Marcus J Slupinski 
email: slupins@math.u-strasbg.fr
  
Robert J Stanton ⋆⋆ 
  
  
  
The special symplectic structure of binary cubics

Let k be a field of characteristic not 2 or 3. Let V be the k-space of binary cubic polynomials. The natural symplectic structure on k 2 promotes to a symplectic structure ω on V and from the natural symplectic action of Sl(2, k) one obtains the symplectic module (V, ω). We give a complete analysis of this symplectic module from the point of view of the associated moment map, its norm square Q (essentially the classical discriminant) and the symplectic gradient of Q. Among the results are a symplectic derivation of the Cardano-Tartaglia formulas for the roots of a cubic, detailed parameters for all Sl(2, k) and Gl(2, k)-orbits, in particular identifying a group structure on the set of Sl(2, k)-orbits of fixed nonzero discriminant, and a purely symplectic generalization of the classical Eisenstein syzygy for the covariants of a binary cubic. Such fine symplectic analysis is due to the special symplectic nature inherited from the ambient exceptional Lie algebra G 2 .

Introduction

Binary cubic polynomials have been studied since the nineteenth century, being the natural setting for a possible extension of the rich theory of binary quadratic forms. An historical summary of progress on this subject can be found in [START_REF] Dickson | History of the Theory of Numbers[END_REF], especially concerning results related to integral coefficients. While for a fixed binary cubic interesting questions remain open, e.g. its range in the integers, the number of solutions, etc., it is the structure of the space of all binary cubics that is the topic of this paper.

The space of binary cubics, we will take coefficients in a field, is an example of a prehomogeneous vector space under Gl(2, k), and from this point of view has been thoroughly investigated. Beginning with the fundamental paper by Shintani [START_REF] Shintani | On Dirichlet series whose coefficients are class numbers of integral binary cubic forms[END_REF], recast adelically in [START_REF] Wright | The adelic zeta function associated with the space of binary cubic forms, I: global theory[END_REF], an analysis of this pv sufficient to obtain the properties of the ⋆ MJS was supported in part by the Math Research Institute, OSU ⋆⋆ RJS was supported in part by NSF Grants DMS-0301133 and DMS-0701198 Sato-Shintani zeta function was done. Subsequently several descriptions of the orbit structure were obtained, in particular relating them to extensions of the coefficient field. A feature of this space, and some other prehomogeneous spaces, apparently never exploited is the existence of a symplectic structure which is preserved by the natural action of Sl (2, k).

The purpose of this paper is to expose the rich structure of the space of binary cubics when viewed as a symplectic module using the standard tools of equivariant symplectic geometry, viz. the moment map, its norm square, and its symplectic gradient i.e. the natural Hamiltonian vector field. The advantages are several: somewhat surprisingly, the techniques are universally applicable, with the only hypothesis that the fields not be of characteristic 2 or 3; there are explicit symplectic parameters for each orbit type (including the singular ones not studied previously) that are easily computed for any specific field; the computations are natural; we obtain new results for the space of binary cubics e.g. a group structure on orbits; we obtain ancient results for cubics, namely a symplectic derivation of the Cardano-Tartaglia formula for a root.

This paper arose as a test case to see the extent that we might push a more general project [START_REF] Slupinski | Symplectic geometry of Heisenberg graded Lie algebras[END_REF] on Heisenberg graded Lie algebras. A symplectic module can be associated to every such graded Lie algebra and in the case of the split Lie algebra G 2 , this symplectic module turns out to be isomorphic to the space of binary cubics with the Sl(2, k) action mentioned above. Although our approach to binary cubics is inspired by the general situation, in order to give an accessible and elementary presentation, we have made this paper essentially self-contained with only one or two results quoted without proof from [START_REF] Slupinski | Symplectic geometry of Heisenberg graded Lie algebras[END_REF].

The symplectic technology consists of the following. The moment map, µ, maps the space of binary cubics S 3 (k 2 * ) to the Lie algebra sl(2, k) of Sl (2, k). By means of the Killing form on sl(2, k) one obtains a scalar valued function Q on S 3 (k 2 * ), the norm square of µ. Using the symplectic structure one constructs Ψ , the symplectic gradient of Q, as the remaining piece of symplectic machinery. This symplectic module appears to be "special" in several ways, e.g. a consequence of our analysis is that all the Sl(2, k) orbits in S 3 (k 2 * ) are co-isotropic (see [START_REF] Slupinski | Symplectic geometry of Heisenberg graded Lie algebras[END_REF] for the general case). Let us recall that over the real numbers it has been shown that there is also a very strong link between special symplectic connections (see [START_REF] Schwachh Öfer | Special symplectic connections and Poisson geometry[END_REF]) and Heisenberg graded Lie algebras (called 2-graded in [START_REF] Schwachh Öfer | Special symplectic connections and Poisson geometry[END_REF]).

Here is a more detailed overview of the paper. We will analyze each of the symplectic objects µ, Q, Ψ and determine for each of them their image, their fibre, the Sl(2, k) orbits in each fibre, and explicit parameters and isotropy for each orbit type. This is all done with symplectic methods, so that furthermore we identify the symplectic geometric meaning of these fibres. For example, we show that the null space, Z, of µ is the set of multiples of cubes of linear forms. As Sl(2, k) preserves the null space, we obtain a decomposition into a collection of isomorphic Lagrangian orbits which we show are parametrized by k * /k * 3 . Binary cubics whose moment lies in the nonzero nilpotent cone of sl(2, k) turn out to be those which contain a factor that is the square of a linear form. For these there is only one orbit, whose image under µ we characterize. The pullback by means of µ of the natural symplectic structure on the image and the restriction of the symplectic form on S 3 (k 2 * ) essentially coincide. The generic case is when the image of the moment map lies in the semisimple orbits of sl (2, k). In this case the Sl(2, k) orbits are different from the Gl(2, k) orbits, in contrast to the earlier cases. Here each of the values of Q in k * determine a collection of Sl(2, k) orbits for which we give symplectic parameters using a 'sum of cubes' theorem. As a consequence we show that the orbits for a fixed nonzero value of Q form a group (over Z see [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF]) which we explicitly identify. Interestingly, a binary cubic is in the orbit corresponding to the identity of this group if and only if it is reducible. The set of binary cubics corresponding to a fixed nonzero value of Q is not stable under Gl (2, k). However the set of binary cubics for which the value of Q belongs to a fixed nonzero square class of k is stable under Gl(2, k) and we obtain an explicit parametrisation of all Gl(2, k) orbits on this set.

If the field of coefficients is specialized to say C then several of the results herein are known. For example, that the zero set of Q is the tangent variety to Z, or that the generic orbit is the secant variety of Z can be found in the complex algebraic geometric literature. For some other fields other results are in the literature. However, the use of symplectic methods is new to all these cases and gives a unifying approach that seems to make transparent many classic results. For example, a careful analysis of µ and Ψ in the generic case leads to a proof of the Cardano-Tartaglia formula for a root of a cubic. As another application we conclude the paper with a symplectic generalization of the classical Eisenstein syzygy for the covariants (compare to [START_REF] Mordell | Diophantine equations[END_REF], [START_REF] Hoffman | Arithmetic of binary cubic forms[END_REF]) of a binary cubic. This is interesting because there is an analogue of this form of the Eisenstein syzygy for the symplectic module associated to any Heisenberg graded Lie algebra ( [START_REF] Slupinski | Symplectic geometry of Heisenberg graded Lie algebras[END_REF]). Finally, we remark that the symplectic methodology used in this paper could be used to understand binary cubics over the integers or more general rings.

We are very pleased to acknowledge the support of our respective institutions that made possible extended visits. To the gracious faculty of the Université Louis Pasteur goes a sincere merci beaucoup from RJS. In addition, RJS wants to acknowledge the support of Max Planck Institut, Bonn, for an extended stay during which some of this research was done.

Binary cubics as a symplectic space

Let k be a field such that char(k) = 2, 3. The vector space k 2 * has a symplectic structure Ω(ax + by, a

′ x + b ′ y) = ab ′ -ba ′ .
Functorially one obtains a symplectic structure on the set of binary cubics

S 3 (k 2 * ) = {ax 3 + 3bx 2 y + 3cxy 2 + dy 3 : a, b, c, d ∈ k}.
Explicitly, if P = ax 3 +3bx 2 y+3cxy 2 +dy 3 and

P ′ = a ′ x 3 +3b ′ x 2 y+3c ′ xy 2 +d ′ y 3 , ω(P, P ′ ) = ad ′ -da ′ -3bc ′ + 3cb ′ . (1) 
In particular, we have

ω(P, (ex + f y) 3 ) = P (f, -e). (2) 
Hence for ex + f y = 0,

(ex + f y) | P ⇐⇒ ω(P, (ex + f y) 3 ) = 0. (3) 
This indicates that one can use the symplectic form ω to study purely algebraic properties of the space of binary cubics. More generally, the interplay of symplectic methods and the algebra of binary cubics will be the primary theme of this paper. The group

Sl(2, k) = { α β γ δ : αδ -βγ = 1}
acts on k 2 * via the transpose inverse:

α β γ δ • x = δx -βy, α β γ δ • y = -γx + αy, (4) 
and this action identifies Sl(2, k) with the group of transformations of k 2 * that preserve the symplectic form Ω, i.e. Sp(k 2 * , Ω). It follows that the functorial action of Sl(2, k) on S 3 (k 2 * ) preserves the symplectic form ω. There is no kernel of this action thus Sl(2, k) ֒→ Sp(S 3 (k 2 * ), ω).

The Lie algebra sl(2, k) acts on k 2 * via the negative transpose:

α β γ -α • x = -αx -βy, α β γ -α • y = -γx + αy, (5) 
which in terms of differential operators acting on polynomial functions on k 2 corresponds to the action

α β γ -α • f = α(-x∂ x f + y∂ y f ) -βy∂ x f -γx∂ y f. (6) 
In particular, this gives the following action of sl(2, k) on cubics:

x 3 → -3αx 3 -3βx 2 y x 2 y → -γx 3 -αx 2 y -2βxy 2 xy 2 → -2γx 2 y + αxy 2 -βy 3 y 3 → -3γxy 2 + 3αy 3 .

Symplectic covariants

Among the basic tools of equivariant symplectic geometry are the moment map (µ), its norm square (Q) and the symplectic gradient of Q (Ψ ). The symplectic structure on S 3 (k 2 * ) is not generic as it is consistent with one inherited from an ambient Heisenberg graded Lie algebra, hence the description "special". In [START_REF] Slupinski | Symplectic geometry of Heisenberg graded Lie algebras[END_REF] in the setting of Heisenberg graded Lie algebras we derive the fundamental properties of the basic symplectic objects as well as give explanations for normalizing constants, and identify characteristic features of these special symplectic structures. For the purposes of this paper the explicit formulae will suffice.

Definition 2.1 (i) The moment map µ : S 3 (k 2 * ) → sl(2, k) here is µ(ax 3 + 3bx 2 y + 3cxy 2 + dy 3 ) = ad -bc 2(bd -c 2 ) 2(b 2 -ac) -(ad -bc) . ( 7 
) (ii) The cubic covariant Ψ : S 3 (k 2 * ) → S 3 (k 2 *
) is given by

Ψ (P ) = µ(P ) • P = (-3aα -3bγ)x 3 + (-3aβ -3bα -6cγ)x 2 y + (-6bβ + 3cα -3dγ)xy 2 + (-3cβ + 3dα)y 3 ( 8 
)
where P = ax 3 + 3bx 2 y + 3cxy 2 + dy 3 and

α β γ -α = ad -bc 2(bd -c 2 ) 2(b 2 -ac) -(ad -bc) . (iii) The normalised quartic invariant Q n : S 3 (k 2 * ) → k is Q n (P ) = -detµ(P ) = (a 2 d 2 -3b 2 c 2 -6abcd + 4b 3 d + 4ac 3 ). (9) 
Notice that Q n (P ) is a multiple of the classic discriminant of the polynomial P .

Remark 2.2

The symmetric role of the coordinates x and y is implemented by

J = 0 -1 1 0 which satisfies J • x = y, J • y = -x and J • (ax 3 + 3bx 2 y + 3cxy 2 + dy 3 ) = -dx 3 + 3cx 2 y -3bxy 2 + ay 3 .
From [START_REF] Dickson | On Invariants and The Theory of Numbers, The Madison Colloquim[END_REF] it follows that µ(J • P ) is the cofactor matrix of µ(P ).

Remark 2.3

The set of symplectic covariants ω, µ, Ψ, Q, Q n defined above is not the only choice possible for the purposes of this article. One could just as well use

ω λ = λω, µ λ = λµ, Ψ λ = λΨ, Q λ = λ 2 Q where λ ∈ k * .
The moment map is characterised by the identity

T r(µ(P )ξ) = - 1 3 ω(ξ • P, P ) ∀P ∈ S 3 (k 2 * ), ∀ξ ∈ sl(2, k), (10) 
which specialized to ξ = µ(P ) gives a characterization of Ψ Q(P ) = 8ω(P, Ψ (P )).

From [START_REF] Hoffman | Arithmetic of binary cubic forms[END_REF] one gets that µ is Sl(2, k)-equivariant:

µ(g • P ) = gµ(P )g -1 ∀P ∈ S 3 (k 2 * ), ∀g ∈ Sl(2, k),
and sl(2, k)-equivariant:

dµ P (ξ • P ) = [ξ, µ(P )] ∀P ∈ S 3 (k 2 * ), ∀ξ ∈ sl(2, k).
Here, dµ

P (Q) = 2B µ (P, Q) where B µ : S 3 (k 2 * ) × S 3 (k 2 * ) → sl(2, k)
is the unique symmetric bilinear map such that µ(P ) = B µ (P, P ).

From the Sl(2, k) and sl(2, k) equivariance of µ one obtains the Sl(2, k) and sl(2, k) equivariance of Ψ, Q and Q n . Several useful relations among µ, Ψ and Q are derived in [START_REF] Slupinski | Symplectic geometry of Heisenberg graded Lie algebras[END_REF]. The following involves a relation between vanishing sets of symplectic covariants.

Proposition 2.4

Let P be a binary cubic. Then

µ(P ) = 0 ⇒ Ψ (P ) = 0 ⇒ Q(P ) = 0.
Proof. Since Ψ (P ) = µ(P ) • P , it is obvious that µ(P ) = 0 ⇒ Ψ (P ) = 0. Suppose that Ψ (P ) = 0. Then by equation [START_REF] Hoffman | Arithmetic of binary cubic forms[END_REF] T r(µ(P ) 2 ) = -1 3 ω(Ψ (P ), P ) = 0.

But µ(P ) 2 + detµ(P )Id = 0 by the Cayley-Hamilton theorem, so detµ(P ) = 0 and hence Q(P ) = 0. QED From the invariant theory point of view a covariant is an Sl(2, k) invariant in S * (S 3 (k 2 * )) ⊗ S * (k 2 * ). Concerning completeness of the symplectic invariants one has the classic result of Eisenstein [START_REF] Eisenstein | Untersuchungen über die cubischen Formen mit zwei Variabeln[END_REF]. Proposition 2.5 (i) µ, Ψ , Q and the identity generate the Sl (2, k) 

invariants in S 3 (k 2 * ) ⊗ S * (k 2 * ).
(ii) The only relation among them viewed as functions on k 2 is

Ψ (P )(•) 2 -9Q n (P )P (•) 2 = - 9 2 Ω k 2 (µ(P )•, •) 3 ,
here Ω is extended by duality to

k 2 × k 2 .
Proof. We shall give a symplectic proof of the relation (ii) in §3. QED Remark 2.6 There are two interesting results related by a simple scaling to the Eisenstein result. Fix P ∈ S 3 (k 2 * ) with Q n (P ) = 0. One can associate to P a type of Clifford algebra, Clif f P , and in [START_REF] Haile | On the Clifford algebra of a binary cubic form[END_REF] it is shown that the center of Clif f P is the coordinate algebra of the genus one curve X 2 -27Q n (P ) = Z 3 . The other result arises from the observation that we could work over, say, Z instead of k. Then in [START_REF] Mordell | The diophantine equation y 2 -k = x 3[END_REF] Mordell showed that all integral solutions (X, Y, Z) to X 2 + kY 2 = Z 3 with (X, Z) = 1 are obtained from some P ∈ S 3 (Q 2 * ) with Q n (P ) = -4k and evaluating (ii) at a lattice point in Q 2 . We will not use these results in this paper but we will give a symplectic proof at another time.

Remark 2.7

The Proposition gives a complete description of binary cubics from the point of view of Sl(2, k) invariant theory. From the symplectic theory point of view, in [START_REF] Slupinski | Symplectic geometry of Heisenberg graded Lie algebras[END_REF] we give characterizations of Sl (2, k) as the subgroup of Sp(S 3 (k 2 * ), ω) that preserves Q(•) and as the subgroup of Sp(S 3 (k 2 * ), ω) that commutes with Ψ .

The image of the moment map

As µ : S 3 (k 

sl(2, k) ∆ = {X ∈ sl(2, k) \ {0} : detX = ∆}, k * ∆ = {x ∈ k * : ∃a, b ∈ k such that x = a 2 + b 2 ∆}.
Then the orbits of Sl(2, k) acting on sl(2, k) ∆ are in bijection with k * /k * ∆ under the map ν

∆ : sl(2, k) ∆ → k * /k * ∆ defined by ν ∆ (X) = [Ω(v, X • v)] ( 12 
)
where v is any element in k 2 * which is not an eigenvector of X.

Proof. We make some preliminary remarks before proving the result. First we observe that the definition of ν ∆ (X) is independent of choice of v. Indeed, given v which is not an eigenvector of X, then {v, X • v} is a basis of k 2 * . Given w any other vector which is not an eigenvector then w = av + bX • v, and using Cayley-Hamilton we obtain that [Ω(v,

X • v)] = [Ω(w, X • w)]. Next, note that if X ∈ sl(2, k) there exists g ∈ Sl(2, k) and β, γ ∈ k such that gXg -1 = 0 β γ 0 .
So to prove the result, we need only consider matrices in sl(2, k) ∆ of the form X = 0 β γ 0 with either β or γ nonzero. Since

0 1 -1 0 0 β γ 0 0 1 -1 0 -1 = 0 -γ -β 0 ,
we can further suppose that γ = 0. Then x is not an eigenvector of X and

ν detX (X) = [Ω(x, X • x)] = [Ω(x, γx)] = [γ]. Suppose 0 β γ 0 and 0 β ′ γ ′ 0 in sl(2, k) ∆ have the same value of ν ∆ , i.e., βγ = -∆ = β ′ γ ′ and [γ] = [γ ′ ].
Then there exist p, q in k such that γ ′ = (p 2 + q 2 detX)γ. Take as Ansatz

a b c d = p -q ∆ γ ′ γq p γ γ ′ . Then det a b c d = p 2 γ γ ′ + q 2 ∆ γ γ ′ = γ γ ′ (p 2 + q 2 ∆) = 1. A routine computation shows that a b c d 0 β ′ γ ′ 0 d -b -c a = 0 β γ 0 ,
and so ν ∆ separates orbits.

To show that given α = 0, there is an X with det X = ∆ and ν ∆ (X) = [α], take 

X = 0 -∆ α α 0 . Then det X = ∆ and ν ∆ (X) = [α].
X ←→ q X (v) = Ω(v, X • v).
By transport of structure, the Proposition then puts a natural group structure on the set of orbits of Sl (2, k) acting on binary quadratic forms of fixed discriminant. One can check that this is Gauss composition. In Theorems 3.34 and 3.46 we will put a natural group structure on orbits of binary cubics with fixed nonzero discriminant.

The image of the moment map can be characterized as follows.

Theorem 2.11 Let X ∈ sl(2, k) \ {0}. Then X ∈ Im µ ⇐⇒ ν detX (X) = [2].
Proof. As before, we can suppose without loss of generality that X = 0 β γ 0 with say β nonzero.

(⇒) : If X = µ(P ) and P = ax 3 + 3bx 2 y + 3cxy 2 + dy 3 , we have

ad -bc = 0 2(bd -c 2 ) = β 2(b 2 -ac) = γ.
Hence bβ = dγ and

-β = 2(c 2 -d 2 γ β ) = 2(c 2 + ( d β ) 2 (-βγ)) = 2(c 2 + ( d β ) 2 detX) so that ν detX (X) = [-β] = [2]. (⇐): Since ν detX (X) = [-β]
and by hypothesis ν detX (X) = [START_REF] Bourbaki | Élements de mathématique[END_REF], there exist p, q in k such that -β = 2(p 2 + q 2 detX) = 2(p 2q 2 βγ).

If we set c = p, a = γ β p, d = βq, b = γq and P = ax 3 + 3bx 2 y + 3cxy 2 + dy 3 ,
it is easily checked that

µ(P ) = ad -bc 2(bd -c 2 ) 2(b 2 -ac) -(ad -bc) = 0 β γ 0 = X. QED Remark 2.
12 This result is a weak form of the Eisenstein identity. Indeed, if one cubes both sides of ν detX (X) = [START_REF] Bourbaki | Élements de mathématique[END_REF] and uses Gauss composition, one obtains the Eisenstein identity evaluated at a particular vector.

Remark 2. [START_REF] Nakagawa | On the relations among the class numbers of binary cubic forms[END_REF] Varying the symplectic structure to ω λ , λ ∈ k * one can sweep out the other orbits with a moment map.

Corollary 2.14 Let P, P ′ be nonzero binary cubics such that Q n (P ) = Q n (P ′ ) and such that µ(P ) and µ(P ′ ) are nonzero. Then there exists g ∈ Sl(2, k) such that g • µ(P ) = µ(P ′ ).

Proof. Since Q n (P ) = Q n (P ′ ), we have det µ(P ) = det µ(P ′ ). By the previous theorem,

ν det µ(P ) (µ(P )) = ν det µ(P ′ ) (µ(P ′ ))
and the result follows from Proposition 2.8. QED

The image and fibres of

Ψ Proposition 2.15 P ∈ S 3 (k 2 * ) with Q n (P ) = 0 is in the image of Ψ if and only if 9Q n (P ) is a cube in k * .
Proof. (⇒) : Suppose that P = Ψ (B). The key to the argument is a result from [START_REF] Slupinski | Symplectic geometry of Heisenberg graded Lie algebras[END_REF] that is special to Heisenberg graded Lie algebras, namely a formula for Ψ 2 . From this result one obtains

Ψ 2 (B) = -(9Q n (B)) 2 B.
On the other hand we have

Ψ 2 (B) = Ψ (P ). Hence B = -(9Q n (B)) -2 Ψ (P ).
Applying Ψ again and using that Ψ is cubic we obtain

P = Ψ (B) = -η 3 (9Q n (P )) 2 P where η = -(9Q n (B)) -2 . So (-η) 3 = (9Q n (P )) -2 . Now (-η(9Q n (B)) 2 ) 3 = 1 so (9Q n (B)) 6 = (-η) -3 = (9Q n (P )) 2 . Thus we obtain 9Q n (P ) = (±9Q n (B)) 3 . (⇐) : Suppose 9Q n (P ) = λ 3 . Set B = -1 λ 2 Ψ (P ).
Then as above, Ψ (B) = P . QED Corollary 2. [START_REF] Wright | The adelic zeta function associated with the space of binary cubic forms, I: global theory[END_REF] For P ∈ S 3 (k 2 * ) with 9Q n (P ) ∈ k * 3 the fiber Ψ -1 (P ) consists of one element.

Proof. From the previous proof, if

P = Ψ (B) then B = -(9Q n (B)) -2 Ψ (P ). QED
Remark 2.17 We will see later that a nonzero P ∈ S 3 (k 2 * ) with Q n (P ) = 0 is in the image of Ψ if and only if µ(P ) = 0 and I T (P ) = [START_REF] Dickson | Algebraic Invariants[END_REF] (cf Proposition 3.19). The fibre of Ψ is then given by Proposition 3.23.

3 Orbits and fibres

Symplectic covariants and triple roots

One has the natural 'algebraic' condition If bc = 0, then a = b 2 c and d = c 2 b which means P = 1 bc (bx + cy) 3 . QED

In order to determine the Sl(2, k) orbit structure in the level set Z µ = µ -1 (0)\{0} we need to construct an invariant that separates the orbits. We begin with the observation that the factorisation of P ∈ T is not unique. 

I T (P ) = [λ] k * /k * 3 where P = λφ 3 , λ ∈ k * and φ ∈ k 2 * .
One can formulate the definition using symplectic methods. Given a non-zero

φ ∈ k 2 * there is a g ∈ Sl(2, k) with Ω(φ, g • φ) = 1. If P = λφ 3 then ω(P, (g • φ) 3 ) = λω(φ 3 , (g • φ) 3 ) = λΩ(φ, g • φ) 3 = λ. ( 13 
)
Thus I T (P ) = [ω(P, (g

• φ) 3 )]. Proposition 3.6 (i) Let P 1 , P 2 ∈ T . Then Sl(2, k) • P 1 = Sl(2, k) • P 2 ⇐⇒ I T (P 1 ) = I T (P 2 ). (14) 
(ii) The map I T induces a bijection of the space of orbits

Z µ /Sl(2, k) ←→ k * /k * 3 . ( 15 
)
(iii) Let P ∈ T and let G P = {g ∈ Sl(2, k) : g • P = P } be the isotropy subgroup of P . Then

G P = {g ∈ Sl(2, k) : ∃µ ∈ k * s.t. g • φ = µφ and µ 3 = 1}
where

P = λφ 3 , λ ∈ k * and φ ∈ k 2 * .
Proof. (i): Suppose that P 1 = λφ 3 and that there exists g ∈ Sl(2, k) such that g

• P 1 = P 2 . Then P 2 = g • (λφ 3 ) = λ(g • φ) 3 and I T (P 2 ) = [λ] = I T (P 1 ).
Conversely, suppose P 1 = λ 1 φ 3 1 , P 2 = λ 2 φ 3 2 and I T (P 1 ) = I T (P 2 ). The action of Sl(2, k) on nonzero vectors of k 2 * is transitive so we can find g ∈ Sl(2, k) such that g • φ 1 = φ 2 and hence such that

g • P 1 = λ 1 φ 3 2 . Since I T (P 1 ) = I T (P 2 ), there exists ρ ∈ k such that λ 1 = ρ 3 λ 2 and g • P 1 = λ 2 (ρφ 2 ) 3 . Choosing h ∈ Sl(2, k) such that h • (ρφ 2 ) = φ 2 , we have (hg) • P 1 = P 2 .
(ii): By (i), the map I T induces an injection of the space of orbits of Sl(2, k) acting on

T into k * /k * 3 . This is in fact a surjection since if λ ∈ k * , I T (λx 3 ) = [λ].
(iii): This follows from unique factorisation. QED Remark 3.7 Extending φ to a basis of k 2 * we have the isomorphism

G P ∼ = { µ a 0 1 µ : µ ∈ k * , µ 3 = 1 and a ∈ k}.
Consequently all the Sl(2, k) orbits in Z µ are isomorphic. Hence Z µ is a smooth variety, and in [START_REF] Slupinski | Symplectic geometry of Heisenberg graded Lie algebras[END_REF] we show that it is Lagrangian.

As the center of Gl(2, k) acts on Z µ by "cubes" it preserves I T , and thus the Sl(2, k) orbits in Z µ are the same as the Gl(2, k) orbits. From the point of view of algebraic groups, the result by Demazure [START_REF] Demazure | Automorphismes et déformations des variétés de Borel[END_REF] characterizes Sl(2, k) as the subgroup of the automorphisms of S 3 (k 2 * ) that preserves Z µ .

Symplectic covariants and double roots

In a similar way next we consider the 'algebraic' condition Again it turns out that the symplectic quantity µ detects the purely algebraic property of whether or not a binary cubic has a double root. 

µ(P ) = 2 9 (es -f r) 2 -ef -f 2 e 2 ef .
In particular, Ker µ(P ) is spanned by the double root ex + f y.

Proof. Straightforward calculation. QED

To prove the inclusion N µ ⊆ D, suppose µ(P ) is a nonzero nilpotent. Then Ker µ(P ) is one-dimensional, spanned by, say, v ∈ k 2 * . Since Sl(2, k) acts transitively on nonzero vectors in k 2 * , there exists g ∈ Sl(2, k) such that g • v = x. Then µ(g • P ) = gµ(P )g -1 is nonzero nilpotent with kernel spanned by x. Let g • P = ax 3 + 3bx 2 y + 3cxy 2 + dy 3 . Then by the formulae ( 6) and ( 7), the condition µ(g • P ) • x = 0 is equivalent to the system

ad -bc = 0 bd -c 2 = 0. If (c, d) = (0, 0) this implies there exists λ, ν ∈ k such that (a, b) = λ(c, d) and (b, c) = ν(c, d). Hence c = νd, b = ν 2 d, a = ν 3 d and µ(g • P ) = 0 which is a contradiction. Thus c = d = 0 and g • P = ax 3 + 3bx 2 y = x 2 (ax + 3by).
We have b = 0 (otherwise µ(P ) = 0) so x and ax + by form a basis of k 2 . Applying g -1 to g • P = x 2 (ax + 3by) completes the proof. QED Again, in order to obtain parameters for the orbit structure of N µ we need standard representatives. The factorisation of P ∈ N µ given by Theorem 3.10 is not unique. However we can use the symplectic form Ω on k 2 * to get a canonical form for P . Lemma 3.12 Let P ∈ N µ . There exists a unique basis {φ, ξ} of k 2 * such that P = φ 2 ξ and Ω(φ, ξ) = 1. Proof. Let P, Q ∈ N µ and write P = φ 2 ξ and Image and Fibres of µ : N µ → sl(2, k) The image of the moment map on N µ is given by Theorem 2.11:

Q = φ ′ 2 ξ ′ with Ω(φ, ξ) = Ω(φ ′ , ξ ′ ) = 1. The element g of GL(2, k) defined by g • φ = φ ′ and g • ξ = ξ ′ is clearly in Sl(2, k), satisfies g • P = Q and
Corollary 3.16 µ(N µ ) = {X ∈ sl(2, k) \ {0} : detX = 0 and ν 0 (X) = [2]}.
Now we give two descriptions of the fibres of µ : N µ → sl(2, k): the first symplectic, the second algebraic. Note that the fibres of the moment map are symplectic objects so it is not a priori clear that they have a purely algebraic description. Proposition 3.17 Let P ∈ N µ and let φ ∈ k 2 * be a square factor of P . Proof. Since Sl(2, k) acts transitively on N µ we can assume without loss of generality that P = 3x 2 y. Then by ( 7) and ( 8),

µ(3x 2 y) = 0 0 2 0 , Ψ (3x 2 y) = -6x 3 .
We want to find all

Q ∈ S 3 (k 2 * ) such that µ(Q) = 0 0 2 0 . ( 16 
)
By Theorem 3.10, a solution of this equation is of the form Q = (ex+f y) 2 (rx+sy) with esf r = 0. Substituting back in (16) we get

2 9 (es -f r) 2 -ef -f 2 e 2 ef = 0 0 2 0
from which it follows that the set of solutions of equation ( 16) is:

{x 2 (e 2 rx + 3y) : e ∈ k * , r ∈ k} ∪ {x 2 (e 2 rx -3y) : e ∈ k * , r ∈ k}.
Since P = 3x 2 y and Ψ (P ) = -6x 3 , this proves (a), (b) and (c). QED

The fibre of µ at µ(P ) is also the orbit through P of the isotropy group of µ(P ).

Corollary 3.18 Let

P ∈ N µ and let G µ(P ) = {g ∈ Sl(2, k) : gµ(P )g -1 = µ(P )}. Then µ -1 (µ(P )) = G µ(P ) • P .
Proof. Since µ(P ) is nilpotent nonzero, a simple calculation shows that G µ(P ) = {Id + aµ(P ) : a ∈ k} ∪ {-Id + bµ(P ) : b ∈ k} and the result follows from Proposition 3.17. QED It appears that N µ is a regular contact variety. If one endows the nilpotent variety N in sl(2, k) with the KKS symplectic structure, then µ : N µ → N is a prequantization of the image of µ.

Image and Fibres of Ψ : N µ → Z µ We begin with some properties of Ψ .

Proposition 3.19 Let

P = φ 2 ξ with φ, ξ ∈ k 2 * . Then: (i) µ(Ψ (P )) = 0 ; (ii) φ 3 divides Ψ (P ); (iii) Ψ (P ) = 0 iff µ(P ) = 0 ; (iv) Ψ (P ) = 0 ⇒ I T (Ψ (P )) = [6] k * /k * 3 .
Proof. Set φ = ex + f y and ξ = rx + sy. Then calculation gives

µ(P ) = 2 9 (es -f r) 2 -ef -f 2 e 2 ef , Ψ (P ) = - 2 9 (es -f r) 3 (ex + f y) 3 (17) 
and all parts of the proposition follow immediately from these formulae. QED

Corollary 3.20

The image of Ψ on N µ is Z µ [START_REF] Dickson | Algebraic Invariants[END_REF].

Proof. According to Proposition 3.19(iv), if P ∈ N µ then Ψ (P ) ∈ Z µ and I T (Ψ (P )) = [START_REF] Dickson | Algebraic Invariants[END_REF] k * /k * 3 . Since Ψ is Sl(2, k)-equivariant and Sl(2, k) acts transitively on both N µ and Z µ [START_REF] Dickson | Algebraic Invariants[END_REF], it is clear that Ψ maps N µ onto Z µ [START_REF] Dickson | Algebraic Invariants[END_REF]. QED

To describe the fibres we need a symplectic characterization of the double root of a P ∈ Z µ . Recall that ex + f y = 0 is a root of P iff ω(P, (ex + f y) 3 ) = 0. Analogous to this result we have Proposition 3.21 Let P be a binary cubic and (ex + f y) ∈ k 2 * be nonzero.

(ex + f y) 2 | P ⇐⇒ B µ (P, (ex + f y) 3 ) = 0. ( 18 
)
Proof. We begin with two remarks. First, since Sl(2, k) acts transitively on nonzero elements of k 2 * and since B µ and Ψ are Sl(2, k)-equivariant, we can assume without loss of generality that ex + f y = x. Second, the formula for B µ obtained by polarising ( 7) is

B µ (P, P ′ ) = 1 2 (ad ′ + da ′ -bc ′ -cb ′ ) (bd ′ + db ′ ) -cc ′ bb ′ -(ac ′ + ca ′ ) -1 2 (ad ′ + da ′ -bc ′ -cb ′ ) (19) 
if P = ax 3 + 3bx 2 y + 3cxy 2 + dy 3 and P ′ = a ′ x 3 + 3b ′ x 2 y + 3c ′ xy 2 + d ′ y 3 . Let P = ax 3 + 3bx 2 y + 3cxy 2 + dy 3 . Then

B µ (P, x 3 ) = 1 2 d 0 -c -1 2 d
and hence x 2 divides P iff c = d = 0 iff B µ (P, x 3 ) = 0. QED Now since Ψ maps D to T we expect a criterion involving Ψ for ex + f y = 0 to be a double root of P . Proposition 3.22 Let P be a binary cubic and (ex + f y) ∈ k 2 * be nonzero.

(i) If (ex + f y) 2 divides P then Ψ (P ) is proportional to (ex + f y) 3 . (ii) If Ψ (P ) is a nonzero multiple of (ex + f y) 3 then (ex + f y) 2 divides P . (iii) {P ∈ S 3 (k 2 * ) : B µ (P, (ex + f y) 3 ) = 0} is a Lagrangian subspace of S 3 (k 2 * ).
Proof. (i): If x 2 divides P then taking e = 1 and f = 0 in the formulae (17) we get

Ψ (P ) = -2 9 d 3 x 3 . (ii): If there exists λ ∈ k * such that (ex + f y) 3 = 1 λ Ψ (P ), we have B µ (P, (ex + f y) 3 ) = 1 λ B µ (P, µ(P ) • P ).
But B µ (P, µ(P

) • P ) + B µ (µ(P ) • P, P ) = [µ(P ), µ(P )] = 0 since B µ is sl(2, k)- equivariant.
Hence B µ (P, µ(P ) • P ) = 0 and B µ (P, (ex + f y) 3 ) = 0 which implies by the previous result that (ex + f y) 2 divides P .

(iii): Let L = {P ∈ S 3 (k 2 * ) : B µ (P, (ex + f y) 3 ) = 0}. As we saw in the proof above, the binary cubic ax 3 + 3bx 2 y + 3cxy 2 + dy 3 is in L iff c = d = 0 and hence L is of dimension two. It follows from (1) that ω(P, P ′ ) = 0 if P, P ′ ∈ L and hence L is Lagrangian. QED

We can now give two descriptions of the fibres of Ψ : N µ → Z µ [START_REF] Dickson | Algebraic Invariants[END_REF], the first symplectic, the second algebraic. Again, as the fibres of Ψ are symplectic objects it is not a priori clear that they have a purely algebraic description. Proposition 3.23 Let P ∈ N µ and let φ ∈ k 2 * be a square factor of P .

(i) Ψ -1 (Ψ (P )) = {aP + bΨ (P ) : a ∈ k * , b ∈ k}. (ii) Ψ -1 (Ψ (P )) = {Q ∈ N µ : φ 2 divides Q}.

Explicit factorisation of P when Q n (P ) = 0

From what has been done thus far we obtain readily Proposition 3.24 Let P = ax 3 + 3bx 2 y + 3cxy 2 + dy 3 be a nonzero binary cubic over a field k such that char(k) = 2, 3.

(i) If µ(P ) = 0 then Q n (P ) = 0 and

P = ax 3 or dy 3 if bc = 0, 1 bc (bx + cy) 3 if bc = 0.
(ii) If µ(P ) = 0 and Q n (P ) = 0 then

P = x 2 (ax + 3by) or (3cx + d)y 2 if ad -bc = 0, -(b 2 -ac)x + 1 2 (ad -bc)y 2 ( a (b 2 -ac) 2 x + 4d (ad-bc) 2 y) if ad -bc = 0.

Symplectic covariants and sums of coprime cubes

We have seen that a P with multiple roots corresponds to Q n (P ) = 0. So we begin the study of P with Q n (P ) = 0, in which case the Sl(2, k) orbits are not the same as the Gl(2, k) orbits. The values of the symplectic invariant Q n (P ) will have much to say about the roots of P . We begin with the 'natural' condition

Definition 3.25 O [1] = {P ∈ S 3 (k 2 * ) : Q n (P ) is a square in k * }.
The relevant 'algebraic' definition turns out to be

Definition 3.26 S = {P ∈ S 3 (k 2 * ) : ∃T 1 , T 2 ∈ T s.t P = T 1 +T 2 with T 1 , T 2 coprime}.
Specializing to the space of binary cubics a general theorem valid for the symplectic covariants of the g 1 of any Heisenberg graded Lie algebra g, we get the Theorem 3.27 (i) Let P ∈ S and let P = T 1 + T 2 with T 1 , T 2 ∈ T coprime. Then T 1 , T 2 are unique up to permutation.

(ii

) Let P = T 1 + T 2 with T 1 , T 2 ∈ T . Then Q n (P ) = ω(T 1 , T 2 ) 2 . ( 20 
)
(iii) Let P ∈ O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] and suppose Q n (P ) = q 2 with q ∈ k * . Then

T 1 = 1 2 (P + 1 3q Ψ (P )), T 2 = 1 2 (P - 1 3q Ψ (P ))
are coprime elements of T such that P = T 1 + T 2 .

Proof. For k algebraically closed an argument that P is a sum of cubes can be found in [START_REF] Dickson | Algebraic Invariants[END_REF][17][18]. The fact that Q n (P ) = ω(T 1 , T 2 ) 2 as well as (i) and (iii) are proved for general k and for Heisenberg graded Lie algebras in [START_REF] Slupinski | Symplectic geometry of Heisenberg graded Lie algebras[END_REF]. QED Corollary 3.28 S = O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] .

Remark 3.29

There is a natural bi-Lagrangian foliation of O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] obtained by means of the decomposition P = T 1 + T 2 . Modulo some technicalities, if one fixes T 2 and varies over T such that ω(T, T 2 ) = ω(T 1 , T 2 ) mod k * 2 , then does the same with T 1 , one obtains a pair of foliations that are transverse and Lagrangian, for details see [START_REF] Slupinski | Symplectic geometry of Heisenberg graded Lie algebras[END_REF].

Recall that elements of T are, up to a scalar factor, cubes of linear forms. Hence a binary cubic P is in S iff there exist a basis {φ 1 , φ 2 } of k 2 * and λ 1 , λ 2 ∈ k * such that

P = λ 1 φ 3 1 + λ 2 φ 3 2 . ( 21 
)
The λ i and φ i in this equation are not unique but the direct sum decomposition

k 2 * =< φ 1 > ⊕ < φ 2 >
is canonically associated to P as is described in the next result.

Corollary 3.30 (i) P ∈ O [1] iff µ(P ) = 0 is diagonalisable over k, hence µ(P ) is contained in a semisimple orbit.
(ii) Let P ∈ O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] and let {φ 1 , φ 2 } be a basis of k 2 * . The following are equivalent:

(a) There exist λ 1 , λ 2 ∈ k * such that P = λ 1 φ 3 1 + λ 2 φ 3 2 . (b) {φ 1 , φ 2 } is a basis of eigenvectors of µ(P ).
(iii) Let P ∈ O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] and suppose

P = λ 1 φ 3 1 + λ 2 φ 3 2 where λ 1 , λ 2 ∈ k * and {φ 1 , φ 2 } is a basis of k 2 * . Then if q is the square root λ 1 λ 2 Ω(φ 1 , φ 2 ) 3 of Q n (P ), µ(P ) • φ 1 = -qφ 1 , µ(P ) • φ 2 = qφ 2 .
Proof. (i): By Cayley-Hamilton and equation ( 9), 0 = µ(P ) 2 + detµ(P )Id = µ(P ) 2 -Q n (P )Id.

Hence µ(P ) is diagonalisable over k iff Q n (P ) is a square in k.

(ii): Since there exists g ∈ Sl(2, k) with < g • φ 1 >=< x > and < g • φ 2 >=< y >, we can assume without loss of generality that φ 1 = x and φ 2 = y. Setting P = ax 3 + 3bx 2 y + 3cxy 2 + dy 3 , we have: {x 3 , y 3 } is a basis of eigenvectors of µ(P ) iff µ(P ) is diagonal iff (by equation ( 7 ). Let X ∈ sl(2, k) be diagonalisable over k, let ±q be its eigenvalues and let φ + and φ -be corresponding eigenvectors in

k 2 * . Then µ -1 (X) = {aφ 3 -+ q aΩ(φ -, φ + ) 3 φ 3 + : a ∈ k * }.
Proof. This follows from Corollary 3.30(ii) and (iii). QED

Orbit parameters for O [1]

For generic k there will be many Sl(2, k) orbits on O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] . So the first task is to obtain parameters for the orbits. For this the symplectic result Theorem 3.27 leads to a new and effective method. Let P ∈ O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] . Then as we have seen, there exist a unique unordered pair of elements T 1 , T 2 in T such that

P = T 1 + T 2 , Q n (P ) = ω(T 1 , T 2 ) 2 . ( 22 
)
Hence the map

I O [1] : O [1] → k * × Z2 k * /k * 3 I O [1] (P ) = [ω(T 1 , T 2 ), I T (T 1 )I T (T 2 ) -1 ] (23) is well-defined where k * × Z2 k * /k * 3 denotes the quotient of k * × k * /k * 3 by the Z 2 -action -1 • (λ, α) = (-λ, α -1
).

Remark 3.32

The invariant I O [1] (•) is symplectic not algebraic since its definition requires the symplectic form. We have not found this invariant for binary cubics in the literature.

Theorem 3.33 Let I O [1] : O [1] → k * × Z2 k * /k * 3 be defined by (23) above. (i) Let P, P ′ ∈ O [1] . Then Sl(2, k) • P ′ = Sl(2, k) • P ⇐⇒ I O [1] (P ′ ) = I O [1] (P ).
(ii) The map I O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] induces a bijection

O [1] /Sl(2, k) ←→ k * × Z2 k * /k * 3 .
(iii) Let P ∈ O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] and suppose

P = λ 1 φ 3 1 + λ 2 φ 3 2 where λ 1 , λ 2 ∈ k * and {φ 1 , φ 2 } is a basis of k 2 * . Let G P = {g ∈ Sl(2, k) : g • P = P }. Then G P = {g ∈ Sl(2, k) : ∃µ ∈ k * s.t. g • φ 1 = µφ 1 , g • φ 2 = 1 µ φ 2 and µ 3 = 1}.
Proof. (i): Since ω and I T are Sl(2, k)-invariant, it is clear from (23) that the map

I O [1] : O [1] → k * × Z2 k * /k * 3
factors through the action of Sl(2, k). To show that the induced map on orbit space is injective, suppose that P and P ′ are binary cubics such that

I O [1] (P ′ ) = I O [1] (P ). First choose g, g ′ ∈ Sl(2, k) such that g • P = ax 3 + by 3 , g ′ • P ′ = a ′ x 3 + b ′ y 3 . ( 24 
)
From equations ( 1) and ( 9) we have

ω(x 3 , y 3 ) = 1, Q n (P ) = a 2 b 2 , Q n (P ′ ) = a ′ 2 b ′ 2 . Hence I O [1] (P ′ ) = I O [1] (P ) implies [ab , [a ][b] -1 ] = [a ′ b ′ , [a ′ ][b ′ ] -1 ] in k * × Z2 k * /k * 3 .
There are two possibilities:

• ab = a ′ b ′ , [a ][b] -1 = [a ′ ][b ′ ] -1 ; • ab = -a ′ b ′ , [a ][b] -1 = [b ′ ][a ′ ] -1 .
In the first case, we have

[ab][a ][b] -1 = [a ′ b ′ ][a ′ ][b ′ ] -1 , hence [a 2 ] = [a ′ 2 ] and so [a] = [a ′ ] as the group k * /k * 3 is of exponent 3. Thus there exists r ∈ k * such that a ′ = r 3 a and b ′ = 1 r 3 b. If we define h ∈ GL(2, k) by h • x = rx, h • y = 1 r y,
it is clear that h ∈ Sl(2, k) and h • (g • P ) = g ′ • P ′ . Hence P and P ′ are in the same Sl(2, k)-orbit.

In the second case, we have 

h • x = ry, h • y = - 1 r x,
it is clear that h ∈ Sl(2, k) and h • (g • P ) = g ′ • P ′ . Hence P and P ′ are in the same Sl(2, k)-orbit and we have proved that

I O [1] : O [1] → k * × Z2 k * /k * 3 separates Sl(2, k)-orbits.
To prove (ii) it remains to prove that

I O [1] : O [1] → k * × Z2 k * /k * 3 is surjective. Let [q, [α]] ∈ k * × Z2 k * /k * 3
and consider the binary cubic

P = 1 qα x 3 + q 2 αy 3 . Then I O [1] (P ) = [q, [ 1 qα ] [q 2 α ] -1 ] = [q, [ 1 q 3 α 2 ]] = [q, [α]]. and so I O [1] : O [1] → k * × Z2 k * /k * 3 is
surjective. This completes the proof of (ii).

To prove (iii), recall that the representation P = λ 1 φ 3 1 + λ 2 φ 3 2 is unique up to permutation. Then g • P = P leads to two cases:

• g • (λ 1 φ 3 1 ) = λ 1 φ 3 1 and g • (λ 2 φ 3 2 ) = λ 2 φ 3 2 ; • g • (λ 1 φ 3 1 ) = λ 2 φ 3 2 and g • (λ 2 φ 3 2 ) = λ 1 φ 3 1 .
In the first case, g • φ i = j i φ i where j 3 i = 1 and since g ∈ Sl(2, k), we must have j 1 j 2 = 1. In the second case, there exist r, s ∈ k * such that g • φ 1 = rφ 2 , g • φ 2 = sφ 1 , λ 1 r 3 = λ 2 , λ 2 s 3 = λ 1 and rs = -1. Hence (rs) 3 = 1 and rs = -1 which is impossible and this case does not occur. QED

Properties of orbit space

We will use the parametrisation

I O [1] : O [1] /Sl(2, k) ←→ k * × Z2 k * /k * 3 .
to study orbit space. The parameter space has two natural maps

sq : k * × Z2 k * /k * 3 → k * 2 , sq([q, α]) = q 2 , ( 25 
) and t : k * × Z2 k * /k * 3 → (k * /k * 3 )/Z 2 , t([q, α]) = [α] (26) 
corresponding to projection onto the orbit spaces of the two factors. We then have the following diagram: (

k * × Z2 k * /k * 3
) 27 
The map sq :

k * × Z2 k * /k * 3 → k * 2 (28) 
is the fibration associated to the principal Z 2 -fibration

k * → k * 2
and the action of Z 2 on k * /k * 3 by inversion. Since Z 2 acts by automorphisms, the fibre sq -1 (q 2 ) over any point q 2 ∈ k * 2 has a natural group structure

[q, α] × [q, β] = [q, αβ] (29) 
independent of the choice of square root q of q 2 . Taking the identity at each point, we get a canonical section e : k * 2 → k * × Z2 k * /k * 3 of (28) given by e(q 2 ) = [q, 1] (30) but, although each fibre is a group isomorphic to k * /k * 3 , the fibration (28) is not in general isomorphic to the product

k * 2 × k * /k * 3 → k * 2 .
To translate the above features of orbit space into more concrete statements about binary cubics over k, note that the map sq is essentially the quartic Q n since for all P ∈ O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] ,

sq(I O [1] (P )) = Q n (P ). Theorem 3.34 Let M ∈ k * 2 , let O M = {P ∈ S 3 (k 2 * ) : Q n (P ) = M } and let O M /Sl(2, k) be the space of Sl(2, k)-orbits in O M . (i) The map I O [1] : O [1] → k * × Z2 k * /k * 3 induces a bijection O M /Sl(2, k) ←→ sq -1 (M )
and, by pullback of (29), a group structure on O M /Sl(2, k).

(ii) As groups, O M /Sl(2, k) ∼ = k * /k * 3 . (iii) Let q ∈ k * be a square root of M . The identity element of O M /Sl(2, k) is characterised by: Sl(2, k) • P = 1 ⇔ P is reducible over k ⇔ I O [1] (P ) = [q, 1].
Proof. Parts (i) and (ii) follow from the discussion above. Part (iii) follows from Theorem 3.36(i) and equation (30). QED

Remark 3.35

From the Corollary it follows that if the classical discriminant is a nonzero square there is a unique Sl(2, k) orbit consisting of reducible polynomials. We remove the 'square' restriction in Corollary 3.47. In particular, over an algebraically closed field there is only one orbit of fixed nonzero discriminant.

To finish this section we briefly discuss the map t :

k * × Z2 k * /k * 3 → (k * /k * 3 )/Z 2 in diagram (27) given by t([q, α]) = [α].
This a fibration with fibre k * outside the identity coset [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] but

t -1 ([1]) = e(k * 2 )
is a 'singular fibre'. There is a k * -action:

λ • [q, α] = [λq, α] (31) 
which maps fibres of sq to fibres of sq:

sq([q ′ , α ′ ]) = sq([q, α]) ⇒ sq(λ • [q ′ , α ′ ]) = sq(λ • [q, α]),
and whose orbits are exactly the fibres of t:

t([q ′ , α ′ ]) = t([q, α]) ⇔ ∃λ ∈ k * s.t. [q ′ , α ′ ] = λ • [q, α].
Isotropy for this action is given by:

Isot k * ([q, α]) = 1 if α = 1 {±1} if α = 1.
It would be interesting to interpret these features of orbit space in terms of the original binary cubics. Conversely, one can also identify actions on the orbits in terms of their orbit parameters. For example, the commutant of Sl(2, k) in Gl(S 3 (k 2 * )) acts on orbit space. This gives the action

λ • ′ [q, α] = [λ 2 q, α] of k * on k * × Z2 k * /k * 3
which is the square of the action (31). Another example is obtained from Ψ : S 3 (k 2 * ) → S 3 (k 2 * ) which, since it commutes with the action of Sl(2, k), induces a map from k * × Z2 k * /k * 3 to itself. This is easily seen to be given by

[q, α] → [-q 3 , [q]α], (32) 
where [q] denotes the class of q in k * /k * 3 .

Reducibility and factorisation

Theorem 3.36 Let P ∈ S and let {φ 1 , φ 2 } be a basis of k 2 * such that P = λ 1 φ 3 1 + λ 2 φ 3 2 with λ 1 , λ 2 ∈ k * . Let q ∈ k * be a square root of Q n (P ). The following are equivalent:

(a) P is reducible over k.

(b) λ1 λ2 is a cube in k * . (c) qλ 1 is a cube in k * . (d) qλ 2 is a cube in k * . (e) There is a basis {φ ′ 1 , φ ′ 2 } of k 2 * such that P = 1 q (φ ′ 3 1 + φ ′ 3 2 ).
Proof. (a) ⇒ (b): Suppose P is reducible over k. Then for all g ∈ Sl(2, k),

g • P = λ 1 (g • φ 1 ) 3 + λ 2 (g • φ 2 ) 3
is also reducible over k. Since φ 1 , φ 2 form a basis of k 2 * , we can choose g such that g • φ 1 = x and g • φ 2 = ρy for some ρ ∈ k * so that

λ 1 x 3 + λ 2 ρ 3 y 3
is reducible over k. Hence there exist a, b, c, d, e ∈ k such that λ 1 x 3 + λ 2 ρ 3 y 3 = (ax + by)(cx 2 + dxy + ey 2 ) which gives the system λ 1 = ac, 0 = ad + bc, λ 2 ρ 3 = be, 0 = ae + bd. 

P = λ 2 (r 3 φ 3 1 + φ 3 2 ) = λ 2 (rφ 1 + φ 2 )(r 2 φ 2 1 + rφ 1 φ 2 + φ 2 2 ) ( 33 
)
and P is reducible over k.

(b) ⇔ (c) ⇔ (d): Set ν 1 = qλ 1 and ν 2 = qλ 2 . By Proposition ??, there exists s ∈ k * such that ν 1 ν 2 = s 3 . Hence if any one of the three numbers ν 1 , ν 2 , ν1 ν2 = λ1 λ2 is a cube so are the other two since formally

ν 1 =   ν 1 3 ν1 ν2 3 √ ν 1 ν 2   3 , ν 2 = 3 ν 1 ν 2 ν 2 3 √ ν 1 ν 2 3 , ν 2 = 3 √ ν 1 ν 2 3 √ ν 1 3 .
(a) ⇒ (e): If P is reducible we have just proved that there exists r ∈ k * and s ∈ k * such that λ 1 = 1 q r 3 and λ 2 = 1 q s 3 . Set φ ′ 1 = rφ 1 and φ ′ 2 = sφ 2 . Then

P = λ 1 φ 3 1 + λ 2 φ 3 2 = 1 q φ ′ 1 3 + φ ′ 2 3
which proves (e). (e) ⇒ (a):

Evident since φ ′ 1 + φ ′ 2 divides φ ′ 3 1 + φ ′ 3 2
. QED Corollary 3.37 Let P ∈ S be reducible and let {φ ′ 1 , φ ′ 2 } be a basis of k 2 * such that

P = 1 q (φ ′ 3 1 + φ ′ 3 2 ). (a) If -3 is not a square in k, then P = 1 q (φ ′ 1 + φ ′ 2 )(φ ′ 1 2 -φ ′ 1 φ ′ 2 + φ ′ 2 2 
)

and φ ′ 1 2 -φ ′ 1 φ ′ 2 + φ ′ 2 2 is irreducible over k. (b) If -3 is a square in k, then P = 1 q (φ ′ 1 + φ ′ 2 )(jφ ′ 1 + j -1 φ ′ 2 )(j 2 φ ′ 1 + j -2 φ ′ 2 ) ( 34 
)
where j = 1 2 (-1 + √ -3). The factors of P are pairwise independent.

(iii) If β = 0,

λ 1 = β 2q c -1 2q (α -q)d, φ 1 = ( α+q β )x + y, λ 2 = -β 2q c + 1 2q (α + q)d, φ 2 = ( α-q β )x + y, Ω(φ 1 , φ 2 ) = 2q β .
If P ∈ O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] is reducible we can use these formulae together with Theorem 3.36 and Corollary 3.37 to get an explicit formula for a linear factor of P in terms of the coefficients of P , a square root q of Q n (P ) and a cube root r of qλ 1 . Recall that the existence of a cube root of qλ 1 in k is a necessary and sufficient condition for P to be reducible over k.

Proposition 3.40 Let P = ax 3 + 3bx 2 y + 3cxy 2 + dy 3 ∈ O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] be reducible, let q ∈ k * be a square root of Q n (P ) and suppose ad = 0.

(i) If β = γ = 0, let r be a cube root of qa and let s = q r . Then rx + sy divides P .

(ii) If γ = 0, let r be a cube root of (α + q)a + γb and let s = -γ r . Then

x + r -s + b a y divides P . (iii) If β = 0, let r be a cube root of βc -(α -q)d and let s = β r . Then s -r + c d x + y divides P .
Proof. Since P is reducible, there exists a basis

φ ′ 1 , φ ′ 2 of k 2 * such that P = 1 q (φ ′ 3 1 + φ ′ 3 
2 ) (cf Theorem 3.36 ) and then φ ′ 1 + φ ′ 2 divides P . As shown in the proof of Corollary 3.38(a), we can take φ ′ 1 = rφ 1 and φ ′ 2 = sφ 2 where r is a cube root of qλ 1 , s = q rΩ(φ1,φ2) and φ 1 , φ 2 , λ 1 are given by Proposition 3.39. The explicit formulae in the three cases are: (a) β = γ = 0: r is a cube root of qa, rs = q and φ ′ 1 = rx, φ ′ 2 = sy;

(b) γ = 0: r is a cube root of (α+q)a+γb 2 , s = -γ 2r and

φ ′ 1 = rx + 1 2s (α -q)y, φ ′ 2 = sx + 1 2r (α + q)y; (c) β = 0: r is a cube root of βc-(α-q)d 2 , s = β 2r and φ ′ 1 = 1 2s (α + q)x + ry, φ ′ 2 = 1 2r (α -q)x + sy.
Calculating φ ′ 1 + φ ′ 2 in the first case obviously gives (i). In the second case we have

φ ′ 1 + φ ′ 2 = (r + s)x + 1 2s (α -q) + 1 2r (α + q) y = (r + s)x + 1 2sa (-2s 3 -γb) + 1 2ra (2r 3 -γb) y (35) 
since r 3 = qλ 1 = (α+q)a+γb 2 and s 3 = qλ 2 = -(α-q)a-γb

2

. Simplifying the coefficient of y we get

1 2sa (-2s 3 -γb)+ 1 2ra (2r 3 -γb) = 1 a r 2 -s 2 - bγ 2 ( 1 r + 1 s ) = (r+s) r -s + b a
since 2rs = -γ, and this implies (ii). Similarly, (iii) follows from (c). QED

As an application of the above results, consider the homogeneous Cardano-Tartaglia polynomial P = x 3 + pxy 2 + qy 3 over a field k of characteristic not 2 or 3. Assume p = 0 and q = 0 so that factorising P is a nontrivial problem. Then

µ(P ) = q -2 p 2 9 -2 p 3 -q , Q n (P ) = (q 2 + 4 p 3 27 ).
To be able to apply our approach we assume Q n (P ) has a square root in k * which we denote q 2 + 4 p 3 27 . Then by Theorem 3.36 and Proposition 3.39(ii), P is reducible iff

q 2 + q 2 4 + p 3 27 or - q 2 + q 2 4 + p 3 27 has a cube root in k.
If this is the case, then Proposition 3.40 (ii) implies that x + (rs)y divides P where r is a cube root of q 2 + q 2 4 + p 3 27 and s is the cube root p 3r of -q 2 + q 2 4 + p 3 27 . Hence, with the obvious notation,

p 3 3 q 2 + q 2 4 + p 3 27 - 3 q 2 + q 2 4 + p 3 27
is a root of the inhomogeneous cubic x 3 + px 2 + q and this is the classical Cardano-Tartaglia formula. If k = R, this can be written

s -r = 3 - q 2 + q 2 4 + p 3 27 - 3 q 2 + q 2 4 + p 3 27
since cube roots are unique.

Symplectic covariants and sums of coprime cubes in quadratic extensions

In this article we have until now considered only binary cubics P such that Q n (P ) is a square in k. In this section we will study binary cubics P such that Q n (P ) is a square in a fixed quadratic extension of k.

Let k be a quadratic extension of k. Recall that since char(k) = 2, the extension k/k is Galois and the Galois group Gal( k/k) is isomorphic to Z 2 . The Galois group Gal( k/k) acts naturally on any space over k obtained by base extension of a space over k and its fixed point set is the original space over k. We always denote the action of the generator of Gal( k/k) by x → x and we denote by Ω and ω respectively the symplectic forms on k2 * and S 3 ( k2 * ) obtained by base extension of Ω and ω. The quartic on S 3 ( k2 * ) obtained by base extension of Q n will be denoted Q n and we set This notation out of the way, we make a symplectic definition

O [1] = {P ∈ S 3 ( k2 * ) : Q n (P ) ∈ k * 2 }.
O( k) = {P ∈ S 3 (k 2 * ) : k is a splitting field of x 2 -Q n (P )}
and an algebraic definition

S( k) = {P ∈ S 3 (k 2 * ) : ∃T ∈ T s.t. P = T + T with T, T coprime}. Proposition 3.42 O( k) = S( k).
Proof. Let P ∈ O( k). Then Q n (P ) has two square roots in k but no square roots in k since k is a splitting field of x 2 -Q n (P ). By Theorem 3.27, there exists T 1 , T 2 ∈ T such that P = T 1 + T 2 and the square roots of Q n (P ) are ±ω(T 1 , T 2 ). Since P = P and since T 1 and T 2 are unique up to permutation, we have either T1 = T 1 and T2 = T 2 or T1 = T 2 and T2 = T 1 . In the first case,

ω(T 1 , T 2 ) = ω( T1 , T2 ) = ω(T 1 , T 2 ), so ω(T 1 , T 2 )
∈ k and Q n (P ) has a square root in k which is a contradiction. Hence P = T 1 + T1 . To prove that T 1 and T1 are coprime, write T 1 = λα 3 where λ ∈ k and α ∈ k2 * . Then, by unique factorisation, T 1 and T1 are not coprime iff α and α are proportional. But then ω(T 1 , T1 ) = 0 and Q n (P ) = 0 has a square root in k. Hence T 1 and T1 are coprime and P ∈ S( k).

To prove inclusion in the opposite direction, suppose P ∈ S( k) and let P = T + T with T, T coprime and T ∈ T . Note that P = 0 since otherwise T and T would not be coprime. By Theorem 3.27, we have Q n (P ) = (ω(T, T )) 2 and Q n (P ) has two square roots ω(T, T ) in k. Let T = λα 3 where λ ∈ k * and α ∈ k2 * . As we saw above, T and T are coprime implies α and α are not proportional, and this is equivalent to Ω(α, α) = 0 since dim k2 * = 2. From ω(T, T ) = λ λ( Ω(α, α)) 3 it follows that ω(T, T ) = 0. On the other hand, ω(T, T ) = ω( T , T ) = -ω(T, T )

and ω(T, T ) is pure imaginary. Hence the square roots ±ω(T, T ) of Q n (P )are not in k and k is a splitting field of x 2 -Q n (P ). QED Proposition 3.43 (Fibres of µ on O( k)). Let X ∈ sl(2, k) be such that -det X ∈ (Im k * ) 2 and ν det X (X) = [START_REF] Bourbaki | Élements de mathématique[END_REF]. Let q, q ∈ Im k * be its eigenvalues and let φ and φ be corresponding eigenvectors in k2 * .

(i) There exists a ∈ k * such that aā Ω( φ, φ) 3 = q.

(ii) µ -1 (X) = {uaφ 3 + ūā φ3 : u ∈ k * and uū = 1}.

Proof. Recall that ν det X (X) = [START_REF] Bourbaki | Élements de mathématique[END_REF] is a necessary and sufficient condition for X to be in the image of µ (cf Theorem 2.11). Since φ + φ is not an eigenvector of X, we have

[2] = [Ω(φ + φ, X • φ + X • φ)] = [-2qΩ(φ, φ)].
Hence there exists α ∈ k * such that α ᾱ = qΩ( φ, φ) and then a = q 2 α 3 is a solution of (i).

By Corollary 3.31, the fibre of the k-moment map μ :

S 3 ( k2 * ) → sl(2, k) is μ-1 (X) = {c φ3 + q cΩ( φ, φ) 3 φ 3 : c ∈ k * } and hence µ -1 (X) = {c φ3 + q cΩ( φ, φ) 3 φ 3 : c ∈ k * , c = q cΩ( φ, φ) 3 }.

This together with (i) implies (ii). QED

Orbit parameters for O( k) It is clear that O( k) is stable under the action of Sl (2, k) and in this section we will give a parametrisation of the space of orbits.

Let P ∈ O( k). Then, since Q n (P ) ∈ k * 2 , the Sl(2, k) orbit of P regarded as a binary cubic over k is entirely determined by I b O [1] (P ) where

I b O [1] : O [1] → k * × Z2 k * / k * 3
is the Sl(2, k)-invariant function defined in Theorem 3.33. Recall that to calculate I b O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] (P ), we choose λ ∈ k * and α ∈ k2 * such that

P = λα 3 + λ ᾱ3
and then by definition,

I b O [1] (P ) = [ω(λα 3 , λα), [λ λ-1 ]]. (36) 
The square roots ±ω(λα 3 , λα 3 ) of Q n (P ) are pure imaginary since ω(λα 3 , λ 1 α 3 ) = ω(λα 3 , λα 3 ) = -ω(λα 3 , λ 1 α 3 ),

and the class [λ λ-1 ] of λ λ-1 in the group k * / k * 3 [λ λ-1 ] [λ λ-1 ] = 1.
It follows that (iii) The isotropy group of

I b O [1] (P ) ∈ Im k * × Z2 U ( k * / k * 3 ) where U ( k * / k * 3 ) = {α ∈ k * / k * 3 s.t. α ᾱ = 1}.
P ∈ O( k) is isomorphic to { λ 0 0 λ ∈ Sl(2, k) : λ 3 = 1, λ λ = 1}. Proof. (i): The function I b O [1] : O( k) → Im k * × Z2 U ( k * / k * 3 ) is Sl(2, k)
-invariant since it is by definition the restriction of an Sl(2, k)-invariant function on a larger space.

To prove

I b O [1] separates orbits, suppose I b O [1] (P ′ ) = I b O [1] (P )
. Writing P = λα 3 + λα 3 and P ′ = λ ′ α ′3 + λ′ α ′ 3 , there exists σ ∈ Z 2 such that

( ω(λ ′ α ′3 , λ′ α ′ 3 ), [λ ′ λ′ -1 ] ) = σ • ( ω(λα 3 , λα 3 ), [λ λ-1 ] ) (37) 
and, permuting cube terms if necessary, we can suppose without loss of generality that σ is the identity. Then, equation (37) implies

ω(λ ′ α ′3 , λ′ α ′ 3 ) = ω(λα 3 , λα 3 ), [λ ′ λ′ -1 ] = [λ λ-1 ] (38) 
or equivalently,

λ ′ λ′ ω(α ′3 , α ′ 3 ) = λ λω(α 3 , α 3 ), [λ ′ λ′ -1 ] = [λ λ-1 ]
which by ( 2) is equivalent to

λ ′ λ′ Ω(α ′ , α ′ ) 3 = λ λ Ω(α, α) 3 , [λ ′ λ′ -1 ] = [λ λ-1 ]. (39) 
Taking classes in k * / k * 3 we get

[λ ′ λ′ ] = [λ λ], [λ ′ λ′ -1 ] = [λ λ-1 ]
and multiplying the two equations gives

[λ ′ 2 ] = [λ 2 ].
From this it follows that [λ ′ ] = [λ] since the cube of any element in k * / k * 3 is the identity.

Let now ξ ∈ k * be such that λ ′ = ξ 3 λ.

Substituting in the first equation of (39) we get Ω(ξα ′ , ξα ′ ) 3 = Ω(α, α) 3 which means Ω(ξα ′ , ξα ′ ) = j Ω(α, α)

for some j ∈ k such that j 3 = 1. The conjugate of this equation is

-Ω(ξα ′ , ξα ′ ) = -j Ω(α, α)
and hence j = j. Define g ∈ Gl(2, k) by

g • α = jξα ′ , g • α = j ξ α ′ .
Then g commutes with conjugation by definition, and preserves Ω since

Ω(g • α, g • α) = j 2 Ω(ξα ′ , ξα ′ ) = j 3 Ω(α, α) = Ω(α, α).
Hence g ∈ Sl(2, k). Furthermore,

g • P = λ(g • α) 3 + λ(g • α) 3 = λ(jξα ′ ) 3 + λ(j ξ α ′ ) 3 = λ ′ α ′3 + λ′ α ′ 3 = P ′
which shows that P and P ′ are in the same Sl(2, k)-orbit. This proves (i).

To prove (ii), we only have to show that

I b O [1] is surjective since by (i), the func- tion I b O [1] induces an injection O( k)/Sl(2, k) ֒→ Im k * × Z2 U ( k * / k * 3 ). Let (q, s) ∈ Im k * × U ( k * / k * 3 ). First, pick λ ∈ k * such that [λ] = s. (40) 
Since [λ λ] = ss = 1, we know λ λ is a cube in k * but in fact, since k * /k is a quadratic extension and λ λ ∈ k, this implies that there exists r ∈ k * such that

λ λ = r 3 . (41) 
Now let α = -q 2r

x + ŷ (where x, ŷ ∈ k2 * are the base extensions of x, y ∈ k 2 * ) and let

P = λ q α 3 - λ q α 3 . (42) 
This is a binary cubic of the form T + T where T ∈ T . We are now going to show that P ∈ O( k) and that

I b O [1] (P ) = [q, s]. Note first that Ω(α, ᾱ) = Ω(- q 2r x + ŷ, -( q 2r )x + ŷ = - q 2r + ( q 2r ) = - q r ,
so Ω(α, ᾱ) = 0 which means α and α are not proportional. Hence α 3 and α 3 are coprime and P ∈ O( k).

Next, we have

ω(α 3 , ᾱ3 ) = Ω(α, ᾱ) 3 = - q 3 r 3 (43) 
and

ω( λ q α 3 , - λ q α 3 ) = -( 1 
q
) 2 λ λω(α 3 , ᾱ3 ) = q (44) using equations ( 41) and ( 43). Finally, it follows from (40) that

λ q ( λ q ) -1 = λ λ-1 = ss -1 = s -1 s -1 = s -2 = s. (45) 
Hence, putting together equations (36), ( 42), ( 44) and (45), we get

I b O [1] (P ) = [q, s]
and this proves that (

I b O [1] : O( k) → Im k * × Z2 U ( k * / k * 3 )
) 46 
The map sq

: Im k * × Z2 U ( k * / k * 3 ) → (Im k * ) 2 (47) 
given by sq([q, α]) = q 2

is the fibration associated to the principal Z 2 -fibration

Im k * → (Im k * ) 2
and the action of Z 2 on U ( k * / k * 3 ) by conjugation. Since Z 2 acts by automorphisms, the fibre sq -1 (q 2 ) over any point q 2 ∈ (Im k * ) 2 has a natural group structure

[q, u 1 ] × [q, u 2 ] = [q, u 1 u 2 ] (48) 
independent of the choice of square root q of q 2 . Taking the identity at each point, we get a canonical section ê : (Im k * ) 2 → Im k * × Z2 U ( k * / k * 3 ) of (47) given by

ê(q 2 ) = [q, 1] (49) 
but, although each fibre is a group isomorphic to U ( k * / k * 3 ), the fibration (47) is not in general isomorphic to the product

(Im k * ) 2 × U ( k * / k * 3 ) → (Im k * ) 2 .
To translate the above features of orbit space into more concrete statements about binary cubics over k, note that the map sq is essentially the quartic Q n since for all

P ∈ O( k), sq(I b O [1] (P )) = Q n (P ). Theorem 3.46 Let M ∈ (Im k * ) 2 , let O M = {P ∈ S 3 (k 2 * ) : Q n (P ) = M } and let O M /Sl(2, k) be the space of Sl(2, k)-orbits in O M . (i) The map I b O [1] : O( k) → Im k * × Z2 U ( k * / k * 3 ) induces a bijection O M /Sl(2, k) ←→ sq -1 (M )
and, by pullback of (48), a group structure on O M /Sl(2, k). Proof. Parts (i) and (ii) follow from the discussion above. To prove (iii), first note that P is reducible over k iff P is reducible over k since P is cubic and k/k is a quadratic extension. By Theorem 3.34(iii), P is reducible over

k iff I b O [1] (P ) = [q, 1]
where q ∈ k is a square root of M , and by equation (49), this is the identity element of O M /Sl (2, k). QED Corollary 3.47 Let P, P ′ ∈ S 3 (k 2 * ) be reducible binary cubics such that Q n

(P ) = Q n (P ′ ) is nonzero. Then there exists g ∈ Sl(2, k) such that P ′ = g • P . Proof. Suppose Q n (P ) = Q n (P ′ ) = M . If M ∈ k * 2
, the result follows from Theorem 3.34(iii). If M ∈ k * is not a square, one can find a quadratic extension k of k such that M ∈ (Im k * ) 2 . The result then follows from Theorem 3.46 (iii). QED

To finish this section we briefly discuss the map t :

Im k * × Z2 U ( k * / k * 3 ) → U ( k * / k * 3 )/Z 2 in diagram (46) given by t([q, α]) = [α].
This a fibration with fibre Im k * outside the identity coset [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] 

but t-1 ([1]) = ê(k * 2 )
is a 'singular fibre'. There is a k * -action:

λ • [q, α] = [λq, α] (50) 
which maps fibres of sq to fibres of sq:

sq([q ′ , α ′ ]) = sq([q, α]) ⇒ sq(λ • [q ′ , α ′ ]) = sq(λ • [q, α]),
and whose orbits are exactly the fibres of t:

t([q ′ , α ′ ]) = t([q, α]) ⇔ ∃λ ∈ k * s.t. [q ′ , α ′ ] = λ • [q, α].
Isotropy for this action is given by: Isot

k * ([q, α]) = 1 if α = 1 {±1} if α = 1.
It would be interesting to interpret these features of the orbit space in terms of the original binary cubics.

Parameter spaces for Gl(2, k)-orbits

We have seen that the Sl(2, k)-orbits in

O [1] = {P ∈ S 3 (k 2 * ) : Q n (P ) ∈ k * 2 } are parametrised by k * × Z2 k * /k * 3
and that if k is a quadratic extension of k, the Sl(2, k)-orbits in

O( k) = {P ∈ S 3 (k 2 * ) : Q n (P ) ∈ (Im k * ) 2 } are parametrised by Im k * × Z2 U ( k * / k * 3 ).
The group GL(2, k) also acts on binary cubics and since

Q n (g • P ) = (det g) -6 Q n (P ) ∀g ∈ Gl(2, k), ∀P ∈ S 3 (k 2 * ),
the spaces O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] and O( k) are stable under Gl(2, k).

In general, if Gl(2, k) acts on a space X there is a map

X/Sl(2, k) → X/Gl(2, k)
from the set of Sl(2, k)-orbits onto the set of G(2, k)-orbits. The fibres of this map are the orbits of the k * -action on X/Sl(2, k) given by

λ * [x] = [Λ • x] (51) 
where Λ is any element of Gl(2, k) such that det Λ = λ. 

(i) Let k * act on k * × Z2 k * /k * 3 by λ • [ξ, α] = [λξ, α] and let I O [1] : O [1] → k * × Z2 k * /k * 3 be defined by (23). Then I O [1] (g • P ) = (det g) -3 • I O [1] (P ) ∀P ∈ O [1] , ∀g ∈ Gl(2, k). (ii) Let k * act on Im k * × Z2 U ( k * / k * 3 ) by λ • [ξ, α] = [λξ, α] and let I b O [1] : O( k) → Im k * × Z2 U ( k * / k * 3 ) be defined by (36). Then I b O [1] (g • P ) = (det g) -3 • I O [1] (P ) ∀P ∈ O( k), ∀g ∈ Gl(2, k).
Proof. To prove (i), since for any P ∈ O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] there exists h ∈ Gl(2, k) and a, b ∈ k * such that h • P = ax 3 + by 3 , it is sufficient to prove that

I O [1] (g • (ax 3 + by 3 )) = (det g) -3 • I O [1] (ax 3 + by 3 ) ∀a, b ∈ k * , ∀g ∈ Gl(2, k). Consider g ′ = det g 0 0 1 . Then det g ′ = det g, g ′ • x = 1 det g x and g ′ • y = y. Hence g ′ g -1 ∈ Sl(2, k), I O [1] (g • (ax 3 + by 3 )) = I O [1] (g ′ • (ax 3 + by 3 ))
and

I O [1] (g ′ • (ax 3 + by 3 )) = I O [1] ( a (det g) 3 x 3 + by 3 )) = [ ab (det g) 3 , [ab -1 ]].

The result follows since I O

[1] (ax 3 + by 3 ) = [ab, [ab -1 ]].
Part (ii) follows from (i) applied to k. QED To summarize, we have proved the Orbits spaces when k is a finite field of characteristic not 2 or 3 Let k be a finite field with q elements, not of characteristic 2 or 3. The following facts are well-known:

• k * /k * 2 ∼ = Z 2 so up to isomorphsm, there is only one quadratic extension of k and k * 2 has 1 2 (q -1) elements; • if q = 1 mod 3, k * /k * 3 ∼ = Z/3Z; • if q = 2 mod 3, k * = k * 3 ;

• if q = 1 mod 3 and k/k is a quadratic extension, U ( k * / k * 3 ) ∼ = 1;

• if q = 2 mod 3 and k/k is a quadratic extension, U ( k * / k * 3 ) ∼ = Z/3Z. (a) If q = 1 mod 3, O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] is the union of 3 2 (q -1) Sl(2, k)-orbits and O( k) is the union of 1 2 (q -1) Sl(2, k)-orbits.

(b) If q = 1 mod 3, O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] is the union of 6 Gl(2, k)-orbits and O( k) is the union of 3 Gl(2, k)-orbits.

(c) If q = 2 mod 3, O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] is the union of 1 2 (q -1) Sl(2, k)-orbits and O( k) is the union of 3 2 (q -1) Sl(2, k)-orbits.

(d) If q = 2 mod 3, O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] is a Gl(2, k)-orbit and O( k) is the union of 2 Gl(2, k)orbits.

Proof. As examples, let us count the number of Sl(2, k)-orbits in O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] when q = 1 mod 3 and the number of Gl(2, k)-orbits in O( k) when q = 2 mod 3.

In the first case, by Theorem (3.33), the parameter space is k * × Z2 k * /k * 3 which, being a fibre bundle over k * 2 with fibre k * /k * 3 , has 1 2 (q-1)×3 = 3 2 (q-1) elements. In the second case, by Theorem 4.3 , the parameter space is (Im k * )/k * 3 × U ( k * / k * 3 )/Z 2 and this has 1 × 2 = 2 elements since Z 2 acts on U ( k * / k * 3 ) by inversion. QED According to [START_REF] Hoffman | Arithmetic of binary cubic forms[END_REF] (Proposition 5.6) at least part of the following corollary can be found in Dickson [START_REF] Dickson | On Invariants and The Theory of Numbers, The Madison Colloquim[END_REF]. Corollary 4.5 Let k be a finite field with q elements, not of characteristic 2 or 3. The number of Sl(2, k)-orbits of binary cubics with nonzero discriminant is 2(q -1). The number of Gl(2, k)-orbits of binary cubics with nonzero discriminant is 9 if q = 1 mod 3 and 3 if q = 2 mod 3.

Proof. A binary cubic of nonzero discriminant is either in O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] or in O( k) since up to isomorphism, k has only one quadratic extension. Hence, the total number of Sl(2, k)-orbits with nonzero discriminant is the number of Sl(2, k)-orbits in O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] plus the number of Sl(2, k)-orbits in O( k). The same is true for Gl(2, k)-orbits and the result follows from Proposition 4.4. QED

A symplectic Eisenstein identity

The following identity is a symplectic generalisation of the classical Eisenstein identity which, as we will see, is obtained from it in the special case when Q is the cube of a linear form. There is an analogous identity for the symplectic module associated to any Heisenberg graded Lie algebra ( [START_REF] Slupinski | Symplectic geometry of Heisenberg graded Lie algebras[END_REF]). 

) ⊗3 • Q, Q) - 9 2 Q n (P ) ω(µ(P ) • Q, Q) ( 52 
)
where µ(P ) ⊗3 denotes the unique endomorphism of S 3 (k 2 * ) satisfying µ(P ) ⊗3 • (α 3 ) = (µ(P ) • α) 3 for all α ∈ k 2 * .

Proof. If µ(P ) = 0, then Ψ (P ) = 0, Q n (P ) = 0 and all terms in the identity are zero.

If µ(P ) is nilpotent nonzero, then Q n (P ) = 0 and and there exists g ∈ Sl(2, k) such that g • P = x 2 y. Since the identity (52) is Sl(2, k)-invariant, we can suppose without loss of generality that P = x 2 y. Then, by calculation, The LHS of (52) is ω(-

Ψ (P ) = -
2 9 x 3 , Q) 2 = ( 2 9 
) 2 t 2 .

and the RHS of (52) is

- 9 2 ω(µ(P ) ⊗3 • Q, Q) = - 9 2 ω(-( 2 9 
)

3 tx 3 , Q) = ( 2 9 
) 2 t 2 .

Thus (52) holds if µ(P ) is nilpotent nonzero.

To complete the proof of the proposition it remains to prove (52) if Q n (P ) = 0. As the identity is independent of the field we may suppose that Q n (P ) is a square in k * and hence that P ∈ O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] . Since the identity (52) is Sl(2, k)-invariant, we can further suppose without loss of generality that

Definition 3 . 1 TProposition 3 . 3 T

 3133 = {P ∈ S 3 (k 2 * ) : P = 0 and P has a triple root}, and the natural 'symplectic' condition Definition 3.2 Z µ = {P ∈ S 3 (k 2 * ) : P = 0 and µ(P ) = 0}. The next proposition shows that the symplectic quantity µ detects the purely algebraic property of whether or not a binary cubic has a triple root. = Z µ . Proof. Let P = ax 3 + 3bx 2 y + 3cxy 2 + dy 3 . Then P ∈ Z µ iff µ(P ) = 0 iff ad = bc, bd = c 2 and b 2 = ac. If bc = 0, then cbd = c 3 = 0 and b 3 = acb = 0. Hence b = c = 0 and either a = 0 or d = 0. In the first case P = dy 3 and in the second P = ax 3 .

Lemma 3 . 4 Definition 3 . 5

 3435 Let λ, µ ∈ k * and φ, ψ ∈ k 2 * be such that λφ 3 = µψ 3 . Then λ µ is a cube and φ and ψ are proportional. Proof. Unique factorisation. QED This means the following (algebraic) definition makes sense. Define I T : T → k * /k * 3 by

Definition 3 . 8 D

 38 = {P ∈ S 3 (k 2 * ) : P = 0 and P has a double root}, and the 'symplectic' condition Definition 3.9 N µ = {P ∈ S 3 (k 2 * ) : P = 0 and µ(P ) is nonzero nilpotent}.

Theorem 3 .

 3 10 D = N µ . Proof. The inclusion D ⊆ N µ follows from the Lemma 3.11 Let P ∈ D and write P = (ex + f y) 2 (rx + sy) with ex + f y and rx + sy independent. Then

  Proof. If P ∈ N µ then P has a double root by Theorem 3.10. Fix a factorisation P = φ 2 1 ξ 1 . By unique factorisation, any other factorisation is of the form P = φ 2 ξ where φ = λφ 1 , ξ = 1 λ 2 ξ 1 for some λ ∈ k * . Then Ω(φ, ξ) = 1 iff λ = Ω(φ 1 , ξ 1 ) and this proves the claim. QED Proposition 3.13 The group Sl(2, k) acts simply transitively on N µ . Consequently, Gl(2, k) has one orbit on N µ .

  (a) µ -1 (µ(P )) = {P + aΨ (P ) : a ∈ k} ∪ {-P + bΨ (P ) : b ∈ k}. (b) µ -1 (µ(P )) = {P + aφ 3 : a ∈ k} ∪ {-P + bφ 3 : b ∈ k}. (c) The affine lines in (a) and (b) are disjoint.

  )) bdc 2 = b 2ac = 0. This equation implies b(adbc) = 0 and hence, since Q n (P ) = 0, that b = 0 and c 2 = bd = 0. It follows that {x 3 , y 3 } is a basis of eigenvectors of µ(P ) iff b = c = 0 iff P = ax 3 + dy 3 . (iii): As above, we can suppose without loss of generality that P = ax 3 + dy 3 and then µ(P ) = ad 0 0 -ad which implies µ(P )•x = -adx and µ(P )•y = ady. This proves (iii) since Ω(x, y) = 1. QED Corollary 3.31 (Fibres of µ on O [1]

[a 2

 2 ] = [b ′ 2 ], [a] = [b ′ ] and there exists r ∈ k * such that b ′ = r 3 a and a ′ = -1 r 3 b. If we define h ∈ GL(2, k) by

sq y y r r r r r r r r r r r 7 (

 7 k * /k * 3 )/Z 2 .

Since λ 1

 1 and λ 2 are nonzero, it follows that a, b, c, d, e are nonzero and, since c = -ad b and e = -bd a we get λ1 λ2 = (ρ a b ) 3 . (b) ⇒ (a): Suppose λ1 λ2 = r 3 with r ∈ k * . Then

Finally, let

 let Im k = {λ ∈ k : λ = -λ} and let T ⊆ S 3 ( k2 * ) be the set of nonzero binary cubics over k which have a triple root over k. Remark 3.41 Note that (Im k * ) 2 ⊆ k * is the inverse image under k * → k * 2 of a single nontrivial square class in k * /k * 2 . Conversely, a nontrivial square class in k * /k * 2 determines up to isomorphism a quadratic extension of k with this property.

  is the 'unitary' group of k * / k * 3 . Note that the Z 2 action on Im k * × U ( k * / k * 3 ) is precisely the natural action of Gal( k/k). Theorem 3.44 Let I b O [1] : O( k) → Im k * × Z2 U ( k * / k * 3 ) be defined by (36) above. (i) Let P, P ′ ∈ O( k). Then Sl(2, k) • P ′ = Sl(2, k) • P ⇐⇒ I b O [1] (P ′ ) = I b O [1] (P ). (ii) The map I b O [1] induces a bijection O( k)/Sl(2, k) ←→ Im k * × Z2 U ( k * / k * 3 ).

5 U

 5 is surjective. Part (iii) follows fromTheorem 3.33 (iii). QEDCorollary 3.45 Let P, P ′ ∈ O( k). Then Sl(2, k) • P ′ = Sl(2, k) • P ⇐⇒ Sl(2, k) • P ′ = Sl(2, k) • P.Proof. Both properties are equivalent toI b O [1] (P ) = I b O [1] (P ′ )by the above theorem and Theorem 3.33. QED Properties of orbit space The parameter space Im k * × Z2 U ( k * / k * 3 ) for Sl(2, k) orbits in O( k) is very analogous to the parameter space k * × Z2 k * / k * 3 for Sl(2, k) orbits in O [1] that we gave in Theorem 3.33. Its main features can best be summarized in the diagram Im k * × Z2 U ( k * / k * 3 ) b sq v v m m m m m m m m m m m m ( k * / k * 3 )/Z 2 .

(

  ii) As groups, O M /Sl(2, k) ∼ = U ( k * / k * 3 ). (iii) The identity element of O M /Sl(2, k) is characterised by: Sl(2, k) • P = 1 ⇔ P is reducible over k.

Corollary 4 . 2

 42 (i) If P ∈ O[START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] and λ ∈ k * thenI O [1] (λ * [P ]) = 1 λ 3 • I O [1] ([P ]). (ii) If P ∈ O( k) and λ ∈ k * then I b O [1] (λ * [P ]) = 1 λ 3 • I b O [1] ([P ]).Proof. Immediate from the lemma. QED From this we get the k * -actions on the parameter spaces k * × Z2 k * /k * 3 and Im k * × Z2 U ( k * / k * 3 ) corresponding to (51) : λ ∈ k * acts by multiplication by λ -3 on the first factor.Hence, by the discussion above, the mapsI O [1] : O [1] → k * × Z2 k * /k * 3 and I b O [1] : O( k) → Im k * × Z2 U ( k * / k * 3 ) induce bijections O [1] /Gl(2, k) ←→ (k * × Z2 k * /k * 3 )/k * 3 = k * /k * 3 × (k * /k * 3 )/Z 2 , O( k)/Gl(2, k) ←→ (Im k * × Z2 U ( k * / k * 3 ))/k * 3 = (Im k * )/k * 3 × U ( k * / k * 3 )/Z 2 .

Theorem 4 . 3

 43 (a) Define π : k * × Z2 k * /k * 3 → k * /k * 3 × (k * /k * 3 )/Z 2 by π([ξ, α]) = ([ξ], [α]) and J O [1] : O [1] → k * /k * 3 × (k * /k * 3 )/Z 2 by J O [1] = π•I O [1] . (i) Let P, P ′ ∈ O [1] Then Gl(2, k) • P = Gl(2, k) • P ′ ⇔ J O [1] (P ) = J O [1] (P ′ ).(ii) The map J O[START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] induces a bijectionO [1] /Gl(2, k) ←→ k * /k * 3 × (k * /k * 3 )/Z 2 . (b) Define π : Im k * × Z2 U ( k * / k * 3 ) → (Im k * )/k * 3 × U ( k * / k * 3 )/Z 2 by π([ξ, α]) = ([ξ], [α]) and J b O [1] : O( k) → k * /k * 3 × (k * /k * 3 )/Z 2 by J b O [1] = π • I b O [1] . (i) Let P, P ′ ∈ O( k). Then Gl(2, k) • P = Gl(2, k) • P ′ ⇔ J b O [1] (P ) = J b O [1] (P ′ ).(ii) The map J b O [1] induces a bijection O( k)/Gl(2, k) ←→ (Im k * )/k * 3 × U ( k * / k * 3 )/Z 2 .

4 . 4

 44 These facts together with Theorem (3.33) and Theorem 4.3 immediately give the Proposition Let k be a finite field with q elements, not of characteristic 2 or 3 and let k be a quadratic extension. SetO [1] = {P ∈ S 3 (k 2 * ) : Q n (P ) ∈ k * 2 }, O( k) = {P ∈ S 3 (k 2 * ) : Q n (P ) ∈ (Im k * ) 2 }.

Theorem 5 . 1

 51 Let P, Q ∈ S 3 (k 2 * ). Then ω(Ψ (P ), Q) 2 -9Q n (P ) ω(P, Q)

  and so µ(P ) • x = 0 and µ(P ) • y = -2 9 x. Let Q = px 3 + 3rx 2 y + 3sxy 2 + ty 3 .

Remark 2.10 Since

  k * /k * ∆ is a group, the Proposition puts a natural group structure on the set of orbits of Sl(2, k) acting on trace free matrices of fixed determinant. Alternatively, sl(2, k) can be Sl(2, k)-equivariantly identified with S 2 (k 2 * ), the space of binary quadratic forms, by

	Finally, Sl(2, k) invariance of ν ∆ follows from
	the definition of ν ∆ .	QED
	Remark 2.9 We make some elementary observations concerning the Sl(2, k) adjoint
	orbits. If -∆ ∈ k * 2 , then k * ∆ = k * and there is only one orbit. If ∆ = 0 then k * ∆ = k * 2 and there is one nilpotent orbit for every element of k * /k * 2 . If -∆ ∈ k * 2 is nonzero, then k * ∆ is the set of values in k * taken by the norm function associated to the quadratic extension k( √ -∆) or, equivalently, by the anisotropic quadratic form x 2 + ∆y 2 on k 2 . It is well-known that this is a proper subgroup of k * , at least in
	characteristic 0, (with thanks to P. Ponomarev for a discussion on characteristic p)
	and so in characteristic zero there are at least two orbits.	

  From Proposition 3.3, Theorem 3.10 and[START_REF] Haile | On the Clifford algebra of a binary cubic form[END_REF] we see that Q n (P ) = 0 iff P has a multiple root, which is consistent with the classic discriminant interpretation. Also, the open subset of double roots is isomorphic to Sl(2, k). Consequently the variety Q n (P ) = 0 is not smooth, but has singular set which is a union over k

is the unique element of Sl(2, k) sending P to Q. QED Remark 3.14 In

[START_REF] Slupinski | Symplectic geometry of Heisenberg graded Lie algebras[END_REF] 

when char k = 0 we show that N µ is the tangent variety to Z µ .

Remark 3.15 * /k * 3 of isomorphic Lagrangian Sl(2, k)-orbits.

  Thus to get parameter spaces for O [1] /Gl(2, k) and O( k)/Gl(2, k) we need just to calculate the k * -actions on k * × Z2 k * /k * 3 and Im k * × Z2 U ( k * / k * 3 ) corresponding to (51).

	Lemma 4.1

To a certain extent, we can normalise bases of k 2 * satisfying Theorem 3.27(e).

Corollary 3.38 Let P ∈ S.

(a) P is reducible iff there is a basis {φ ′ 1 , φ ′ 2 } of k 2 * such that P = 1 q (φ ′ 3 1 + φ ′ 3 2 ) and Ω(φ ′ 1 , φ ′ 2 ) = q. (b If {φ ′ 1 , φ ′ 2 } and {φ ′′ 1 , φ ′′ 2 } are two bases of k 2 * satisfying (a), there exists a cube root of unity j ∈ k * such that φ ′′

2 and let q = λ 1 λ 2 Ω(φ 1 , φ 2 ) 3 . If P is reducible, by Theorem 3.27, there exists

In the classical literature on cubics this is called the Viète Substitution. Conversely, if there is a basis

2 divides P and P is reducible. To prove (b), note first that by Theorem 3.27(a), we have either φ ′′

In the first case, by unique factorisation, there exist cube roots of unity j 1 , j 2 such that φ

This is exactly what we want to prove. In the second case, there exist cube roots of unity j 1 , j 2 such that φ ′′ 1 = j 1 φ ′ 2 , φ ′′ 2 = j 2 φ ′ 1 and j 1 j 2 = -1. This is impossible since (j 1 j 2 ) 3 = 1. QED Explicit formulae for I O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] and Cardano-Tartaglia formulae Proposition 3.39 Let P = ax 3 + 3bx 2 y + 3cxy 2 + dy 3 be an element of O [START_REF] Bhargava | Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations[END_REF] , let q ∈ k * be a square root of Q n (P ) and define α, β, γ and δ in k by

(ii) If γ = 0,

Then Q n (P ) = a 2 d 2 , Ψ (P ) = 3ad(-ax 3 + dy 3 ), µ(P ) = ad 0 0 -ad and so µ(P ) • x = -adx and µ(P ) • y = ady. Let

The LHS of (52) is

On the other hand, the first term of the RHS of ( 52) is

and the second term of the RHS of (52) is

The result follows from equations (53), ( 54) and (55). QED

To obtain the classical Eisenstein identity from this result, recall that one can use the symplectic form Ω on k 2 * to define a Sl(2, k)-equivariant isomorphism ˜: k 2 → k 2 * : if v ∈ k 2 , we let ṽ ∈ k 2 * be the unique linear form such that φ(v) = Ω(φ, ṽ) ∀φ ∈ k 2 * .

It then follows that

so that the operation of evaluating a binary cubic at a point of k 2 can be expressed in terms of the symplectic form ω on S 3 (k 2 * ). One can also pullback Ω to get an

Corollary 5.2 (Classical Eisenstein identity) Let

Proof. Setting Q = ṽ3 in (52) and using (56), we get 

The result follows from this since ω(µ(P ) • ṽ3 , ṽ3 ) = 3ω((µ(P ) • ṽ)ṽ 2 , ṽ3 ) = 0 ( (µ(P ) • ṽ)ṽ 2 has at least a double root at v) and ω(µ(P ) ⊗3 • ṽ3 , ṽ3 ) = Ω(µ(P ) • ṽ, ṽ) 3 = Ω k 2 (µ(P ) • v, v) 3 .

QED