµ and letφ ∈ k2∗ be a square factor ofP .

(a) µ−1(µ(P )) = {P + aΨ(P ) : a ∈ k} ∪ {−P + bΨ(P ) : b ∈ k}.
(b) µ−1(µ(P )) = {P + aφ3 : a ∈ k} ∪ {−P + bφ3 : b ∈ k}.
(c) The affine lines in (a) and (b) are disjoint.

Proof. Since Sl(2, k) acts transitively onNµ we can assume without loss of gener-
ality thatP = 3x2y. Then by (7) and (8),

µ(3x2y) =

(
0 0
2 0

)
, Ψ(3x2y) = −6x3.

We want to find allQ ∈ S3(k2∗) such that

µ(Q) =

(
0 0
2 0

)
. (16)

By Theorem 3.10, a solution of this equation is of the formQ = (ex+fy)2(rx+sy)
with es− fr 6= 0. Substituting back in (16) we get

2

9
(es− fr)2

(
−ef −f2

e2 ef

)
=

(
0 0
2 0

)

from which it follows that the set of solutions of equation (16) is:

{x2(e2rx + 3y) : e ∈ k∗, r ∈ k} ∪ {x2(e2rx− 3y) : e ∈ k∗, r ∈ k}.

SinceP = 3x2y andΨ(P ) = −6x3, this proves (a), (b) and (c). QED

The fibre ofµ atµ(P ) is also the orbit throughP of the isotropy group ofµ(P ).

Corollary 3.18 LetP ∈ Nµ and letGµ(P ) = {g ∈ Sl(2, k) : gµ(P )g−1 = µ(P )}.
Thenµ−1(µ(P )) = Gµ(P ) · P .
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Proof. Sinceµ(P ) is nilpotent nonzero, a simple calculation shows that

Gµ(P ) = {Id+ aµ(P ) : a ∈ k} ∪ {−Id+ bµ(P ) : b ∈ k}

and the result follows from Proposition 3.17. QED

It appears thatNµ is a regular contact variety. If one endows the nilpotent variety
N in sl(2, k) with the KKS symplectic structure, thenµ : Nµ → N is a prequanti-
zation of the image ofµ.

Image and Fibres ofΨ : Nµ → Zµ

We begin with some properties ofΨ .

Proposition 3.19 LetP = φ2ξ with φ, ξ ∈ k2∗. Then:

(i) µ(Ψ(P )) = 0 ;

(ii) φ3 dividesΨ(P );

(iii) Ψ(P ) = 0 iff µ(P ) = 0 ;

(iv) Ψ(P ) 6= 0 ⇒ IT (Ψ(P )) = [6]k∗/k∗3 .

Proof. Setφ = ex+ fy andξ = rx+ sy. Then calculation gives

µ(P ) =
2

9
(es− fr)2

(
−ef −f2

e2 ef

)
,

Ψ(P ) = −2

9
(es− fr)3(ex+ fy)3 (17)

and all parts of the proposition follow immediately from these formulae. QED

Corollary 3.20 The image ofΨ onNµ isZµ[6].

Proof. According to Proposition 3.19(iv), ifP ∈ Nµ then Ψ(P ) ∈ Zµ and
IT (Ψ(P )) = [6]k∗/k∗3 . SinceΨ is Sl(2, k)-equivariant and Sl(2, k) acts transitively
on bothNµ andZµ[6], it is clear thatΨ mapsNµ ontoZµ[6]. QED

To describe the fibres we need a symplectic characterizationof the double root
of a P ∈ Zµ. Recall thatex + fy 6= 0 is a root ofP iff ω(P, (ex + fy)3) = 0.
Analogous to this result we have

Proposition 3.21 LetP be a binary cubic and(ex+ fy) ∈ k2∗ be nonzero.

(ex+ fy)2 | P ⇐⇒ Bµ(P, (ex+ fy)3) = 0. (18)

Proof. We begin with two remarks. First, since Sl(2, k) acts transitively on nonzero
elements ofk2∗ and sinceBµ andΨ are Sl(2, k)-equivariant, we can assume with-
out loss of generality thatex + fy = x. Second, the formula forBµ obtained by
polarising (7) is
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Bµ(P, P ′) =

(
1
2 (ad′ + da′ − bc′ − cb′) (bd′ + db′)− cc′

bb′ − (ac′ + ca′) − 1
2 (ad′ + da′ − bc′ − cb′)

)
(19)

if P = ax3 + 3bx2y + 3cxy2 + dy3 andP ′ = a′x3 + 3b′x2y + 3c′xy2 + d′y3.
LetP = ax3 + 3bx2y + 3cxy2 + dy3. Then

Bµ(P, x3) =

(
1
2d 0
−c − 1

2d

)

and hencex2 dividesP iff c = d = 0 iff Bµ(P, x3) = 0. QED

Now sinceΨ mapsD to T we expect a criterion involvingΨ for ex+ fy 6= 0 to
be a double root ofP .

Proposition 3.22 LetP be a binary cubic and(ex+ fy) ∈ k2∗ be nonzero.

(i) If (ex+ fy)2 dividesP thenΨ(P ) is proportional to(ex+ fy)3.

(ii) If Ψ(P ) is a nonzero multiple of(ex+ fy)3 then(ex+ fy)2 dividesP .

(iii) {P ∈ S3(k2∗) : Bµ(P, (ex+fy)3) = 0} is a Lagrangian subspace ofS3(k2∗).

Proof. (i): If x2 dividesP then takinge = 1 andf = 0 in the formulae (17) we get
Ψ(P ) = − 2

9d
3x3.

(ii): If there existsλ ∈ k∗ such that(ex+ fy)3 = 1
λΨ(P ), we have

Bµ(P, (ex + fy)3) =
1

λ
Bµ(P, µ(P ) · P ).

ButBµ(P, µ(P ) · P ) + Bµ(µ(P ) · P, P ) = [µ(P ), µ(P )] = 0 sinceBµ is sl(2, k)-
equivariant. HenceBµ(P, µ(P ) ·P ) = 0 andBµ(P, (ex+ fy)3) = 0 which implies
by the previous result that(ex+ fy)2 dividesP .
(iii): Let L = {P ∈ S3(k2∗) : Bµ(P, (ex + fy)3) = 0}. As we saw in the proof
above, the binary cubicax3 + 3bx2y+ 3cxy2 + dy3 is inL iff c = d = 0 and hence
L is of dimension two. It follows from (1) thatω(P, P ′) = 0 if P, P ′ ∈ L and hence
L is Lagrangian. QED

We can now give two descriptions of the fibres ofΨ : Nµ → Zµ[6], the first
symplectic, the second algebraic. Again, as the fibres ofΨ are symplectic objects it
is not a priori clear that they have a purely algebraic description.

Proposition 3.23 LetP ∈ Nµ and letφ ∈ k2∗ be a square factor ofP .

(i) Ψ−1(Ψ(P )) = {aP + bΨ(P ) : a ∈ k∗, b ∈ k}.
(ii) Ψ−1(Ψ(P )) = {Q ∈ Nµ : φ2 dividesQ}.

Explicit factorisation of P whenQn(P ) = 0

From what has been done thus far we obtain readily
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Proposition 3.24 LetP = ax3 + 3bx2y + 3cxy2 + dy3 be a nonzero binary cubic
over a fieldk such thatchar(k) 6= 2, 3.

(i) If µ(P ) = 0 thenQn(P ) = 0 and

P =

{
ax3 or dy3 if bc = 0,
1
bc(bx+ cy)3 if bc 6= 0.

(ii) If µ(P ) 6= 0 andQn(P ) = 0 then

P =

{
x2(ax+ 3by) or (3cx+ d)y2 if ad− bc = 0,(
−(b2 − ac)x+ 1

2 (ad− bc)y
)2

( a
(b2−ac)2x+ 4d

(ad−bc)2 y) if ad− bc 6= 0.

3.3 Symplectic covariants and sums of coprime cubes

We have seen that aP with multiple roots corresponds toQn(P ) = 0. So we begin
the study ofP with Qn(P ) 6= 0, in which case the Sl(2, k) orbits are not the same
as the Gl(2, k) orbits. The values of the symplectic invariantQn(P ) will have much
to say about the roots ofP . We begin with the ‘natural’ condition

Definition 3.25 O[1] = {P ∈ S3(k2∗) : Qn(P ) is a square ink∗}.
The relevant ‘algebraic’ definition turns out to be

Definition 3.26 S = {P ∈ S3(k2∗) : ∃T1, T2 ∈ T s.tP = T1+T2 with T1, T2 coprime}.
Specializing to the space of binary cubics a general theoremvalid for the symplectic
covariants of theg1 of any Heisenberg graded Lie algebrag, we get the

Theorem 3.27 (i) Let P ∈ S and letP = T1 + T2 with T1, T2 ∈ T coprime. Then
T1, T2 are unique up to permutation.

(ii) Let P = T1 + T2 with T1, T2 ∈ T . Then

Qn(P ) = ω(T1, T2)
2. (20)

(iii) Let P ∈ O[1] and supposeQn(P ) = q2 with q ∈ k∗. Then

T1 =
1

2
(P +

1

3q
Ψ(P )), T2 =

1

2
(P − 1

3q
Ψ(P ))

are coprime elements ofT such thatP = T1 + T2.

Proof. Fork algebraically closed an argument thatP is a sum of cubes can be found
in [6, 17-18]. The fact thatQn(P ) = ω(T1, T2)

2 as well as (i) and (iii) are proved
for generalk and for Heisenberg graded Lie algebras in [15]. QED

Corollary 3.28 S = O[1].
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Remark 3.29 There is a natural bi-Lagrangian foliation ofO[1] obtained by means
of the decompositionP = T1 + T2. Modulo some technicalities, if one fixesT2 and
varies overT such thatω(T, T2) = ω(T1, T2) modk∗2, then does the same withT1,
one obtains a pair of foliations that are transverse and Lagrangian, for details see
[15].

Recall that elements ofT are, up to a scalar factor, cubes of linear forms. Hence
a binary cubicP is in S iff there exist a basis{φ1, φ2} of k2∗ andλ1, λ2 ∈ k∗ such
that

P = λ1φ
3
1 + λ2φ

3
2. (21)

Theλi andφi in this equation are not unique but the direct sum decomposition

k2∗ =< φ1 > ⊕ < φ2 >

is canonically associated toP as is described in the next result.

Corollary 3.30 (i) P ∈ O[1] iff µ(P ) 6= 0 is diagonalisable overk, henceµ(P ) is
contained in a semisimple orbit.

(ii) Let P ∈ O[1] and let{φ1, φ2} be a basis ofk2∗. The following are equivalent:

(a) There existλ1, λ2 ∈ k∗ such thatP = λ1φ
3
1 + λ2φ

3
2.

(b) {φ1, φ2} is a basis of eigenvectors ofµ(P ).

(iii) Let P ∈ O[1] and supposeP = λ1φ
3
1 + λ2φ

3
2 whereλ1, λ2 ∈ k∗ and{φ1, φ2}

is a basis ofk2∗. Then ifq is the square rootλ1λ2Ω(φ1, φ2)
3 ofQn(P ),

µ(P ) · φ1 = −qφ1,
µ(P ) · φ2 = qφ2.

Proof. (i): By Cayley-Hamilton and equation (9),

0 = µ(P )2 + detµ(P )Id = µ(P )2 −Qn(P )Id.

Henceµ(P ) is diagonalisable overk iff Qn(P ) is a square ink.
(ii): Since there existsg ∈ Sl(2, k) with < g ·φ1 >=< x > and< g ·φ2 >=< y >,
we can assume without loss of generality thatφ1 = x andφ2 = y. SettingP =
ax3 + 3bx2y + 3cxy2 + dy3, we have:{x3, y3} is a basis of eigenvectors ofµ(P )
iff µ(P ) is diagonal iff (by equation (7))

bd− c2 = b2 − ac = 0.

This equation impliesb(ad − bc) = 0 and hence, sinceQn(P ) 6= 0, thatb = 0 and
c2 = bd = 0. It follows that{x3, y3} is a basis of eigenvectors ofµ(P ) iff b = c = 0
iff P = ax3 + dy3.
(iii): As above, we can suppose without loss of generality thatP = ax3 + dy3 and
then
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µ(P ) =

(
ad 0
0 −ad

)

which impliesµ(P )·x = −adx andµ(P )·y = ady. This proves (iii) sinceΩ(x, y) =
1. QED

Corollary 3.31 (Fibres ofµ onO[1]). LetX ∈ sl(2, k) be diagonalisable overk,
let±q be its eigenvalues and letφ+ andφ− be corresponding eigenvectors ink2∗.
Then

µ−1(X) = {aφ3
− +

q

aΩ(φ−, φ+)3
φ3

+ : a ∈ k∗}.

Proof. This follows from Corollary 3.30(ii) and (iii). QED

Orbit parameters for O[1]

For generick there will be manySl(2, k) orbits onO[1]. So the first task is to
obtain parameters for the orbits. For this the symplectic result Theorem 3.27 leads
to a new and effective method. LetP ∈ O[1]. Then as we have seen, there exist a
uniqueunorderedpair of elementsT1, T2 in T such that

P = T1 + T2,

Qn(P ) = ω(T1, T2)
2. (22)

Hence the mapIO[1]
: O[1] → k∗ ×Z2 k

∗/k∗3

IO[1]
(P ) = [ω(T1, T2), IT (T1)IT (T2)

−1] (23)

is well-defined wherek∗ ×Z2 k
∗/k∗3 denotes the quotient ofk∗ × k∗/k∗3 by the

Z2-action
−1 · (λ, α) = (−λ, α−1).

Remark 3.32 The invariantIO[1]
(·) is symplectic not algebraic since its definition

requires the symplectic form. We have not found this invariant for binary cubics in
the literature.

Theorem 3.33 Let IO[1]
: O[1] → k∗ ×Z2 k

∗/k∗3 be defined by(23)above.

(i) Let P, P ′ ∈ O[1]. Then

Sl(2, k) · P ′ = Sl(2, k) · P ⇐⇒ IO[1]
(P ′) = IO[1]

(P ).

(ii) The mapIO[1]
induces a bijection

O[1]/Sl(2, k)←→ k∗ ×Z2 k
∗/k∗3.

(iii) Let P ∈ O[1] and supposeP = λ1φ
3
1 + λ2φ

3
2 whereλ1, λ2 ∈ k∗ and{φ1, φ2}

is a basis ofk2∗. LetGP = {g ∈ Sl(2, k) : g · P = P}. Then

GP = {g ∈ Sl(2, k) : ∃µ ∈ k∗ s.t.g · φ1 = µφ1, g · φ2 =
1

µ
φ2 andµ3 = 1}.
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Proof. (i): Sinceω andIT are Sl(2, k)-invariant, it is clear from (23) that the map
IO[1]

: O[1] → k∗ ×Z2 k
∗/k∗3 factors through the action of Sl(2, k). To show that

the induced map on orbit space is injective, suppose thatP andP ′ are binary cubics
such thatIO[1]

(P ′) = IO[1]
(P ). First chooseg, g′ ∈ Sl(2, k) such that

g · P = ax3 + by3,

g′ · P ′ = a′x3 + b′y3. (24)

From equations (1) and (9) we have

ω(x3, y3) = 1, Qn(P ) = a2b2, Qn(P ′) = a′
2
b′

2
.

HenceIO[1]
(P ′) = IO[1]

(P ) implies

[ab , [a ][b]−1 ] = [a′b′ , [a′][b′]−1 ]

in k∗ ×Z2 k
∗/k∗3. There are two possibilities:

• ab = a′b′, [a ][b]−1 = [a′][b′]−1;
• ab = −a′b′, [a ][b]−1 = [b′][a′]−1.

In the first case, we have

[ab][a ][b]−1 = [a′b′][a′][b′]−1,

hence[a2] = [a′2] and so[a] = [a′] as the groupk∗/k∗3 is of exponent3. Thus there
existsr ∈ k∗ such thata′ = r3a andb′ = 1

r3 b. If we defineh ∈ GL(2, k) by

h · x = rx, h · y =
1

r
y,

it is clear thath ∈ Sl(2, k) andh · (g ·P ) = g′ ·P ′. HenceP andP ′ are in the same
Sl(2, k)-orbit.

In the second case, we have[a2] = [b′
2
], [a] = [b′] and there existsr ∈ k∗ such

thatb′ = r3a anda′ = − 1
r3 b. If we defineh ∈ GL(2, k) by

h · x = ry, h · y = −1

r
x,

it is clear thath ∈ Sl(2, k) andh · (g · P ) = g′ · P ′. HenceP andP ′ are in the
same Sl(2, k)-orbit and we have proved thatIO[1]

: O[1] → k∗×Z2 k
∗/k∗3 separates

Sl(2, k)-orbits.
To prove (ii) it remains to prove thatIO[1]

: O[1] → k∗ ×Z2 k
∗/k∗3 is surjective.

Let [q, [α]] ∈ k∗ ×Z2 k
∗/k∗3 and consider the binary cubic

P =
1

qα
x3 + q2αy3.

Then
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IO[1]
(P ) = [q, [

1

qα
] [q2α ]−1] = [q, [

1

q3α2
]] = [q, [α]].

and soIO[1]
: O[1] → k∗ ×Z2 k

∗/k∗3 is surjective. This completes the proof of (ii).
To prove (iii), recall that the representationP = λ1φ

3
1 + λ2φ

3
2 is unique up to

permutation. Theng · P = P leads to two cases:

• g · (λ1φ
3
1) = λ1φ

3
1 andg · (λ2φ

3
2) = λ2φ

3
2;

• g · (λ1φ
3
1) = λ2φ

3
2 andg · (λ2φ

3
2) = λ1φ

3
1.

In the first case,g · φi = jiφi wherej3i = 1 and sinceg ∈ Sl(2, k), we must
havej1j2 = 1. In the second case, there existr, s ∈ k∗ such thatg · φ1 = rφ2,
g · φ2 = sφ1, λ1r

3 = λ2, λ2s
3 = λ1 andrs = −1. Hence(rs)3 = 1 andrs = −1

which is impossible and this case does not occur. QED

Properties of orbit space

We will use the parametrisation

IO[1]
: O[1]/Sl(2, k)←→ k∗ ×Z2 k

∗/k∗3.

to study orbit space. The parameter space has two natural maps

sq : k∗ ×Z2 k
∗/k∗3 → k∗2, sq([q, α]) = q2, (25)

and
t : k∗ ×Z2 k

∗/k∗3 → (k∗/k∗3)/Z2, t([q, α]) = [α] (26)

corresponding to projection onto the orbit spaces of the twofactors. We then have
the following diagram:

k∗ ×Z2 k
∗/k∗3

sq
yyrrrrrrrrrrr

t

((PPPPPPPPPPPP

k∗2

e
77

(k∗/k∗3)/Z2.

(27)

The map
sq : k∗ ×Z2 k

∗/k∗3 → k∗2 (28)

is the fibration associated to the principalZ2-fibration

k∗ → k∗2

and the action ofZ2 on k∗/k∗3 by inversion. SinceZ2 acts by automorphisms, the
fibresq−1(q2) over any pointq2 ∈ k∗2 has a natural group structure

[q, α]× [q, β] = [q, αβ] (29)

independent of the choice of square rootq of q2. Taking the identity at each point,
we get a canonical sectione : k∗2 → k∗ ×Z2 k

∗/k∗3 of (28) given by
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e(q2) = [q, 1] (30)

but, although each fibre is a group isomorphic tok∗/k∗3, the fibration (28) is not in
general isomorphic to the product

k∗2 × k∗/k∗3 → k∗2.

To translate the above features of orbit space into more concrete statements about
binary cubics overk, note that the mapsq is essentially the quarticQn since for all
P ∈ O[1],

sq(IO[1]
(P )) = Qn(P ).

Theorem 3.34 LetM ∈ k∗2, let

OM = {P ∈ S3(k2∗) : Qn(P ) = M}

and letOM/Sl(2, k) be the space ofSl(2, k)-orbits inOM .

(i) The mapIO[1]
: O[1] → k∗ ×Z2 k

∗/k∗3 induces a bijection

OM/Sl(2, k)←→ sq−1(M)

and, by pullback of(29), a group structure onOM/Sl(2, k).

(ii) As groups,OM/Sl(2, k) ∼= k∗/k∗3.

(iii) Let q ∈ k∗ be a square root ofM . The identity element ofOM/Sl(2, k) is
characterised by:

Sl(2, k) · P = 1⇔ P is reducible overk ⇔ IO[1]
(P ) = [q, 1].

Proof. Parts (i) and (ii) follow from the discussion above. Part (iii) follows from
Theorem 3.36(i) and equation (30). QED

Remark 3.35 From the Corollary it follows that if the classical discriminant is a
nonzero square there is a unique Sl(2, k) orbit consisting of reducible polynomials.
We remove the ‘square’ restriction in Corollary 3.47. In particular, over an alge-
braically closed field there is only one orbit of fixed nonzerodiscriminant.

To finish this section we briefly discuss the mapt : k∗ ×Z2 k
∗/k∗3 →

(k∗/k∗3)/Z2 in diagram (27) given by

t([q, α]) = [α].

This a fibration with fibrek∗ outside the identity coset[1] but

t−1([1]) = e(k∗2)
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is a ‘singular fibre’. There is ak∗-action:

λ · [q, α] = [λq, α] (31)

which maps fibres ofsq to fibres ofsq:

sq([q′, α′]) = sq([q, α])⇒ sq(λ · [q′, α′]) = sq(λ · [q, α]),

and whose orbits are exactly the fibres oft:

t([q′, α′]) = t([q, α])⇔ ∃λ ∈ k∗ s.t.[q′, α′] = λ · [q, α].

Isotropy for this action is given by:Isotk∗([q, α]) =

{
1 if α 6= 1
{±1} if α = 1.

It would be interesting to interpret these features of orbitspace in terms of the
original binary cubics. Conversely, one can also identify actions on the orbits in terms
of their orbit parameters. For example, the commutant of Sl(2, k) in Gl(S3(k2∗)) acts
on orbit space. This gives the action

λ ·′ [q, α] = [λ2q, α]

of k∗ on k∗ ×Z2 k
∗/k∗3 which is the square of the action (31). Another example is

obtained fromΨ : S3(k2∗) → S3(k2∗) which, since it commutes with the action of
Sl(2, k), induces a map fromk∗ ×Z2 k

∗/k∗3 to itself. This is easily seen to be given
by

[q, α] 7→ [−q3, [q]α], (32)

where[q] denotes the class ofq in k∗/k∗3.

Reducibility and factorisation

Theorem 3.36 LetP ∈ S and let{φ1, φ2} be a basis ofk2∗ such thatP = λ1φ
3
1 +

λ2φ
3
2 with λ1, λ2 ∈ k∗. Let q ∈ k∗ be a square root ofQn(P ). The following are

equivalent:

(a)P is reducible overk.

(b) λ1

λ2
is a cube ink∗.

(c) qλ1 is a cube ink∗.

(d) qλ2 is a cube ink∗.

(e) There is a basis{φ′1, φ′2} of k2∗ such thatP = 1
q (φ′

3
1 + φ′

3
2).

Proof. (a)⇒ (b): SupposeP is reducible overk. Then for allg ∈ Sl(2, k),

g · P = λ1(g · φ1)
3 + λ2(g · φ2)

3

is also reducible overk. Sinceφ1, φ2 form a basis ofk2∗, we can chooseg such that
g · φ1 = x andg · φ2 = ρy for someρ ∈ k∗ so that
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λ1x
3 + λ2ρ

3y3

is reducible overk. Hence there exista, b, c, d, e ∈ k such that

λ1x
3 + λ2ρ

3y3 = (ax+ by)(cx2 + dxy + ey2)

which gives the system
λ1 = ac, 0 = ad+ bc,

λ2ρ
3 = be, 0 = ae+ bd.

Sinceλ1 andλ2 are nonzero, it follows thata, b, c, d, e are nonzero and, sincec =
−ad

b ande = − bd
a we getλ1

λ2
= (ρa

b )3.

(b)⇒ (a): Supposeλ1

λ2
= r3 with r ∈ k∗. Then

P = λ2(r
3φ3

1 + φ3
2) = λ2(rφ1 + φ2)(r

2φ2
1 + rφ1φ2 + φ2

2) (33)

andP is reducible overk.
(b) ⇔ (c) ⇔ (d): Setν1 = qλ1 andν2 = qλ2. By Proposition??, there exists
s ∈ k∗ such thatν1ν2 = s3. Hence if any one of the three numbersν1, ν2, ν1

ν2
= λ1

λ2

is a cube so are the other two since formally

ν1 =



 ν1

3

√
ν1

ν2

3
√
ν1ν2




3

, ν2 =

(
3

√
ν1
ν2

ν2
3
√
ν1ν2

)3

, ν2 =

(
3
√
ν1ν2
3
√
ν1

)3

.

(a) ⇒ (e): If P is reducible we have just proved that there existsr ∈ k∗ and
s ∈ k∗such thatλ1 = 1

q r
3 andλ2 = 1

q s
3. Setφ′1 = rφ1 andφ′2 = sφ2. Then

P = λ1φ
3
1 + λ2φ

3
2 =

1

q

(
φ′1

3
+ φ′2

3
)

which proves(e).
(e)⇒ (a): Evident sinceφ′1 + φ′2 dividesφ′31 + φ′

3
2. QED

Corollary 3.37 LetP ∈ S be reducible and let{φ′1, φ′2} be a basis ofk2∗ such that
P = 1

q (φ′
3
1 + φ′

3
2).

(a) If −3 is not a square ink, then

P =
1

q
(φ′1 + φ′2)(φ

′
1
2 − φ′1φ′2 + φ′2

2
)

andφ′1
2 − φ′1φ′2 + φ′2

2 is irreducible overk.

(b) If −3 is a square ink, then

P =
1

q
(φ′1 + φ′2)(jφ

′
1 + j−1φ′2)(j

2φ′1 + j−2φ′2) (34)

wherej = 1
2 (−1 +

√
−3). The factors ofP are pairwise independent.
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To a certain extent, we can normalise bases ofk2∗ satisfying Theorem 3.27(e).

Corollary 3.38 LetP ∈ S.

(a) P is reducible iff there is a basis{φ′1, φ′2} of k2∗ such thatP = 1
q (φ′

3
1 + φ′

3
2)

andΩ(φ′1, φ
′
2) = q.

(b If {φ′1, φ′2} and{φ′′1 , φ′′2} are two bases ofk2∗ satisfying (a), there exists a cube
root of unityj ∈ k∗ such thatφ′′1 = jφ′1 andφ′′2 = j−1φ′2.

Proof. Choose a basis{φ1, φ2} of k2∗ andλ1, λ2 ∈ k∗ such thatP = λ1φ
3
1 +

λ2φ
3
2 and letq = λ1λ2Ω(φ1, φ2)

3. If P is reducible, by Theorem 3.27, there exists
r ∈ k∗ such thatλ1 = 1

q r
3. Sets = q

rΩ(φ1,φ2)
, φ′1 = rφ1 andφ′2 = sφ2. Then

Ω(φ′1, φ
′
2) = q and

s3 =

(
q

rΩ(φ1, φ2)

)3

=
1

r3

(
q

Ω(φ1, φ2)

)3

=
1

qλ1
(qλ1) (qλ2) = qλ2.

Hence

P = λ1φ
3
1 + λ2φ

3
2 =

1

q

(
φ′1

3
+ φ′2

3
)
.

In the classical literature on cubics this is called the Viète Substitution.
Conversely, if there is a basis{φ′1, φ′2} of k2∗ such thatP = 1

q (φ′
3
1 + φ′

3
2), then

φ′1 + φ′2 dividesP andP is reducible.
To prove (b), note first that by Theorem 3.27(a), we have either φ′′1

3
= φ′1

3 and
φ′′2

3
= φ′

3
2 or φ′′1

3
= φ′2

3 andφ′′2
3

= φ′
3
1.

In the first case, by unique factorisation, there exist cube roots of unityj1, j2 such
thatφ′′1 = j1φ

′
1, φ′′2 = j2φ

′
2 andj1j2 = 1. This is exactly what we want to prove.

In the second case, there exist cube roots of unityj1, j2 such thatφ′′1 = j1φ
′
2,

φ′′2 = j2φ
′
1 andj1j2 = −1. This is impossible since(j1j2)3 = 1. QED

Explicit formulae for IO[1]
and Cardano-Tartaglia formulae

Proposition 3.39 LetP = ax3 + 3bx2y + 3cxy2 + dy3 be an element ofO[1], let
q ∈ k∗ be a square root ofQn(P ) and defineα, β, γ andδ in k by

µ(P ) =

(
(ad− bc) 2(bd− c2)
2(b2 − ac) −(ad− bc)

)
=

(
α β
γ δ

)
.

ThenP = λ1φ
3
1 + λ2φ

3
2 andIO[1]

(P ) = [ q , [λ1][λ2]
−1 ] where:

(i) If β = γ = 0,
λ1 = a, φ1 = x,
λ2 = d, φ2 = y,

ad = q.

(ii) If γ 6= 0,

λ1 = 1
2q (α+ q)a+ γ

2q b, φ1 = x− (α−q
γ )y,

λ2 = − 1
2q (α − q)a− γ

2q b, φ2 = x− (α+q
γ )y,

Ω(φ1, φ2) = −2q

γ
.



26 Marcus J. Slupinski and Robert J. Stanton

(iii) If β 6= 0,

λ1 = β
2q c− 1

2q (α− q)d, φ1 = (α+q
β )x+ y,

λ2 = − β
2q c+ 1

2q (α+ q)d, φ2 = (α−q
β )x+ y,

Ω(φ1, φ2) =
2q

β
.

If P ∈ O[1] is reducible we can use these formulae together with Theorem3.36
and Corollary 3.37 to get an explicit formula for a linear factor of P in terms of the
coefficients ofP , a square rootq of Qn(P ) and a cube rootr of qλ1. Recall that the
existence of a cube root ofqλ1 in k is a necessary and sufficient condition forP to
be reducible overk.

Proposition 3.40 Let P = ax3 + 3bx2y + 3cxy2 + dy3 ∈ O[1] be reducible, let
q ∈ k∗ be a square root ofQn(P ) and supposead 6= 0.

(i) If β = γ = 0, let r be a cube root ofqa and lets = q
r . Then

rx + sy

dividesP .
(ii) If γ 6= 0, let r be a cube root of(α+ q)a+ γb and lets = −γ

r . Then

x+

(
r − s+ b

a

)
y

dividesP .
(iii) If β 6= 0, let r be a cube root ofβc− (α− q)d and lets = β

r . Then

(
s− r + c

d

)
x+ y

dividesP .

Proof. SinceP is reducible, there exists a basisφ′1, φ
′
2 of k2∗ such thatP = 1

q (φ′
3
1 +

φ′
3
2) (cf Theorem 3.36 ) and thenφ′1 + φ′2 dividesP . As shown in the proof of

Corollary 3.38(a), we can takeφ′1 = rφ1 andφ′2 = sφ2 wherer is a cube root
of qλ1, s = q

rΩ(φ1,φ2)
andφ1, φ2, λ1 are given by Proposition 3.39. The explicit

formulae in the three cases are:

(a)β = γ = 0: r is a cube root ofqa, rs = q andφ′1 = rx, φ′2 = sy;

(b) γ 6= 0: r is a cube root of(α+q)a+γb
2 , s = − γ

2r and

φ′1 = rx +
1

2s
(α− q)y, φ′2 = sx+

1

2r
(α+ q)y;

(c) β 6= 0: r is a cube root ofβc−(α−q)d
2 , s = β

2r and

φ′1 =
1

2s
(α + q)x+ ry, φ′2 =

1

2r
(α− q)x+ sy.
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Calculatingφ′1 +φ′2 in the first case obviously gives (i). In the second case we have

φ′1 + φ′2 = (r + s)x+

(
1

2s
(α− q) +

1

2r
(α + q)

)
y

= (r + s)x+

(
1

2sa
(−2s3 − γb) +

1

2ra
(2r3 − γb)

)
y (35)

sincer3 = qλ1 = (α+q)a+γb
2 ands3 = qλ2 = −(α−q)a−γb

2 . Simplifying the coeffi-
cient ofy we get

1

2sa
(−2s3−γb)+ 1

2ra
(2r3−γb) =

1

a

(
r2 − s2 − bγ

2
(
1

r
+

1

s
)

)
= (r+s)

r − s+ b

a

since2rs = −γ, and this implies (ii). Similarly, (iii) follows from (c). QED

As an application of the above results, consider the homogeneous Cardano-
Tartaglia polynomial

P = x3 + pxy2 + qy3

over a fieldk of characteristic not2 or 3. Assumep 6= 0 andq 6= 0 so that factorising
P is a nontrivial problem. Then

µ(P ) =

(
q −2 p2

9
−2 p

3 −q

)
, Qn(P ) = (q2 + 4

p3

27
).

To be able to apply our approach we assumeQn(P ) has a square root ink∗ which we

denote
√
q2 + 4 p3

27 . Then by Theorem 3.36 and Proposition 3.39(ii),P is reducible
iff

q

2
+

√
q2

4
+
p3

27
or − q

2
+

√
q2

4
+
p3

27

has a cube root ink.
If this is the case, then Proposition 3.40 (ii) implies thatx+ (r − s)y dividesP

wherer is a cube root ofq2 +
√

q2

4 + p3

27 ands is the cube rootp3r of− q
2 +
√

q2

4 + p3

27 .
Hence, with the obvious notation,

p

3

(
3

√
q
2 +

√
q2

4 + p3

27

) − 3

√
q

2
+

√
q2

4
+
p3

27

is a root of the inhomogeneous cubicx3 + px2 + q and this is the classical Cardano-
Tartaglia formula. Ifk = R, this can be written

s− r =
3

√

− q
2

+

√
q2

4
+
p3

27
− 3

√
q

2
+

√
q2

4
+
p3

27

since cube roots are unique.
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3.4 Symplectic covariants and sums of coprime cubes in quadratic extensions

In this article we have until now considered only binary cubicsP such thatQn(P )
is a square ink. In this section we will study binary cubicsP such thatQn(P ) is a
square in a fixed quadratic extension ofk.

Let k̂ be a quadratic extension ofk. Recall that since char(k) 6= 2, the extension
k̂/k is Galois and the Galois groupGal(k̂/k) is isomorphic toZ2. The Galois group
Gal(k̂/k) acts naturally on any space overk̂ obtained by base extension of a space
overk and its fixed point set is the original space overk. We always denote the action
of the generator ofGal(k̂/k) by x 7→ x̄ and we denote bŷΩ andω̂ respectively the
symplectic forms on̂k2∗ andS3(k̂2∗) obtained by base extension ofΩ andω. The
quartic onS3(k̂2∗) obtained by base extension ofQn will be denotedQ̂n and we set

Ô[1] = {P ∈ S3(k̂2∗) : Q̂n(P ) ∈ k̂∗2}.

Finally, let Im k̂ = {λ ∈ k̂ : λ̄ = −λ} and letT̂ ⊆ S3(k̂2∗) be the set of nonzero
binary cubics over̂k which have a triple root over̂k.

Remark 3.41 Note that(Im k̂∗)2 ⊆ k∗ is the inverse image underk∗ → k∗2 of
a single nontrivial square class ink∗/k∗2. Conversely, a nontrivial square class in
k∗/k∗2 determines up to isomorphism a quadratic extension ofk with this property.

This notation out of the way, we make a symplectic definition

O(k̂) = {P ∈ S3(k2∗) : k̂ is a splitting field ofx2 −Qn(P )}

and an algebraic definition

S(k̂) = {P ∈ S3(k2∗) : ∃T ∈ T̂ s.t.P = T + T̄ with T, T̄ coprime}.

Proposition 3.42O(k̂) = S(k̂).

Proof. LetP ∈ O(k̂). ThenQn(P ) has two square roots in̂k but no square roots in
k sincek̂ is a splitting field ofx2−Qn(P ). By Theorem 3.27, there existsT1, T2 ∈ T̂
such thatP = T1 +T2 and the square roots ofQn(P ) are±ω̂(T1, T2). SinceP̄ = P
and sinceT1 andT2 are unique up to permutation, we have eitherT̄1 = T1 and
T̄2 = T2 or T̄1 = T2 andT̄2 = T1. In the first case,

ω̂(T1, T2) = ω̂(T̄1, T̄2) = ω̂(T1, T2),

soω̂(T1, T2) ∈ k andQn(P ) has a square root ink which is a contradiction. Hence
P = T1 + T̄1. To prove thatT1 andT̄1 are coprime, writeT1 = λα3 whereλ ∈ k̂
andα ∈ k̂2∗. Then, by unique factorisation,T1 andT̄1 are not coprime iffα andα
are proportional. But then̂ω(T1, T̄1) = 0 andQn(P ) = 0 has a square root ink.
HenceT1 andT̄1 are coprime andP ∈ S(k̂).



The special symplectic structure of binary cubics 29

To prove inclusion in the opposite direction, supposeP ∈ S(k̂) and letP =

T + T̄ with T, T̄ coprime andT ∈ T̂ . Note thatP 6= 0 since otherwiseT and T̄
would not be coprime. By Theorem 3.27, we haveQn(P ) = (ω̂(T, T̄ ))2 andQn(P )

has two square rootŝω(T, T̄ ) in k̂. LetT = λα3 whereλ ∈ k̂∗ andα ∈ k̂2∗. As we
saw above,T and T̄ are coprime impliesα andα are not proportional, and this is
equivalent toΩ̂(α, α) 6= 0 sincedim k̂2∗ = 2. From

ω̂(T, T̄ ) = λλ̄(Ω̂(α, α))3

it follows thatω̂(T, T̄ ) 6= 0. On the other hand,

ω̂(T, T̄ ) = ω̂(T̄ , T ) = −ω̂(T, T̄ )

andω̂(T, T̄ ) is pure imaginary. Hence the square roots±ω̂(T, T̄ ) of Qn(P )are not
in k andk̂ is a splitting field ofx2 −Qn(P ). QED

Proposition 3.43 (Fibres ofµ onO(k̂)). LetX ∈ sl(2, k) be such that−detX ∈
(Im k̂∗)2 andνdetX(X) = [2]. Let q, q̄ ∈ Im k̂∗ be its eigenvalues and letφ and φ̄
be corresponding eigenvectors ink̂2∗.

(i) There existsa ∈ k̂∗ such thataāΩ(φ̄, φ)3 = q.

(ii)
µ−1(X) = {uaφ3 + ūā φ̄3 : u ∈ k̂∗ anduū = 1}.

Proof. Recall thatνdetX(X) = [2] is a necessary and sufficient condition forX to
be in the image ofµ (cf Theorem 2.11). Sinceφ + φ̄ is not an eigenvector ofX , we
have

[2] = [Ω(φ + φ̄, X · φ+X · φ̄)] = [−2qΩ(φ, φ̄)].

Hence there existsα ∈ k̂∗ such thatαᾱ = qΩ(φ̄, φ) and thena = q2

α3 is a solution
of (i).

By Corollary 3.31, the fibre of thêk-moment map̂µ : S3(k̂2∗)→ sl(2, k̂) is

µ̂−1(X) = {cφ̄3 +
q

cΩ(φ̄, φ)3
φ3 : c ∈ k̂∗}

and hence

µ−1(X) = {cφ̄3 +
q

cΩ(φ̄, φ)3
φ3 : c ∈ k̂∗, c̄ =

q

cΩ(φ̄, φ)3
}.

This together with (i) implies (ii). QED

Orbit parameters for O(k̂)

It is clear thatO(k̂) is stable under the action of Sl(2, k) and in this section we
will give a parametrisation of the space of orbits.
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Let P ∈ O(k̂). Then, sinceQn(P ) ∈ k̂∗2, the Sl(2, k̂) orbit of P regarded as a
binary cubic over̂k is entirely determined byI bO[1]

(P ) where

I bO[1]
: Ô[1] → k̂∗ ×Z2 k̂

∗/ k̂∗3

is the Sl(2, k̂)-invariant function defined in Theorem 3.33. Recall that to calculate
I bO[1]

(P ), we chooseλ ∈ k̂∗ andα ∈ k̂2∗ such that

P = λα3 + λ̄ᾱ3

and then by definition,

I bO[1]
(P ) = [ω̂(λα3, λα), [λλ̄−1]]. (36)

The square roots±ω̂(λα3, λα3) of Qn(P ) are pure imaginary since

ω̂(λα3, λ1α
3) = ω̂(λα3, λα3) = −ω̂(λα3, λ1α

3),

and the class[λλ̄−1] of λλ̄−1 in the group̂k∗/ k̂∗3 satisfies

[λλ̄−1] [λλ̄−1] = 1.

It follows that
I bO[1]

(P ) ∈ Im k̂∗ ×Z2 U(k̂∗/ k̂∗3)

where
U(k̂∗/ k̂∗3) = {α ∈ k̂∗/ k̂∗3 s.t.αᾱ = 1}.

is the ‘unitary’ group of̂k∗/ k̂∗3. Note that theZ2 action onIm k̂∗ × U(k̂∗/ k̂∗3) is
precisely the natural action ofGal(k̂/k).

Theorem 3.44 LetI bO[1]
: O(k̂)→ Im k̂∗×Z2 U(k̂∗/ k̂∗3) be defined by(36)above.

(i) Let P, P ′ ∈ O(k̂). Then

Sl(2, k) · P ′ = Sl(2, k) · P ⇐⇒ I bO[1]
(P ′) = I bO[1]

(P ).

(ii) The mapI bO[1]
induces a bijection

O(k̂)/Sl(2, k)←→ Im k̂∗ ×Z2 U(k̂∗/ k̂∗3).

(iii) The isotropy group ofP ∈ O(k̂) is isomorphic to

{
(
λ 0
0 λ̄

)
∈ Sl(2, k̂) : λ3 = 1, λλ̄ = 1}.
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Proof. (i): The functionI bO[1]
: O(k̂)→ Im k̂∗ ×Z2 U(k̂∗/ k̂∗3) is Sl(2, k)-invariant

since it is by definition the restriction of an Sl(2, k̂)-invariant function on a larger
space.

To proveI bO[1]
separates orbits, supposeI bO[1]

(P ′) = I bO[1]
(P ). Writing P =

λα3 + λ̄α3 andP ′ = λ′α′3 + λ̄′α′
3
, there existsσ ∈ Z2 such that

( ω̂(λ′α′3, λ̄′α′
3
), [λ′λ̄′

−1
] ) = σ · ( ω̂(λα3, λ̄α3), [λλ̄−1] ) (37)

and, permuting cube terms if necessary, we can suppose without loss of generality
thatσ is the identity. Then, equation (37) implies

ω̂(λ′α′3, λ̄′α′
3
) = ω̂(λα3, λ̄α3), [λ′λ̄′

−1
] = [λλ̄−1] (38)

or equivalently,

λ′λ̄′ω̂(α′3, α′
3
) = λλ̄ω̂(α3, α3), [λ′λ̄′

−1
] = [λλ̄−1]

which by (2) is equivalent to

λ′λ̄′ Ω̂(α′, α′)3 = λλ̄ Ω̂(α, α)3, [λ′λ̄′
−1

] = [λλ̄−1]. (39)

Taking classes in̂k∗/ k̂∗3 we get

[λ′λ̄′] = [λλ̄], [λ′λ̄′
−1

] = [λλ̄−1]

and multiplying the two equations gives

[λ′
2
] = [λ2].

From this it follows that[λ′] = [λ] since the cube of any element in̂k∗/ k̂∗3 is the
identity.

Let nowξ ∈ k̂∗ be such that
λ′ = ξ3λ.

Substituting in the first equation of (39) we get

Ω̂(ξα′, ξα′)3 = Ω̂(α, α)3

which means
Ω̂(ξα′, ξα′) = j Ω̂(α, α)

for somej ∈ k̂ such thatj3 = 1. The conjugate of this equation is

−Ω̂(ξα′, ξα′) = −j̄ Ω̂(α, α)

and hencēj = j.
Defineg ∈ Gl(2, k̂) by
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g · α = jξα′, g · α = jξ̄ α′.

Theng commutes with conjugation by definition, and preservesΩ̂ since

Ω̂(g · α, g · α) = j2Ω̂(ξα′, ξα′) = j3Ω̂(α, α) = Ω̂(α, α).

Henceg ∈ Sl(2, k). Furthermore,

g · P = λ(g · α)3 + λ̄(g · α)3 = λ(jξα′)3 + λ̄(jξ̄ α′)3 = λ′α′3 + λ̄′α′
3

= P ′

which shows thatP andP ′ are in the same Sl(2, k)-orbit. This proves (i).
To prove (ii), we only have to show thatI bO[1]

is surjective since by (i), the func-

tion I bO[1]
induces an injectionO(k̂)/Sl(2, k) →֒ Im k̂∗ ×Z2 U(k̂∗/ k̂∗3).

Let (q, s) ∈ Im k̂∗ × U(k̂∗/ k̂∗3). First, pickλ ∈ k̂∗ such that

[λ] = s̄. (40)

Since [λλ̄] = ss̄ = 1, we knowλλ̄ is a cube ink̂∗ but in fact, sincêk∗/k is a
quadratic extension andλλ̄ ∈ k, this implies that there existsr ∈ k∗ such that

λλ̄ = r3. (41)

Now let
α = − q

2r
x̂+ ŷ

(wherex̂, ŷ ∈ k̂2∗ are the base extensions ofx, y ∈ k2∗) and let

P =
λ

q
α3 − λ̄

q
α3. (42)

This is a binary cubic of the formT + T̄ whereT ∈ T̂ . We are now going to show
thatP ∈ O(k̂) and thatI bO[1]

(P ) = [q, s].
Note first that

Ω̂(α, ᾱ) = Ω̂(− q

2r
x̂+ ŷ,−(

q

2r
)x̂+ ŷ = − q

2r
+ (

q

2r
) = −q

r
,

so Ω̂(α, ᾱ) 6= 0 which meansα andα are not proportional. Henceα3 andα3 are
coprime andP ∈ O(k̂).

Next, we have

ω̂(α3, ᾱ3) = Ω̂(α, ᾱ)3 = −q
3

r3
(43)

and

ω̂(
λ

q
α3,− λ̄

q
α3) = −(

1

q
)2λλ̄ω̂(α3, ᾱ3) = q (44)

using equations (41) and (43). Finally, it follows from (40)that
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[
λ

q
(
λ

q
)−1

]
=
[
λλ̄−1

]
= s̄s−1 = s−1s−1 = s−2 = s. (45)

Hence, putting together equations (36), (42), (44) and (45), we get

I bO[1]
(P ) = [q, s]

and this proves thatI bO[1]
: O(k̂)→ Im k̂∗ ×Z2 U(k̂∗/ k̂∗3) is surjective.

Part (iii) follows from Theorem 3.33 (iii).
QED

Corollary 3.45 LetP, P ′ ∈ O(k̂). Then

Sl(2, k) · P ′ = Sl(2, k) · P ⇐⇒ Sl(2, k̂) · P ′ = Sl(2, k̂) · P.

Proof. Both properties are equivalent toI bO[1]
(P ) = I bO[1]

(P ′) by the above theorem
and Theorem 3.33. QED

Properties of orbit space

The parameter space
Im k̂∗ ×Z2 U(k̂∗/ k̂∗3)

for Sl(2, k) orbits inO(k̂) is very analogous to the parameter space

k̂∗ ×Z2 k
∗/ k∗3

for Sl(2, k) orbits inO[1] that we gave in Theorem 3.33. Its main features can best
be summarized in the diagram

Im k̂∗ ×Z2 U(k̂∗/ k̂∗3)

bsq
vvmmmmmmmmmmmm

t̂

))SSSSSSSSSSSSSS

(Im k̂∗)2

ê 55

U(k̂∗/ k̂∗3)/Z2.

(46)

The map
ŝq : Im k̂∗ ×Z2 U(k̂∗/ k̂∗3)→ (Im k̂∗)2 (47)

given by
ŝq([q, α]) = q2

is the fibration associated to the principalZ2-fibration

Im k̂∗ → (Im k̂∗)2

and the action ofZ2 onU(k̂∗/ k̂∗3) by conjugation. SinceZ2 acts by automorphisms,
the fibreŝq−1(q2) over any pointq2 ∈ (Im k̂∗)2 has a natural group structure
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[q, u1]× [q, u2] = [q, u1u2] (48)

independent of the choice of square rootq of q2. Taking the identity at each point,
we get a canonical section̂e : (Im k̂∗)2 → Im k̂∗ ×Z2 U(k̂∗/ k̂∗3) of (47) given by

ê(q2) = [q, 1] (49)

but, although each fibre is a group isomorphic toU(k̂∗/ k̂∗3), the fibration (47) is
not in general isomorphic to the product

(Im k̂∗)2 × U(k̂∗/ k̂∗3)→ (Im k̂∗)2.

To translate the above features of orbit space into more concrete statements about
binary cubics overk, note that the map̂sq is essentially the quarticQn since for all
P ∈ O(k̂),

ŝq(I bO[1]
(P )) = Qn(P ).

Theorem 3.46 LetM ∈ (Im k̂∗)2, let

OM = {P ∈ S3(k2∗) : Qn(P ) = M}

and letOM/Sl(2, k) be the space ofSl(2, k)-orbits inOM .

(i) The mapI bO[1]
: O(k̂)→ Im k̂∗ ×Z2 U(k̂∗/ k̂∗3) induces a bijection

OM/Sl(2, k)←→ ŝq−1(M)

and, by pullback of(48), a group structure onOM/Sl(2, k).

(ii) As groups,OM/Sl(2, k) ∼= U(k̂∗/ k̂∗3).

(iii) The identity element ofOM/Sl(2, k) is characterised by:

Sl(2, k) · P = 1⇔ P is reducible overk.

Proof. Parts (i) and (ii) follow from the discussion above. To prove(iii), first note that
P is reducible overk iff P is reducible over̂k sinceP is cubic and̂k/k is a quadratic
extension. By Theorem 3.34(iii),P is reducible over̂k iff I bO[1]

(P ) = [q, 1] where

q ∈ k̂ is a square root ofM , and by equation (49), this is the identity element of
OM/Sl(2, k). QED

Corollary 3.47 LetP, P ′ ∈ S3(k2∗) be reducible binary cubics such thatQn(P ) =
Qn(P ′) is nonzero. Then there existsg ∈ Sl(2, k) such thatP ′ = g · P .
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Proof. SupposeQn(P ) = Qn(P ′) = M . If M ∈ k∗2, the result follows from
Theorem 3.34(iii). IfM ∈ k∗ is not a square, one can find a quadratic extensionk̂ of
k such thatM ∈ (Im k̂∗)2. The result then follows from Theorem 3.46 (iii). QED

To finish this section we briefly discuss the mapt̂ : Im k̂∗ ×Z2 U(k̂∗/ k̂∗3) →
U(k̂∗/ k̂∗3)/Z2 in diagram (46) given by

t̂([q, α]) = [α].

This a fibration with fibreIm k̂∗ outside the identity coset[1] but

t̂−1([1]) = ê(k∗2)

is a ‘singular fibre’. There is ak∗-action:

λ · [q, α] = [λq, α] (50)

which maps fibres of̂sq to fibres ofŝq:

ŝq([q′, α′]) = ŝq([q, α])⇒ ŝq(λ · [q′, α′]) = ŝq(λ · [q, α]),

and whose orbits are exactly the fibres oft̂:

t̂([q′, α′]) = t([q, α])⇔ ∃λ ∈ k∗ s.t.[q′, α′] = λ · [q, α].

Isotropy for this action is given by:Isotk∗([q, α]) =

{
1 if α 6= 1
{±1} if α = 1.

It would be interesting to interpret these features of the orbit space in terms of
the original binary cubics.

4 Parameter spaces for Gl(2, k)-orbits

We have seen that the Sl(2, k)-orbits in

O[1] = {P ∈ S3(k2∗) : Qn(P ) ∈ k∗2}

are parametrised by
k∗ ×Z2 k

∗/k∗3

and that ifk̂ is a quadratic extension ofk, the Sl(2, k)-orbits in

O(k̂) = {P ∈ S3(k2∗) : Qn(P ) ∈ (Im k̂∗)
2}

are parametrised by
Im k̂∗ ×Z2 U(k̂∗/k̂∗3).

The groupGL(2, k) also acts on binary cubics and since
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Qn(g · P ) = (det g)−6Qn(P ) ∀g ∈ Gl(2, k), ∀P ∈ S3(k2∗),

the spacesO[1] andO(k̂) are stable under Gl(2, k).
In general, if Gl(2, k) acts on a spaceX there is a map

X/Sl(2, k)→ X/Gl(2, k)

from the set of Sl(2, k)-orbits onto the set of G(2, k)-orbits. The fibres of this map
are the orbits of thek∗-action onX/Sl(2, k) given by

λ ∗ [x] = [Λ · x] (51)

whereΛ is any element of Gl(2, k) such thatdetΛ = λ. Thus to get parameter
spaces forO[1]/Gl(2, k) andO(k̂)/Gl(2, k) we need just to calculate thek∗-actions

onk∗ ×Z2 k
∗/k∗3 andIm k̂∗ ×Z2 U(k̂∗/k̂∗3) corresponding to (51).

Lemma 4.1 (i) Let k∗ act onk∗ ×Z2 k
∗/k∗3 by

λ · [ξ, α] = [λξ, α]

and letIO[1]
: O[1] → k∗ ×Z2 k

∗/k∗3 be defined by(23). Then

IO[1]
(g · P ) = (det g)−3 · IO[1]

(P ) ∀P ∈ O[1], ∀g ∈ Gl(2, k).

(ii) Let k∗ act onIm k̂∗ ×Z2 U(k̂∗/k̂∗3) by

λ · [ξ, α] = [λξ, α]

and letI bO[1]
: O(k̂)→ Im k̂∗ ×Z2 U(k̂∗/k̂∗3) be defined by(36). Then

I bO[1]
(g · P ) = (det g)−3 · IO[1]

(P ) ∀P ∈ O(k̂), ∀g ∈ Gl(2, k).

Proof. To prove (i), since for anyP ∈ O[1] there existsh ∈ Gl(2, k) anda, b ∈ k∗
such that

h · P = ax3 + by3,

it is sufficient to prove that

IO[1]
(g · (ax3 +by3)) = (det g)−3 ·IO[1]

(ax3 +by3) ∀a, b ∈ k∗, ∀g ∈ Gl(2, k).

Consider

g′ =

(
det g 0

0 1

)
.

Thendet g′ = det g, g′ · x = 1
det gx andg′ · y = y. Henceg′g−1 ∈ Sl(2, k),

IO[1]
(g · (ax3 + by3)) = IO[1]

(g′ · (ax3 + by3))

and
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IO[1]
(g′ · (ax3 + by3)) = IO[1]

(
a

(det g)3
x3 + by3)) = [

ab

(det g)3
, [ab−1]].

The result follows sinceIO[1]
(ax3 + by3) = [ab, [ab−1]].

Part (ii) follows from (i) applied tôk. QED

Corollary 4.2 (i) If P ∈ O[1] andλ ∈ k∗ then

IO[1]
(λ ∗ [P ]) =

1

λ3
· IO[1]

([P ]).

(ii) If P ∈ O(k̂) andλ ∈ k∗ then

I bO[1]
(λ ∗ [P ]) =

1

λ3
· I bO[1]

([P ]).

Proof. Immediate from the lemma. QED

From this we get thek∗-actions on the parameter spacesk∗ ×Z2 k
∗/k∗3 and

Im k̂∗ ×Z2 U(k̂∗/k̂∗3) corresponding to (51) :λ ∈ k∗ acts by multiplication byλ−3

on the first factor.
Hence, by the discussion above, the mapsIO[1]

: O[1] → k∗ ×Z2 k
∗/k∗3 and

I bO[1]
: O(k̂)→ Im k̂∗ ×Z2 U(k̂∗/k̂∗3) induce bijections

O[1]/Gl(2, k)←→ (k∗ ×Z2 k
∗/k∗3)/k∗3 = k∗/k∗3 × (k∗/k∗3)/Z2,

O(k̂)/Gl(2, k)←→ (Im k̂∗ ×Z2 U(k̂∗/k̂∗3))/k∗3 = (Im k̂∗)/k∗3 × U(k̂∗/k̂∗3)/Z2.

To summarize, we have proved the

Theorem 4.3 (a) Defineπ : k∗ ×Z2 k
∗/k∗3 → k∗/k∗3 × (k∗/k∗3)/Z2 by

π([ξ, α]) = ([ξ], [α]) andJO[1]
: O[1] → k∗/k∗3× (k∗/k∗3)/Z2 byJO[1]

= π◦IO[1]
.

(i) Let P, P ′ ∈ O[1] Then

Gl(2, k) · P = Gl(2, k) · P ′ ⇔ JO[1]
(P ) = JO[1]

(P ′).

(ii) The mapJO[1]
induces a bijection

O[1]/Gl(2, k)←→ k∗/k∗3 × (k∗/k∗3)/Z2.

(b) Definêπ : Im k̂∗×Z2U(k̂∗/k̂∗3)→ (Im k̂∗)/k∗3×U(k̂∗/k̂∗3)/Z2 byπ̂([ξ, α]) =

([ξ], [α]) andJ bO[1]
: O(k̂)→ k∗/k∗3 × (k∗/k∗3)/Z2 byJ bO[1]

= π̂ ◦ I bO[1]
.

(i) Let P, P ′ ∈ O(k̂). Then

Gl(2, k) · P = Gl(2, k) · P ′ ⇔ J bO[1]
(P ) = J bO[1]

(P ′).

(ii) The mapJ bO[1]
induces a bijection

O(k̂)/Gl(2, k)←→ (Im k̂∗)/k∗3 × U(k̂∗/k̂∗3)/Z2.
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Orbits spaces whenk is a finite field of characteristic not2 or 3

Let k be a finite field withq elements, not of characteristic2 or 3. The following
facts are well-known:

• k∗/k∗2 ∼= Z2 so up to isomorphsm, there is only one quadratic extension ofk
andk∗2 has1

2 (q − 1) elements;
• if q = 1 mod3, k∗/k∗3 ∼= Z/3Z;
• if q = 2 mod3, k∗ = k∗3;
• if q = 1 mod3 andk̂/k is a quadratic extension,U(k̂∗/k̂∗3) ∼= 1;
• if q = 2 mod3 andk̂/k is a quadratic extension,U(k̂∗/k̂∗3) ∼= Z/3Z.

These facts together with Theorem (3.33) and Theorem 4.3 immediately give the

Proposition 4.4 Let k be a finite field withq elements, not of characteristic2 or 3
and letk̂ be a quadratic extension. Set

O[1] = {P ∈ S3(k2∗) : Qn(P ) ∈ k∗2},
O(k̂) = {P ∈ S3(k2∗) : Qn(P ) ∈ (Im k̂∗)

2}.

(a) If q = 1 mod 3,O[1] is the union of32 (q − 1) Sl(2, k)-orbits andO(k̂) is the
union of 1

2 (q − 1) Sl(2, k)-orbits.

(b) If q = 1 mod 3,O[1] is the union of6 Gl(2, k)-orbits andO(k̂) is the union
of 3 Gl(2, k)-orbits.

(c) If q = 2 mod 3,O[1] is the union of12 (q − 1) Sl(2, k)-orbits andO(k̂) is the
union of 3

2 (q − 1) Sl(2, k)-orbits.

(d) If q = 2 mod 3,O[1] is a Gl(2, k)-orbit andO(k̂) is the union of2 Gl(2, k)-
orbits.

Proof. As examples, let us count the number of Sl(2, k)-orbits inO[1] whenq = 1

mod 3 and the number of Gl(2, k)-orbits inO(k̂) whenq = 2 mod 3.
In the first case, by Theorem (3.33), the parameter space isk∗×Z2 k

∗/k∗3 which,
being a fibre bundle overk∗2 with fibrek∗/k∗3, has1

2 (q−1)×3 = 3
2 (q−1) elements.

In the second case, by Theorem 4.3 , the parameter space is(Im k̂∗)/k∗3 ×
U(k̂∗/k̂∗3)/Z2 and this has1 × 2 = 2 elements sinceZ2 acts onU(k̂∗/k̂∗3) by
inversion. QED
According to [10] (Proposition 5.6) at least part of the following corollary can be

found in Dickson [7].

Corollary 4.5 Letk be a finite field withq elements, not of characteristic2 or 3. The
number of Sl(2, k)-orbits of binary cubics with nonzero discriminant is2(q−1). The
number of Gl(2, k)-orbits of binary cubics with nonzero discriminant is9 if q = 1
mod 3 and3 if q = 2 mod 3.

Proof. A binary cubic of nonzero discriminant is either inO[1] or in O(k̂) since
up to isomorphism,k has only one quadratic extension. Hence, the total number of
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Sl(2, k)-orbits with nonzero discriminant is the number of Sl(2, k)-orbits inO[1] plus

the number of Sl(2, k)-orbits inO(k̂). The same is true for Gl(2, k)-orbits and the
result follows from Proposition 4.4. QED

5 A symplectic Eisenstein identity

The following identity is a symplectic generalisation of the classical Eisenstein iden-
tity which, as we will see, is obtained from it in the special case whenQ is the cube
of a linear form. There is an analogous identity for the symplectic module associated
to any Heisenberg graded Lie algebra ([15]).

Theorem 5.1 LetP,Q ∈ S3(k2∗). Then

ω(Ψ(P ), Q)2 − 9Qn(P )ω(P,Q)2 =

−9

2
ω(µ(P )⊗3 ·Q,Q)− 9

2
Qn(P )ω(µ(P ) ·Q,Q) (52)

whereµ(P )⊗3 denotes the unique endomorphism ofS3(k2∗) satisfyingµ(P )⊗3 ·
(α3) = (µ(P ) · α)3 for all α ∈ k2∗.

Proof. If µ(P ) = 0, thenΨ(P ) = 0, Qn(P ) = 0 and all terms in the identity are
zero.

If µ(P ) is nilpotent nonzero, thenQn(P ) = 0 and and there existsg ∈ Sl(2, k)
such thatg · P = x2y. Since the identity (52) isSl(2, k)-invariant, we can suppose
without loss of generality thatP = x2y. Then, by calculation,

Ψ(P ) = −2

9
x3, µ(P ) =

2

9

(
0 0
1 0

)

and soµ(P ) · x = 0 andµ(P ) · y = − 2
9x. Let

Q = px3 + 3rx2y + 3sxy2 + ty3.

The LHS of (52) is

ω(−2

9
x3, Q)2 = (

2

9
)2t2.

and the RHS of (52) is

−9

2
ω(µ(P )⊗3 ·Q,Q) = −9

2
ω(−(

2

9
)3tx3, Q) = (

2

9
)2t2.

Thus (52) holds ifµ(P ) is nilpotent nonzero.
To complete the proof of the proposition it remains to prove (52) if Qn(P ) 6= 0.

As the identity is independent of the field we may suppose thatQn(P ) is a square
in k∗ and hence thatP ∈ O[1]. Since the identity (52) isSl(2, k)-invariant, we can
further suppose without loss of generality that
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P = ax3 + dy3.

Then

Qn(P ) = a2d2, Ψ(P ) = 3ad(−ax3 + dy3), µ(P ) =

(
ad 0
0 −ad

)

and soµ(P ) · x = −adx andµ(P ) · y = ady. Let

Q = px3 + 3rx2y + 3sxy2 + ty3.

The LHS of (52) is

ω(Ψ(P )2, Q)− 9Qn(P )ω(P,Q)2

= 9a2d2
(
ω(−ax3 + dy3, Q)2 − ω(ax3 + dy3, Q)2

)

= −36a3d3ω(x3, Q)ω(y3, Q)

= 36a3d3pt. (53)

On the other hand, the first term of the RHS of (52) is

−9

2
ω(µ(P )⊗3 ·Q,Q) = −9

2
a3d3ω(−px3 + 3rx2y − 3sxy2 + ty3, Q)

= −9

2
a3d3(−2pt− 6rs)

= 9a3d3(pt+ 3rs) (54)

and the second term of the RHS of (52) is

−9

2
Qn(P )ω(µ(P ) ·Q,Q) = −9

2
a3d3ω(−3px3 − 3rx2y + 3sxy2 + 3ty3, Q)

= −9

2
a3d3(−6pt+ 6rs)

= 27a3d3(pt− rs). (55)

The result follows from equations (53), (54) and (55). QED

To obtain the classical Eisenstein identity from this result, recall that one can use
the symplectic formΩ onk2∗ to define aSl(2, k)-equivariant isomorphism̃: k2 →
k2∗: if v ∈ k2, we letṽ ∈ k2∗ be the unique linear form such that

φ(v) = Ω(φ, ṽ) ∀φ ∈ k2∗.

It then follows that

P (v) = ω(P, ṽ3) ∀P ∈ S3(k2∗), ∀v ∈ k2, (56)

so that the operation of evaluating a binary cubic at a point of k2 can be expressed
in terms of the symplectic formω on S3(k2∗). One can also pullbackΩ to get an
Sl(2, k)-invariant symplectic formΩk2 onk2:

Ωk2(v, w) = Ω(ṽ, w̃) ∀v, w ∈ k2.
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Corollary 5.2 (Classical Eisenstein identity) LetP ∈ S3(k2∗) and letv ∈ k2.

Ψ(P )(v)2 − 9Qn(P )P (v)2 = − 9

2
Ωk2(µ(P ) · v, v)3.

Proof. SettingQ = ṽ3 in (52) and using (56), we get

Ψ(P )(v)2 − 9Qn(P )P (v)2 =

−9

2
ω(µ(P )⊗3 · ṽ3, ṽ3)− 9

2
Qn(P )ω(µ(P ) · ṽ3, ṽ3). (57)

The result follows from this since

ω(µ(P ) · ṽ3, ṽ3) = 3ω((µ(P ) · ṽ)ṽ2, ṽ3) = 0

( (µ(P ) · ṽ)ṽ2 has at least a double root atv) and

ω(µ(P )⊗3 · ṽ3, ṽ3) = Ω(µ(P ) · ṽ, ṽ)3 = Ωk2 (µ(P ) · v, v)3.

QED
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