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Gradient critical phenomena in the Ising quantum

chain: surface behaviour

Mario Collura, Dragi Karevski† and Löıc Turban

Groupe de Physique Statistique, Département Physique de la Matière et des

Matériaux, Institut Jean Lamour‡, CNRS—Nancy Université—UPV Metz,

BP 70239, F-54506 Vandœuvre lès Nancy Cedex, France

Abstract. We consider the influence of a power-law deviation from the critical

coupling such that the system is critical at its surface. We develop a scaling theory

showing that such a perturbation introduces a new length scale which governs the

scaling behaviour of the density profiles as well as the finite-size behaviour of the

surface properties. Exact results are obtained for the Ising quantum chain when

the perturbation varies linearly whereas the quadratic perturbation is mainly studied

numerically. The scaling theory is well confirmed in both cases.

1. Introduction

Real systems are in general inhomogeneous due to the presence of impurities, line defects,

boundaries, aperiodicity or disorder. Such inhomogeneties may have a strong influence

on the critical properties in the vicinity of a second order phase transition [1, 2, 3, 4, 5].

Depending on the relevance of the perturbation introduced by the inhomogeneity, the

universality class governing the critical behaviour may change; in some cases, the critical

singularities may even be suppressed.

Besides this, the presence of spatially varying external fields (magnetic,

gravitational or thermal) also influences the critical properties of a system. The effect

of gravity on phase coexistence was studied in [6, 7, 8]. Phase separation induced by a

thermal gradient was considered in [9, 10, 11]. The application of a gradient perturbation

was used as a tool for high-precision estimates of percolation threshold and exponents

in [12, 13, 14, 15].

In general the effect of a spatially varying field on a critical system is to smooth

out the critical singularities. The reason for this is that the perturbation generated by

the inhomogeneous field leads to a departure from the critical point which introduces a

finite length scale in the problem [12]. One may think about the usual finite-size scaling

theory as a particular example where the spatially varying field is a confining potential

of a box-like type [16].

† Corresponding author: karevski@lpm.u-nancy.fr
‡ Laboratoire associé au CNRS UMR 7198.
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For a field generating a power-law deviation from the critical point, ∆(z) = gzω,

the typical length scale introduced around the critical locus, z = 0, is ℓ ∼ |g|−ν/(1+νω)

where ν is the correlation exponent. Far away from this critical region, for |z| ≫ ℓ,

the correlation length is small compared to the scale of the spatial change and the

local properties at z are determined by the corresponding homogeneous system with

a constant deviation to the critical point given by the value ∆(z). Based on these

observations, a scaling theory for the density profiles in the presence of gradient-field

inhomogeneities was developed in [17]. The validity of the scaling theory was checked at

the mean-field level within Ginsburg-Landau theory and by comparing its predictions

to the exact solution of an Ising quantum chain in a linearly varying transverse field.

The same scaling predictions were tested for the Ising quantum chain with a

linear-to-flat profile of the transverse field [18], for a spin-1 ferromagnetic Bose-Einstein

condensate in a space-varying magnetic field [19] and for a classical Ising lattice gas

confined in a two-dimensional harmonic trap [20]. The entanglement entropy for

Ising and XX quantum chains with linearly varying fields or couplings was studied in

[21]. Quite recently the trap-size scaling was examined for the XY and Bose-Hubbard

quantum chains [22].

One may mention a formal analogy noticed in [18] between the spatial

inhomogeneous case discussed here and the quench dynamics situation where a system

is driven through a critical point at finite rate. During the quench, far away from the

critical point, the system is able to adjust its state adiabatically as far as its relaxation

time is much shorter than the typical time associated with the quench. On approaching

the critical point, due to the critical slowing down, the typical quench time becomes

much shorter than the system relaxation time and the evolution switch approximately

to an impulse regime. Close to the critical point, the typical time scale during which

the state is frozen (impulse evolution) is given by equating the system relaxation time

(inverse of the first gap for a closed quantum system) to the typical quench time scale. In

the quantum case this leads to the self consistent equation τ = |1/ǫ(τ)|νz where ǫ(t) is the

deviation to the critical point at time t, z the dynamical exponent and ν the correlation

length exponent. For a power law deviation ǫ(t) = gtω one obtains τ ∼ g−zν/(1+ωzν)

in complete analogy with the spatial case. Drawing on this analogy, we see that to

the adiabatic evolution regime corresponds a “super-static” regime where, locally, the

physical properties are determined solely invoking a local equilibrium hypothesis. On

the contrary, on approaching (either in time or in space) the critical locus, the local

equilibrium hypothesis (time- or space-like) breaks down due to the divergence of the

typical time (relaxation) or space scale (correlation length).

All these studies were made in reference to the bulk critical behaviour, i.e., when

the locus of the critical field value is deep into the bulk of the system. However, if

one shifts the critical locus toward a free surface, when close enough to it, the scaling

behaviour of local quantities should depend on the surface critical properties. In the

present work we consider such a situation for a semi-infinite system with an ordinary

surface transition. The paper is organized in the following way: in the next section
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we present the scaling arguments for a semi-infinite system with a power-law deviation

from the critical point when the critical locus is at the surface. The third section is

devoted to the semi-infinite Ising chain in a linearly or quadratically varying transverse

field. In the linear case we solve analytically the problem while in the quadratic case

the results are obtained through an exact numerical diagonalization. In both cases our

findings are in perfect agreement with the scaling predictions. Finally we summarize

our results and indicate some possible developments in the last section.

2. Scaling arguments

In the next sections we study either linear (gradient) perturbations, for which exact

results can be obtained, or quadratic ones. Thus here we shall examine the scaling

behaviour for an arbitrary power law variation of the couplings.

The system is semi-infinite, occupies the half-space z > 0 with free boundary

conditions at z = 0. The perturbed coupling deviates from its critical value Kc as§
K(z) −Kc = ∆(z) = gzω , ω > 0 (2.1)

Thus the coupling is critical at the surface z = 0. The system is ordered (disordered)

in the bulk when g > 0 (g < 0). The perturbation introduces a crossover length

ℓ giving the width of the surface region which diverges when g vanishes. With a

decaying perturbation (ω < 0) the discussion of the scaling behaviour is similar but

the physics is quite different since the bulk remains critical while the surface critical

behaviour is mofified when the perturbation is relevant (0 > ω > −1/ν) or marginal

(ω = −1/ν)[23, 24, 25, 26, 27, 28].

Changing the length scale by a factor b, the thermal perturbation ∆(z) with scaling

dimension yt = 1/ν where ν is the correlation length exponent, transforms as‖

g′z′
ω

= b1/νgzω = g′
(z

b

)ω

, (2.2)

so that

g′ = bω+1/νg . (2.3)

As mentioned above g grows under rescaling and the perturbation is relevant when

ω > −1/ν.

The crossover length transforms as

ℓ′ =
ℓ

b
= ℓ(g′) = ℓ

(

bω+1/νg
)

, (2.4)

with b = |g|−ν/(1+νω), one finally obtains

ℓ = A|g|−ν/(1+νω) , (2.5)

§ For g < 0 equation (2.1) leads to negative values of the coupling for sufficiently large z. The value

of g and the size of the system should be chosen in order to avoid the occurence of negative values.
‖ The following discussion extends to other types of perturbation provided the appropriate scaling

dimension replaces yt.
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for the crossover length introduced by the thermal perturbation. The result of equation

(2.5) in [17] is recovered when ω = 1.

As in [17] this result can be obtained self-consistently [12, 21] by relating ℓ to the

local value of the correlation length ξ(ℓ) so that

ℓ ∝ ξ(ℓ) ∝ |∆(l)|−ν ∝ (|g|ℓω)−ν , (2.6)

which gives back (2.5) when solved for ℓ.

Let us nown examine the scaling behaviour of the profile ϕ(z, g) associated with

some bulk operator ϕ with scaling dimension xϕ. This may be the order parameter m

or the singular part of the energy density e. It transforms as

ϕ′ = ϕ(z′, g′) = bxϕϕ(z, g) , (2.7)

so that, using (2.3)

ϕ(z, g) = b−xϕϕ
(z

b
, bω+1/νg

)

. (2.8)

With b = |g|−ν/(1+νω) ∝ ℓ one obtains

ϕ(z, g) = |g|νxϕ/(1+νω)Φ
(

|g|ν/(1+νω)z
)

∝ ℓ−xϕΦ
(

A
z

ℓ

)

, (2.9)

where the last expression follows from (2.5). The prefactor exhibits the finite-size

behaviour expected for a critical system with size ℓ. In the same way, for a surface

operator ϕs with scaling dimension xϕs
at the ordinary surface transition, in a system

with size L, one obtains:

ϕs(L, g) = |g|νxϕs/(1+νω)Φs

(

|g|ν/(1+νω)L
)

∝ ℓ−xϕsΦs

(

A
L

ℓ

)

. (2.10)

When L≪ ℓ, the effect of the perturbation is negligible and the surface operator displays

the usual finite-size behaviour for a critical system ϕs(L, g) ∼ L−xϕs . As a consequence,

the scaling function behaves as:

Φs(u) ∼ u−xϕs , u≪ 1 . (2.11)

When L/ℓ→ ∞, ϕs no longer depends on L, so that:

lim
u→∞

Φs(u) = const , lim
L/ℓ→∞

ϕs(L, g) ∝ ℓ−xϕs = const |g|νxϕs/(1+νω) . (2.12)

Such a behaviour is expected with es for any sign of g and with ms for g > 0.

In the surface region z ≪ ℓ the prolile in (2.9), when non-vanishing, should scale

as ℓ−xϕs

ϕ(z, g) ∝ ℓ−xϕΦ
(

A
z

ℓ

)

∝ ℓ−xϕs ,
z

ℓ
≪ 1 , (2.13)

leading to:

Φ(u) ∼ uxϕs−xϕ , u≪ 1 . (2.14)

The order parameter m(z, g), with scaling dimension xm = β/ν, is non-vanishing

in the ordered phase g > 0. Then, outside the surface region when z ≫ ℓ, one expects
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the same local critical behaviour as for the homogeneous system with the same value of

the coupling, i.e.,

m(z, g) ∝ ∆(z)β ∝ (gzω)νxm , g > 0 . (2.15)

for not too large values of ∆(z). Comparing (2.15) to the first expression of the profile

in (2.9) with ϕ = m, one obtains the asymptotic behaviour of the scaling function:

Φm(u) ∼ uωνxm , u≫ 1 , g > 0 . (2.16)

3. Quantum Ising chain in a varying transverse field

3.1. Quantum Hamiltonian

We consider the quantum Ising chain in a varying transverse field with Hamiltonian [29]

H = −1

2

L−1
∑

l=1

σx
l σ

x
l+1 −

1

2

L
∑

l=1

hl σ
z
l , hl = h(1 − glω) , (3.1)

where the σx,z are Pauli spin operators. This Hamiltonian governs the extreme

anisotropic limit of the classical two-dimensional Ising model on the square lattice

[30, 31, 32]. As explained in [17], when the classical system has horizontal couplings

K2 and varying dual vertical couplings K∗
1 (l) = K∗

1 (1 − glω), the row-to-row transfer

operator T takes the form

T = 1 − 2K2H . (3.2)

when K∗
1 → 0, K2 → 0 while h = K∗

1/K2 remains constant. Universality holds in

this limit and the critical properties of the quantum chain are the same as those of the

two-dimensional classical system with [1]:

ν = 1 , xe = 1 , xm = 1/8 , xes = 2 , xms
= 1/2 (ordinary transition) . (3.3)

In the following we take h = 1 and the quantum chain is truly critical when g = 0

and L→ ∞.

3.2. Diagonalization

Under a Jordan-Wigner transformation [33] the Hamiltonian (3.1) is changed into a

quadratic form in fermion creation and destruction operators which is diagonalized

through a Bogoliubov transformation [34, 32]. Then

H =

L
∑

q=0

εq

(

η†qηq −
1

2

)

, (3.4)

where η†q (ηq ) are diagonal fermion creation (anihilation) operators. The fermionic

excitation energies εq are obtained through the solution of one of the following eigenvalue

equations

hl−1 φq(l − 1) +
[

ε2
q − 1 − h2

l

]

φq(l) + hl φq(l + 1) = 0 ,

hl ψq(l − 1) +
[

ε2
q − 1 − h2

l

]

ψq(l) + hl+1 ψq(l + 1) = 0 (3.5)
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with the boundary conditions

φq(0) − φq(1) = 0 , φq(L+ 1) = 0 ,

ψq(0) = 0 , ψq(L) − ψq(L+ 1) = 0 . (3.6)

In these equations ψq(l) and φq(l) are the normalized eigenvectors.

The scaling variable of the quantum chain with ν = 1 is

u = |g|ν/(1+νω)l = |g|1/(ω+1)l . (3.7)

In the scaling limit g → 0, L → ∞ while keeping θ = gLω constant, we have

u(l + 1) − u(l) = |g|1/(ω+1) → 0 and u(L) = |g|−1/[ω(ω+1)]θ1/ω → ∞. Thus the system is

semi-infinite in u which is a continuous variable. The finite-difference equations in (3.5)

can be rewritten as differential equations in the reduced variable u. Keeping the leading

contributions in g, of order |g|2/(ω+1), one obtains the following differential equations:

d2φ

du2
+

[

(

ε

|g|1/(ω+1)

)2

+ sign(g)ωuω−1 − u2ω

]

φ(u) = 0 ,
dφ

du

∣

∣

∣

∣

u=0

= 0 , φ(∞) = 0 ,

d2ψ

du2
+

[

(

ε

|g|1/(ω+1)

)2

− sign(g)ωuω−1 − u2ω

]

ψ(u) = 0 , ψ(0) = 0 ,
dψ

du

∣

∣

∣

∣

u→∞

= 0 . (3.8)

When g changes sign the two equations are exchanged but the boundary conditions

remain the same.

0 1 2 3
−0.5
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a
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φ4,ψ4

φ5,ψ5
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φ5,ψ5

1

φ3,ψ3

φ2,ψ2

φ1,ψ1

11

Figure 1. Excitation spectra of the quantum spin chain. When g > 0 (ordered phase)

the lowest excitation vanishes and the ground state is degenerate.

When ω = 1 we have:

d2φ

du2
+

[

ε2

|g| + sign(g) − u2

]

φ(u) = 0 ,
dφ

du

∣

∣

∣

∣

u=0

= 0 , φ(∞) = 0 ,

d2ψ

du2
+

[

ε2

|g| − sign(g) − u2

]

ψ(u) = 0 , ψ(0) = 0 ,
dψ

du

∣

∣

∣

∣

u→∞

= 0 , (3.9)

with u = g1/2z where z ≥ 0 is the continuous coordinate along the quantum chain in

the scaling limit.
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These equations are eigenvalue equations of the harmonic oscillator form¶
d2χn

du2
+ (2n+ 1 − u2)χn(u) = 0 , (3.10)

with eigenfunctions χn(g1/2z), vanishing at infinity and normalized on z ≥ 0, which are

given by

χn(u) =

√

2

2nn!

( g

π

)1/4

e−u2/2Hn(u) , Hn(u) = (−1)n eu2 dn

dun
e−u2

, (3.11)

where Hn(u) is the Hermite polynomial of order n. In (3.9), at u = 0, the Neumann

boundary condition for φ selects even values of n whereas the Dirichlet boundary

conditon for ψ selects odd values of n. Thus for the ordered system (g > 0) one obtains:

εp =
√

4pg , φp(u) = χ2p(u) , ψp(u) = χ2p−1(u) , p = 1, 2, 3, · · ·
ε0 = 0 , φ0(u) = χ0(u) , ψ0(u) = 0 . (3.12)

The vanishing excitation ǫ0 is a consequence of the twofold degeneracy of the ordered

ground-state. The behaviour is different for the disordered system (g < 0) with a non-

degenerate ground state. Then the lowest excitation is non-vanishing:

εp =
√

2(2p+ 1)|g| , φp(u) = χ2p(u) , ψp(u) = χ2p+1(u) , p = 0, 1, 2, · · · (3.13)

The lowest part of the excitation spectra is shown in figure 1.
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g>0
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L=256 θ=0.1
L=256 θ=0.2
L=512 θ=0.1

a

1
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−
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,g

)]
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L=256 θ=0.2
L=512 θ=0.1

1

Figure 2. Scaling of the magnetization profile for ω = 1 (left) and ω = 2 (right). the

lines indicate the slopes expected from (2.14) for z ≪ ℓ and (2.16) for z ≫ ℓ.

3.3. Magnetization profile and surface magnetization

When g > 0 the Z2 symmetry is spontaneously broken in the thermodynamic limit. In

a finite system it can be broken by fixing the last spin (σx
L = ±1 when hL = 0). Then

the magnetization is non-vanishing. At l1, it is given by the off-diagonal matrix element

|〈σ|σx
l |0〉| where |0〉 is the ground-state of H and |σ〉 = η†0|0〉 is the lowest excited state

¶ For an oscillator with mass M , angular frequency Ω, such that MΩ/~ = 1.
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with one fermion [17]. The matrix element is evaluated by expanding σx
l in diagonal

fermionic operators.

The magnetization profile m(l) can be expressed as a determinant [37]

m(l) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H1 G1,1 G1,2 . . . G1, l−1

H2 G2,1 G2,2 . . . G2, l−1

...
...

...
...

Hl−1 Gl−1,1 Gl−1,2 . . . Gl−1, l−1

Hl Gl,1 Gl,2 . . . Gl, l−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.14)

where

Hj = φ0(j) , Gj,k = −
L

∑

n=0

φn(j)ψn(k) . (3.15)

The rescaled magnetization profiles are shown in figure 2 where a good data collapse

is obtained. The slopes are in good agreement with the values following from (2.14) and

(2.16): xms
− xm = 3/8 for z ≪ ℓ, ωνxm = 1/8 when ω = 1 and 1/4 when ω = 2 for

z ≫ ℓ.

−4 −3 −2 −1 0 1 2

ln(|g|
1/2

L)

−2

−1

0

1

2

ln
[|g

|−
1

/4
m

s(
L

,g
)]

ω=1
L=64
L=128
L=256
L=512

a

1

g>0

g<0

−4 −3 −2 −1 0 1 2

ln(|g|
1/3

L)

−2

−1

0

1

2

ln
[|g

|−
1

/6
m

s(
L

,g
)]

ω=2
L=64
L=128
L=256
L=512

a

1

g>0

g<0

Figure 3. Finite-size scaling function of the surface magnetization for ω = 1 (left) and

ω = 2 (right). The lines indicate the limiting behaviours given in (3.18) and (3.19).

When l = 1, the determinant m(1) reduces to the normalized eigenvector φ0(1)

which can be evaluated for arbitrary values of the couplings [35, 36]. It gives the surface

magnetization:

ms = φ0(1) =

[

1 +
L−1
∑

k=1

k
∏

l=1

h2
l

]−1/2

. (3.16)

In the unperturbed system this leads to ms ∼ L−1/2 and xms
= 1/2 as indicated in (3.3).

In the scaling limit (L → ∞, ℓ → ∞, u(z) = Az/ℓ) the surface magnetization is

given by φ0(u) at u(1) = 0 so that, according to (3.11) and (3.12), when ω = 1:

ms =
√

2
(g

π

)1/4

. (3.17)
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m

s(
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L=512
L=1024

a

1

ω=2

ω=1

Figure 4. Scaling function of the surface magnetization, reduced to its exponential

part. In the semi-logarithmic scale, the decay is linear in |g|Lω+1 in agreement with

the result of (3.19) for g < 0 (solid lines).

The general case is discussed in the appendix where the finite-size behaviour of the

surface magnetization in (3.16) is studied in different limiting cases. When the scaling

variable u(L) = |g|1/(ω+1)L ≪ 1 the leading behaviour is that of a finite-size critical

system with

ms ≃ L−1/2

[

1 + sign(g)

(

|g|1/(ω+1)L
)ω+1

(ω + 1)(ω + 2)

]

, (3.18)

in agreement with (2.10) and (2.11).

When u(L) ≫ 1 and L such that |g|Lω = uω+1)/L≪ 1, one obtains

ms ≃ Aωg
1/[2(ω+1] , Am(ω) =

[2(ω + 1)ω]1/[2(ω+1)]

√

Γ
(

1
ω+1

)

. g > 0 .

ms ≃
√

2|g|Lω exp

(

−|g|Lω+1

ω + 1

)

, g < 0 . (3.19)

The result for ms in the ordered phase agrees with (3.17) when ω = 1 and its g-

dependence is the one expected from (2.12).

Numerical data for the finite-size scaling function of the surface magnetization are

compared to analytical results in figure 3. The linear decay for L ≪ ℓ has a slope

equal to −xms
= −1/2 which follows from (2.11) and (3.18). The constant values for

L ≫ ℓ, given by (3.19) for g > 0, are respectively ln[Am(1)] = 0.06039 . . . for ω = 1

and ln[Am(2)] = −0.01098 . . . for ω = 2. The exponential decay for g < 0 and L≫ ℓ is

compared to the asymptotic analytical result of equation (3.20) in figure 4.

3.4. Energy density profile and surface energy density

The scaling behaviour of the energy density can be studied on the off-diagonal matrix

element |〈ǫ|σz
l |0〉| where |ǫ〉 = η†1η

†
0|0〉 is the lowest excited state with two fermionic
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Figure 5. Scaling function of the energy density profile in the disordered phase. For

ω = 1 (left) the solid line shows the profile obtained in (3.21) in the scaling limit. For

ω = 2 (right) the solid line indicates the slope expected from (2.14) when z ≪ ℓ and

the inset shows the exponential decay in the variable |g|z3.
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Figure 6. Scaling function of the energy density profile in the ordered phase. For

ω = 1 (left) the solid line shows the profile obtained in (3.22) in the scaling limit. For

ω = 2 (right) the solid line indicates the slope expected from (2.14) when z ≪ ℓ and

the inset shows the exponential decay in the variable |g|z3. The finite-size anomalies

near the second surface at z = L are discussed in the text.

excitations (see [17] for details). The expansion of σz
l in terms of diagonal fermions

leads to [38]

e(l) = |ψ1(l)φ0(l) − ψ0(l)φ1(l)| . (3.20)

When ω = 1, in the scaling limit with u = u(z) = |g|1/2z, equations (3.13), (3.14)

and (3.15) can be used to calculate the energy profile which is given by

e(z) = |χ3(u)χ0(u) − χ1(u)χ2(u)| = A−
e |g|z

(

1 +
2|g|z2

√
3

)

e−|g|z2

,
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A−
e =

2(
√

3 − 1)√
π

, g < 0 , (3.21)

when the system is disordered and by

e(z) = |χ1(u)χ0(u)| = A+
e gze

−|g|z2

, A+
e = 2

√

2

π
, g > 0 , (3.22)

in the ordered phase.

The numerical data for the scaled energy profiles are shown in figure 5 for g < 0 and

figure 6 for g > 0. A goog data collapse is obtained except for a finite-size anomaly near

L when g > 0 which is sent to infinity in the scaling limit. When ω = 1 the convergence

to the exact profiles obtained in the scaling limit is rapid. In the log-log scale the slope

of the linear growth for z ≪ ℓ is equal to xes − xe = 1 as expected from (2.14) and

obtained analytically in (3.21) and (3.22). For z ≫ ℓ the decay is exponential in the

variable |g|z2. The insets show that for ω = 2 the scaled profiles display a similar decay

in the variable |g|z3. More generally one excepts an exponential decay in the variable

|g|zω+1/ν according to (2.9).
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Figure 7. Finite-size scaling function of the surface energy density for ω = 1 (left)

and ω = 2 (right). The lines indicate the slope -2 which follows from (2.11) for L ≪ ℓ

and the constant asymptotic values for L ≫ ℓ.

The surface energy density es is given by equation (3.20) at l = 1. Its finite-size

behaviour is shown in figure 7. When L≪ ℓ the slope is equal to −xes = −2 as expected

from (2.11). When L≫ ℓ the scaling function tends to a constant value which is given

by g−1e(z) at z = 1 in the limit g → 0. For ω = 1 one obtains the constants A−
e in (3.21)

and A+
e in (3.22). In the logarithmic scale of figure 7 this leads to lnA−

e = −0.19112 . . .

and lnA+
e = 0.46736 . . ..

4. Conclusion

We have presented a theory for the scaling behaviour of physical profiles and finite-size

behaviour in a semi-infinite (z > 0) critical system with free boundary condition in
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the presence of a space-dependent deviation from the critical coupling. The coupling is

critical at the surface z = 0 and deviates into the bulk as a power law, ∆(z) = gzω. The

system is ordered (disordered) when the amplitude g > 0 (g < 0). The perturbation

introduces a new length scale, which is given by ℓ ∼ |g|−ν/(1+νω) and depends on the

correlation length exponent ν of the unperturbed system for a thermal-like perturbation.

This length scale appears as a supplementary relevant size which must be considered in

the scaling theory.

The scaling arguments have been confirmed by an exact solution of the semi-infinite

Ising quantum chain with free boundary condition in the case of a linear variation of the

transverse field and checked numerically for the quadratic case. In the linear case, in

the scaling limit L → ∞ and g → 0 with Lg fixed, the excitation spectrum of the Ising

chain is exactly mapped onto an harmonic oscillator problem with either Neumann or

Dirichlet boundary conditions at the origin. Thus the magnetization and energy density

profiles are given in terms of the harmonic oscillator eigenfunctions.

In this study we have considered the effect of gradient perturbations at the ordinary

surface transition. Other types of surface transitions, such as special and extraordinary

transitions, can be considered as well. We are currently investigating these issues.

Appendix

The surface magnetization in (3.16) can be written as:

ms = S−1/2 , S = 1 +

L−1
∑

k=1

P 2
k , lnPk =

k
∑

l=1

ln(1 − glω) . (A.1)

When gLω ≪ 1 one obtains

lnPk ≃ −g
k

∑

l=1

lω ≃ −gk
ω+1

ω + 1
, (A.2)

for k ≫ 1. The sum in S can be replaced by an integral when L ≫ 1, leading to:

S ≃
∫ L

0

dk P 2
k ≃

∫ L

0

dk exp

(

−2gkω+1

ω + 1

)

. (A.3)

When gLω+1 ≪ 1 the exponential can be expanded and integrated term-by-term

S ≃ L− 2g

ω + 1

∫ L

0

dk kω+1 ≃ L

(

1 − 2gLω+1

(ω + 1)(ω + 2)

)

, (A.4)

and

ms ≃ L−1/2

(

1 +
gLω+1

(ω + 1)(ω + 2)

)

, (A.5)

which gives equation (3.18) when the scaling variable u(L) is explicited.

When gLω+1 ≫ 1 and g > 0, neglecting an exponentially small correction, one may

rewrite (A.3) as

S ≃
∫ ∞

0

dk exp

(

−2gkω+1

ω + 1

)

≃
∫ ∞

0
dt t−ω/(ω+1)e−t

[2g(ω + 1)ω]1/(ω+1)
≃

Γ
(

1
ω+1

)

[2g(ω + 1)ω]1/(ω+1)
, (A.6)
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which leads to the first expression of ms in (3.19).

Finally let us consider the case where gLω+1 ≫ 1 and g < 0. Then in equation

(A.3) the argument of the exponential can be replaced by its first-order expansion near

L, where the integrand takes its maximum value on the interval of integration

f(k) ≃ f(L) + (k − L)f ′(L) , f(L) =
2|g|Lω+1

ω + 1
, f ′(L) = 2|g|Lω , (A.7)

and

S ≃ ef(L)

∫ L

0

dk e(k−L)f ′(L) ≃ ef(L)

f ′(L)
, (A.8)

where an exponentially small contribution from k = 0 has been neglected. Equations

(A.3), (A.7) and (A.8) lead to the second expression of ms in (3.19).
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