
HAL Id: hal-00397713
https://hal.science/hal-00397713v1

Submitted on 23 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Defining Component Protocols with Service
Composition: Illustration with the Kmelia Model

Pascal Andre, Gilles Ardourel, Christian Attiogbé

To cite this version:
Pascal Andre, Gilles Ardourel, Christian Attiogbé. Defining Component Protocols with Service Com-
position: Illustration with the Kmelia Model. Software Composition, 6th International Symposium,
SC 2007, Mar 2007, Braga, Portugal. pp.2-17, �10.1007/978-3-540-77351-1�. �hal-00397713�

https://hal.science/hal-00397713v1
https://hal.archives-ouvertes.fr

Defining Component Protocols with Service
Composition: Illustration with the Kmelia Model

Pascal André, Gilles Ardourel, Christian Attiogbé

LINA CNRS FRE 2729 - University of Nantes
F-44322 Nantes Cedex, France

(Pascal.Andre,Gilles.Ardourel,Christian.Attiogbe)@univ-nantes.fr

Abstract. We address in this article the description and usage of com-
ponent protocols viewed as specific services. In addition to inter-component
service composition, our Kmelia component model supports vertical struc-
turing mechanisms that allow service composition inside a component.
The structuring mechanisms (namely state annotation and transition an-
notation) are then used to describe protocols which are considered here
as component usage guides. These structuring mechanisms are integrated
in the support language of our component model and are implemented
in our COSTO toolbox. We show how protocol analysis is performed in
order to detect some inconsistencies that may be introduced by the com-
ponent designers.

Key words: Component, Service, Composition, Protocols, Property
Analysis

1 Introduction

In this work we address the description and usage of component protocols viewed
as specific services and described as such. In [9] Meyer suggests a property clas-
sification for a Component Quality Model that may lead to trusted components.
We consider the assertions and usage documentation properties which range in
the Behaviour category from the classification. The first property requires formal
descriptions which are helpful to ensure the correctness of the components and
their assemblies. The usage documentation property requires specific abstraction
means in order to help the component-based system developer to build correct
assemblies. Clearly, this component documentation property participates in the
development of trusted components: this motivates our work. In this context,
component documentation should therefore be more than a list of available ser-
vices (like IDL descriptions); it should overview the component behaviour and
constraints, provide some guidelines to use services, describe precisely the us-
age conditions of services and the interaction conditions. These requirements are
fulfilled by the present work which builds on the Kmelia component model [4]
which is an abstract component model based on services. Kmelia services are
more than simple operations: they enable complex interactions and are the key

element to model components and to connect them to make assemblies. The use
of service is central to the verification of compatibility when assembling compo-
nents according to four compatibility layers: signature, structure, contracts and
behaviours layers. In a previous article [4] we presented the Kmelia model and
we studied the definition and the verification of component assemblies which are
based on a horizontal service composition. In the present article we extend the
service composition.
In the horizontal composition, services of the same level in various components
are composed, with respect to the four compatibility levels, to define new ser-
vices.

To enforce the idea of component documentation, we consider a methodolog-
ical layer between services and components. This layer deals with the good usage
of the components: which services can be used to fulfil a given need and in what
order these services should be called. This layer corresponds to the concept of
component protocol already used in various component models. Compared with
related approaches (see Section 4) which are provider-oriented protocols, our
proposal suggests user-oriented protocols. This means that the Kmelia compo-
nent protocols are not a component life-cycle or a component constraint but
merely macro-services which play an important role in component composition.
To support protocols in Kmelia we now introduce a vertical service composition,
based on hierarchical structuring operators, to build new provided services from
existing ones. Building protocols with service composition is beneficial because:
the component model stays simple; protocols can be combined and can play
a central role in component composition and last, the verification support of
service composition may be reused.

The contribution of this article is twofold: new vertical service composition
operators are introduced with their formal descriptions; the definition of powerful
component protocols, using service composition, to structure the component
interface. From the verification point of view we reuse the existing techniques
developed for the service level and we adapt them to the protocol level.

The article is structured as follows. Section 2 is a brief overview of the Kmelia
formal component model. In Section 3 we define the vertical service composition.
Component protocols are developed in Section 4; first we discuss the concept
and compare it with related approaches; then we define protocols in Kmelia and
illustrate with an example of a bank Automatic Teller Machine system. The
verification aspect is studied in Section 5. Last, we conclude in Section 6 and
discuss some perspectives.

2 Overview of the Kmelia Component Model

Kmelia is a component model based on services [4]: an elementary Kmelia com-
ponent encapsulates several services (Fig. 1). The service behaviours are cap-
tured with labelled transition systems. Kmelia makes it possible to specify ab-
stract components, to compose them and to check various properties. A Kmelia
abstract component is a mathematical model of an open multi-service system
that supports synchronous communication with its environment. A component

specification language (also named Kmelia) and a prototype toolbox (COSTO)
support the Kmelia model. The toolbox already permits formal analysis via Lo-
tos/CADP1 and Mec2. We recall (from [4]) in the following the main definitions
and the related notations to facilitate the reading of the article.

Component C1

Interface <Interface descr>

Types <Type Defs>

Variables <Var list>

Invariant

<Predicate>

Initialisation

... // var. assignments

Services

... // as described at side

end

Provided aService_1 ()

Interface <Interface descr>

Pre <Predicate>

Post <Predicate>

Behaviour

init aStateI

final aStateF

{ state_i --label--> state_j

... }

end

Required aService_2 ()

... //in the same way

Fig. 1. Overview of Kmelia syntax

Service Description A service s of a component C is defined with an interface
Is and a (dynamic) behaviour Bs: 〈Is,Bs〉. The interface Is of a service s is defined
by a 5-tuple 〈σ, P, Q, Vs, Ss〉 where σ is the service signature (name, arguments,
result), P is a precondition, Q is a postcondition, Vs is a set of local declara-
tions and the service dependency Ss is a 4-tuple Ss = 〈subs, cals, reqs, ints〉
of disjoint sets where subs (resp. cals, reqs, ints) contains the provided services
names (resp. the services required from the caller, the services required from any
component, the internal services) in the s scope.

The behaviour Bs of a service s is an extended labelled transition system
(eLTS) defined by a 6-tuple 〈S,L, δ, S0, SF , Φ〉 with S the set of the states of s;
L is the set of transition labels and δ is the transition relation (δ ∈ S ×L→ S).
S0 is the initial state (S0 ∈ S), SF is the finite set of final states (SF ⊆ S),
Φ is a state annotation relation (Φ ∈ S ↔ subs). The transitions in δ (with
the((ss, lbl), ts) abstract form) have the ss--lbl-->ts concrete form.
The transition labels are (possibly guarded) combinations of actions: [guard]

action*. The actions may be either elementary actions or communication ac-
tions. An elementary action (an assignment for example) does not involve other
services; it does not use a communication channel. A communication action is
either a service call/response or a message communication.

1 www.inrialpes.fr/vasy
2 altarica.labri.fr

Component Description A component C is a 8-tuple 〈W, Init,A,N , I,DS , ν, CS〉
with:

– W = 〈T, V, VT , Inv〉 the state space where T is a set of types, V a set of
variables, VT ⊆ V ×T a set of typed variables, and Inv is the state invariant;

– Init the initialisation of the VT variables;
– A a finite set of elementary actions;
– N a finite set of service names;
– I the component interface which is the union of two disjoint finite sets: Ip the

set of names of the provided services and Ir the names of required services.
– DS is the set of service descriptions which is partitioned into the provided

services (DSp) and the required services (DSr).
– ν : N → DS is the function that maps service names to service descriptions.

Moreover there is a projection of the I partition on its image by ν:
n ∈ Ip ⇒ ν(n) ∈ DSp ∧ n ∈ Ir ⇒ ν(n) ∈ DSr

– CS is a constraint related to the services of the interface of C in order to
control the usage of the services.

The component behaviour relies on the behaviours of its services. The Kmelia
components are composable via the interfaces of the involved services. Interface-
compatible and behaviour-compatible services are composed at various levels
to build assemblies. Assemblies and services can be encapsulated into a larger
component called a composition.

3 Service Composition

In this section we consider two dimensions for service composition; each dimen-
sion is related to service behaviour (eLTS). The first dimension already pre-
sented in [4] deals with horizontal structuring mechanisms to compose services
and components from existing ones on the basis of a client-supplier relation. The
second dimension is introduced in this article; it deals with vertical structuring
mechanisms for building new services.

3.1 Horizontal Structuring Mechanisms

Horizontal service composition is tightly coupled with component composition
and hierarchical links between components. The horizontal structuring mecha-
nisms are established by linking required services to services which are provided
either internally or by the caller service or by a third component. These service
calls are handled with communication mechanisms. The services are described in
such a way that their interactions are made explicit via communication mecha-
nisms. We use communication channels and the standard communication prim-
itives ! and ?; they are complemented with !! and ?? to deal respectively with
service call and service wait. Indeed as service interactions are not elementary,
we distinguish their communication operators from the primitive ones.
The interacting services are viewed (from an observer) as one service. Inter-
component interactions are based on service behaviour communications. The
communications that support the interaction and hence the composition, are

matching pairs: send message(!)-receive message(?), call service(!!)-wait service
start(??), emit service result(!!)-wait service result(??).
Two services are composable if their signatures are matching (types), the as-
sertions are consistent, the (hierarchical) service dependencies are not conflict-
ing and their behaviours are compatible. When services are composed, they
are linked via the information available in their interfaces. Provided services are
linked to corresponding required services. In the same way, subservices are linked
between the composed services. The transition labels of the service behaviours
are used to perform the running of the resulting behaviour: either we have inde-
pendent behaviours or a synchronising behaviour in the case of mathing labels.

3.2 Vertical Structuring Mechanisms

In the following we consider and formalise two vertical structuring mechanisms
that enable us to structure hierarchically the services: they are the state annota-
tion mechanism and the transition annotation mechanism. Additionally to the
flexibility of service description with optional behaviours (syntactically expressed
as a state annotation) or mandatory behaviours (syntactically expressed as a
transition annotation) the structuring mechanisms provide a means to reduce
the LTS size, to share common services or subservices and to master the com-
plexity of service specification, while preserving the pre/post condition contract
at the begining/termination of services (both client and supplier constraints).

We maintain the principle that formally the unfolding of an eLTS should
result in a LTS (in a recursive way). The unfolding of a service consists in
the unfolding of all its annotated states (state unfold in the sequel) and the
unfolding of the annotated transitions (transition unfold in the sequel). For the
formalisation we use the (standard) operational semantics rules with premises
and consequences separated by an horizontal line.

The < < > > structuring operator We use the << >> operator to denote an
optional service call at any state of a service running. The principle is that the
caller of a service s, of a component C, may call a service ss that belongs to the
provided interface subs of s, when the running of s reaches a state ei (of the LTS
of s) annotated with ss.
This optional service call is syntactically noted with ei <<ss>> in the eLTS of
s. In [4] the state annotation mechanisms (called branching states) was infor-
mally introduced. According to the established link between a required and a
provided service, there is a renaming which results in a uniform link name. There-
fore, the service call is performed with linkName!!serviceName(...) where
linkName (resp. serviceName) stands for the established link name (resp. the

service name).
Let us illustrate with the example in the Figure 23. It represents the main ser-

3 This picture is generated by the KmeliaToDot module of our COSTO toolbox.

vice of the user interface component of a bank ATM specification4. This service
asks either for a withdrawal (ask for money!!ask for money) or for a query
account (query account!!query account). The e1, e2 and e10 states are an-
notated with <<code>>; it means that the code service can be called from this
state by the service which is interacting with the current one.

Fig. 2. An example of optional services in the USER INTERFACE component

The relation Φ : S ↔ subs is used to manage the annotated states of a service
specification (see Section 2). Now let formalise the structuring mechanisms in-
troduced via state annotations. Let s be a service, ej and ei (annotated with ss)
be two states of s. Let ss, a member of subs, be a service provided by (the inter-
face of) s. The behaviour of a service ss is also an (extended) labelled transition
system defined by a 6-tuple 〈Sss, Lss, δss, Φss, S0ss , SFss〉.

The semantics of the unfolding of annotated states (in the domain of Φ) is as
follows. We use the standard α-conversion to rename states and transitions to
avoid name conflict. For this purpose, αstates denotes a renaming function that
renames its parameters so as to avoid conflicts with the state names in s. The
αtransitions and αlabels functions are used in the same way to denote transition
and label renaming.

s =̂ 〈Ss, Ls, δs, Φs, S0s , SFs〉 ∧ (ei, ss) ∈ Φs ∧
ss =̂ 〈Sss, Lss, δss, Φss, S0ss , SFss〉 ∧

Sαss = αstates(Sss) ∧ Lαss = αlabels(Lss) ∧ δαss = αtransitions(δss) ∧
ssα =̂ 〈Sαss, Lαss, δαss, Φss, Sα0ss , S

α
Fss
〉 ∧

S′s = Ss ∪ Sαss ∧ L′s = Ls ∪ Lαss ∪ {?? ss} ∧
δ′s = δs ∪ δαss ∪ {((ei, ?? ss), Sα0ss)} ∪Sfss∈SαFss {((Sfss , ε), ei)} ∧

Φ′s = Φs − {(ei, ee)} ∧
S′0s = S0s ∧ S′Fs = SFs

state unfold(s, ee) = 〈S′s, L′s, δ′s, Φ′s, S′0s , S
′
Fs
〉

4 This ATM specification deals with the interaction between component services in or-
der to enable some functionalities provided by the ATM: withdrawal, query account,
etc. Some of these functionalities need the code or the amount from the user [4].

The rule expresses that after the unfolding of ei, a transition labelled with
??ss goes from the annotated state to the initial state of the ss service; if there
is a call to the service ss from the ei state, provided that the precondition of
ss is true, this transition (as the other matching action) will lead to the initial
state of ss. To handle the end of the ss service, where the postcondition of ss is
true, a transition labelled with ε relates the final states of ss and the annotated
state; finally, all the transitions of ss are allowed in s provided that the control
reaches ss (hence the inclusion of transition relations).

The [[]] structuring operator The [[]] operator denotes mandatory
service calls at any stage of a service running. To follow a transition annotated
with [[ss]] the caller of a service s must call the service ss that belongs to
the provided interface subs of s. Again pre/postcondition contract is preserved.
Only one service name is allowed for this operator. In the same way as for
state annotation, we extend the LTS of the service behaviour with a relation
Ψ : S × S ↔ subs to capture the annotated transitions. Note that to preserve
the service composition techniques and existing tools we do not modify the δ
relation.
We use three components to describe the ATM example: the USER INTERFACE
component which provides the behaviour service and requires the amount ser-
vice; the ATM CORE component which provides the withdrawal service and re-
quires the ask amount service and the ATM BASE component. The service with-
drawal is linked with the ask for money one; the link name is ask for money.
In the same way the ask amount service is linked with amount resulting in
the ask amount link. As depicted in the Figure 3, the amount service of the
USER INTERFACE must be called (here from the withdrawal service) after the
b2 state.

Fig. 3. An example of mandatory service in the USER INTERFACE component

In the same way as for the operator << >> we give the semantics of the [[]]
operator. Consider a transition between ei and ej which is annotated with ss:
we have ((ei, ej), ss) in Ψ . The semantics of the unfolding of the transition is as
follows.

s =̂ 〈Ss, Ls, δs, Φs, S0s , SFs〉 ∧
((ei, ss), ej) ∈ δs ∧ (ei, ej) ∈ dom(Ψ) ∧ Ψ(ei, ej) = ss ∧

ss =̂ 〈Sss, Lss, δss, Φss, S0ss , SFss〉 ∧
Sαss = αstates(Sss) ∧ Lαss = αlabels(Sss) ∧ δαss = αtransitions(δss) ∧

ssα =̂ 〈Sαss, Lαss, δαss, Φss, Sα0ss , S
α
Fss
〉 ∧

S′s = Ss ∪ Sαss ∧ L′s = Ls ∪ Lαss ∪ {?? ss} ∧
δ′s = δs ∪ δαss − {((ei, ss), ej)}

∪ {((ei, ?? ss), Sα0ss)} ∪Sfss∈SαFss {((Sfss , ε), ej)} ∧
Ψ ′s = Ψs − {((ei, ee), ej)} ∧
S′0s = S0s ∧ S′Fs = SFs

transition unfold(s, ti) = 〈S′s, L′s, δ′s, Φ′s, S′0s , S
′
Fs
〉

The semantic rule expresses that when a transition annotated with ss exists
between the states ei and ej , then an expansion of the ss service is performed
between ei and ej . The behaviour of ss is then reachable from the ei state via a
wait of a call (??ss) ensuring the precondition of ss; after the running of ss (one
reaches a final state), the postcondition of ss is established and the execution
proceeds from the ej state due to the ε transition. A side effect is considered
here; the Ψ relation that extends the service specification is also updated along
the semantic rule. This rule is sufficient to deal with all annotation cases. The
various cases of transition annotation are dealt with as follows:

– when an annotated transition is guarded (((ei, [g] [[ss]]), ej) ∈ δ), the
firing of the transition depends on the value of the guard; in this case the
semantics rule is slightly changed as follows;

s =̂ 〈Ss, Ls, δs, Φs, S0s , SFs〉 ∧
((ei, [g] ss), ej) ∈ δs ∧ (ei, ej) ∈ dom(Ψ) ∧ Ψ(ei, ej) = ss ∧

ss =̂ 〈Sss, Lss, δss, Φss, S0ss , SFss〉 ∧
Sαss = αstates(Sss) ∧ Lαss = αlabels(Lss) ∧ δαss = αtransitions(δss) ∧

ssα =̂ 〈Sαss, Lαss, δαss, Φss, Sα0ss , S
α
Fss
〉 ∧

S′s = Ss ∪ Sαss ∧ L′s = Ls ∪ Lαss ∪ {?? ss} ∧
δ′s = δs ∪ δαss − {((ei, [g] ss), ej)}

∪ {((ei, ?? ss), Sα0ss)} ∪Sfss∈SαFss {((Sfss , ε), ej)} ∧
Ψ ′s = Ψs − {((ei, ee), ej)} ∧
S′0s = S0s ∧ S′Fs = SFs

unfold gtransition(s, ti) = 〈S′s, L′s, δ′s, Φ′s, S′0s , S
′
Fs
〉

– when an annotated transition is one of the output transition of a node (there
is a choice of transitions), the used transition is the one which is involved in
the current interaction with another service that call (or which is called by)
the current one.

3.3 Component Maintenance and Consistency
Component maintenance Decomposing a large behaviour into subservices is
encouraged in Kmelia, but it bears consequences if the service was already used by

other services. For instance, when the behaviour of an existing component service
s is modified using the [[]] operator to exploit a part of it as a new service ss,
the existing clients of s will cease to be compatible because they miss the (new)
connection to ss. Indeed, the use of [[]] to modify s creates new transitions
between s and ss: especially a call to ss which is of course not included in the
previous client of s. This is what we called interface granularity mismatch in [2]:
a client service considers that all the communications are made in the context of
the unique old service while other newer clients use the new subservice ss. While
being quite difficult to address in the general case, the granularity mismatch is
easily avoided in the case of a maintenance or refactoring operation. For this
reason we use a rather flexible operator noted [||] which expands in the same
way as the (inflexible) [[]] operator but which adds new transitions that allow
old clients to circumvent both the call to the subservice and the waiting for its
termination. Likewise the flexible counterpart of (the inflexible) << >> is the
<| |> operator.

Formally the flexible operators have rules very similar to their inflexible coun-
terparts. We do not detail them here; the main point is that in the case of <| |>
and [||] the final states of ss may not be reached, therefore an ε-transition
relates each predecessor of these final states to ej . Indeed the new clients call
and wait for the termination, but the existing clients do not. In the case of this
formalisation δ′s is changed as follows:

δ′s = δs ∪ δαss ∪ {((ei, ε), Sα0ss)} ∪ep∈{qp|((qp,lx),sfss)∈δss} {((ep, ε), ej)}

Thanks to the flexible versions of the vertical structuring mechanisms, decom-
posing large services into subservices is expected to be a common refactoring.
The systematic detection of occurrences where such refactorings are performed
will be needed; but the adaptation of subservices that use parameters are out of
the scope of this paper.

Impact of structuring on service consistency The previous structuring
mechanisms are independent of the service behaviour but they can impact on
its consistency. The correct ordering of services may be checked using precondi-
tions and postconditions. Therefore some control may already be performed at
the provider side. We study these problems and provide some solutions in the
following in the specific case of the component protocols.

Now we have a component model entirely equipped with service structur-
ing mechanisms. The added vertical structuring mechanisms do not impact on
composition since they are defined in terms of elementary LTS. However it is
necessary to check for possible design errors. In the following section we reuse
the service composition mechanisms to describe component protocols.

4 Component Protocols

Component behaviour protocols [14, 12, 8] have been introduced to extend static
component interfaces to dynamic constraints such as valid sequences of message
exchange, valid condition of service invocation, connection handling, etc.

4.1 The Component Protocol Concept

The concept of protocol already exists in several component or service models
but its meaning varies from one model to another. In some approaches a protocol
is a specific layer in a contractual vision including assertions [5, 6, 4, 10] and non-
functional constraints like the quality of service [5, 6]. In other approaches [1,
5, 7, 14] protocols are communication rules on connectors where adaptation is
possible. Protocols can also be recursive [13, 15] or subtyped [5, 12, 14].

In a short comparison5, we use four criteria to compare the approaches: (1)
contents of the protocols (service invocation, actions, message exchange, control
structures...), (2) the attachment unit (component, interface, service, connector
or architecture), (3) the formalism itself (finite state machine, statecharts, reg-
ular expressions, etc), (4) property specification and proof support techniques
(temporal logic, markup language, algorithms, etc). We hereby classify these re-
lated approaches into three categories where the attachment unit is the main
criteria:

1. The first category groups the approaches which define a protocol as a com-
ponent lifecycle [5, 8, 11, 13, 15]. A single protocol is associated to the com-
ponent (or with its single interface). The component is a process and the
services are either atomic (messages) or defined by a specific behaviour [10].

2. In the second category a protocol defines a component view’s lifecycle. In
some of these approaches, a protocol is associated to an interface and several
interfaces coexist in the component [3, 6, 12]. In other approaches [1, 7, 14] a
protocol handles the communications on connection points (just like a usual
communication protocol).

3. In the third category [4] a protocol describes a particular use of the com-
ponent. Several protocols coexist within the component in one or several
interfaces.

The above approaches are not different in terms of expression power but
they are in terms of abstractions (concepts) from the component client point
of view. For example, using a basic component model (single interface, single
protocol), one can model every component system and in particular a system
where connectors are considered as components and multiple interfaces as com-
ponent compositions. In such a case the system architect should encapsulate the
protocols in composite components and manage the interface consistency (close
to the inheritance problems in Object-Oriented Design); this solution leads to
heavy modelling. In other words, the approaches of category 1 and some of cate-
gory 2 consider the protocol as a constraint rather than a guideline for the client.
In Kmelia (third category) we rather emphasise the user point of view; this is
more developed in the following section.

Protocols as Component Macro-services When a component model does
not have the protocol concept, any service of a component can be invoked at
any time. This is acceptable for libraries of functions but not for components
5 available at lina.atlanstic.net/fr/equipes/team10/Kmelia/

whose behaviour evolves with their service behaviours. Indeed the other solutions
would be either to use non trivial preconditions for service specifications or to
use comments to guide the users. We choose the use of protocol instead.

Component protocols enable the distinction between component state con-
straints (preconditions), sequencing constraints (ordering) and thereafter make
easier the verification of each part. Protocols are both a constraint for the com-
ponent supplier and a user guide for the component client (e.g. use case or
scenario):

– A protocol defines the rules which are needed to preserve the component
consistency.

– Protocols are helpful for the component system designer in describing guide-
lines: ”which services one can use and in what order one can use them”.

– Protocols are a coarse grain for component assemblies: instead of connecting
each service, one can connect a pattern of services.

The protocols as considered above, are a means to model user sessions, processes,
user classes or communication protocols.

4.2 Specification of Protocols in Kmelia

Within the Kmelia model a component protocol describes a valid ordering of
service calls. Therefore we beneficially reuse vertical structuring mechanisms to
describe protocols; for instance a sequence of mandatory service calls impose
an ordering of the services. A protocol stands for a provided service that gives
the access to other services of the same component. Thereby a protocol has a
behaviour (eLTS). Among the provided services of a component, those used in
a protocol description are called controlled services; those which are not used in
the protocol descriptions are called free services. Thereby our model admits the
existence of controlled services which are still offered (at any time) through the
component interface.

A Kmelia component may provide one or several protocols. The provided
protocols may be made interruptible by the component designer. The means to
do that is the use of a property to qualify some services. Therefore the protocol
interfaces have the following form:

provided protoName()
Properties = {protocol, interruptible, ...}

A protocol which does not have the interruptible property is said non-interruptible;
once it is started it cannot be interleaved with other runs.

Protocol Specification A protocol p is a specific service; it needs an interface
Ip and a behaviour description Bp; therefore we use the same description as for
a service: an eLTS. The behaviour of p is specified with 〈S,LP , δ, Φ, S0, SF 〉. But
to deal with the protocol features, we need some restrictions on the labels of
the transitions of protocols. The labels (LP) are now either annotations (noted
[[ss]] that corresponds to a service ss which should be called by the service

that uses the protocol) or a local variable manipulation (that corresponds for
example to a loop counting or a path predicate).
In the following we adopt the user’s point of view, hence using call to ss to refer
to the annotation of a state or a transition with a service ss using the vertical
composition operators.

provided withdrawProtocol()

Properties= {protocol,

nonInterruptible}

Pre true

Post true

Behaviour

init i

final f

{ i --[[connection]]--> e0

...

}

end

Fig. 4. A protocol of the ATM BASE component

The Figure 4 stands for a component ATM BASE that includes a protocol
withdrawProtocol. The protocol gives the user guide of the services connection,
withdrawal and logout. This protocol is rather simple, it does not include ex-
plicit loops, guards, basic actions on variables, etc. It appears in the component
interface in the same way as the other provided services and can be called as such.
The services that appear in the protocol (the controlled services) are called in the
scope of the protocol in the same way as the subservices of a service are called.
As far as the protocol withdrawProtocol is concerned, the services connection,
withdrawal, logout are controlled but the service account query is free.

5 Formal Analysis and Experimentations

We have undertaken the behavioural compatibility analysis of Kmelia component
services [4]. The behaviours of linked services are checked for compatibility: the
behavioural analysis is achieved by considering the simultaneous running of two
(pairwise) services involved in a communication; the transitions are performed
independently if they are labelled with elementary actions; the transitions la-
belled with communication actions should be matching pairs from both involved
services. After the extension of service composition with the vertical structuring
mechanisms, the behavioural compatibility analysis of services still works since
the new mechanisms do not modify the behavioural structure of our services:
we have the (unfolded) LTS of each service labelled with elementary actions or

communication actions. Therefore component interaction via composition of ser-
vices does not change. However, the behavioural compatibility should not hide
the general compatibility rules which include assertion checking. The use of the
vertical structuring mechanisms may lead to wrong orderings of services (if the
user does not pay attention to pre/postconditions). For example, in order to
perform safely a transition annotated with [[ss]] during the execution of a
service s, the precondition of ss should be ensured. In the same way, the use
of the structuring mechanisms to support protocol description requires a consis-
tency analysis of the protocols. In the following section we investigate one kind
of protocol analysis.

5.1 Analysis of Protocols: Inconsistency checking

The absence of inconsistency within protocol descriptions is one of the criteria
of a component correctness. For this reason, we need to detect inconsistency
in protocols specified by component designers. A protocol of a component is
inconsistent if one of its service sequences (from the protocol behaviour) is not
feasible (unfeasible sequences). The following two cases of inconsistency may be
detected:

– the existence of guarded sequences of service calls without other choice lead-
ing to a final state of the protocol;

– the existence in the protocol of a sequence of service calls [si; si+1; · · · ; sj ; sk]
such that the post-conditions of si to sj imply the negation of the pre-
condition of sk; that means, some services called before sk establish a context
which is not altered by other services before the call of sk and which is not
consistent with sk.
For instance, if the service connection has not connected as precondition
and connected as postcondition then the connection; connection sequence
leads to an inconsistent protocol (in the same way as any protocol including
this sequence).

To analyse and detect unfeasible sequences of service calls, we are experi-
menting the translation of our needs into properties that will be proved using
existing theorem provers such as the Atelier B6.

5.2 Analysis of Protocols: Inconsistency Detection

This section investigates the inconsistency cases of section 5.1. The goal is to help
the component designer to write correct component equipped with protocols.
Practically, the analysis of such components will output some warnings or errors
showing the wrong parts of the component descriptions. Consider a protocol
with its unfolded behaviour and the sub-chains of service calls going from the
initial state to a final one (avoiding loops) of the protocol behaviour. For each
chain we check for all its sub-chains si; sj (with j = i+ 1) that

¬(post(si)⇒ ¬pre(sj)) (P1)

6 www.atelierb.societe.com

This local property (where pre(s) and post(s) stand for the pre-condition
and post-condition of s) should be extended to take into account the effect of a
whole chain of calls that precedes a call to a service sk.
Remind that the eLTS that specifies a protocol behaviour denotes a finite set
of sequences which are made of the labels of the transitions. Therefore we have
chains made of service calls and simple actions. Practically, a component proto-
col imposes an ordering of the component running, where each performed service
has some effect on the component.
A service (say si = 〈〈σ, Psi , Qsi , Vsi , Ssi〉,Bsi) is correctly performed if it starts
with a state satisfying the required precondition Psi . Bsi is the service behaviour;
the effect of a service, via its Bsi behaviour, is indicated by a post-condition Qsi
together with a modification of the component state.
Consequently the initial (P1) property is

¬(Gsi ⇒ ¬Psj) (P2)

instead of ¬(Qsi ⇒ ¬Psj) for the chain si; sj , where Gsi is a global property.
It expresses the cumulative effects of services s1..si on a component just before
the call sj that follows si in a chain of the given protocol.

This generalises the situation depicted as follows:

s1︸︷︷︸
Gs1

; s2; s3; · · · ; sn

s1 ; s2︸ ︷︷ ︸
Gs2

; s3; · · · ; sn

· · ·
s1; s2; s3; · · · ; si; sj; · · · ; sn−1︸ ︷︷ ︸

Gsn−1

; sn

The predicate Psi precondition of a service si is expressed with local variables
(vli) that are the parameters of the service and with global variables (vgk) of the
component, together with typing information (tli; tgk) coming from the service
and component interfaces:

vli : tli; vgk : tgk . Psi(vli, vgk)

In the same way, the predicate Psj of a service sj is expressed with local
variables (vlj) of the sj service and with global variables (vgk) of the compo-
nent, together with typing information coming from the sj service and from the
component:

vlj : tlj ; vgk : tgk . Psj (vlj , vgk)

As we are reasoning independently of the runtime context of the services, the
values of local variables are not known (we assume in the best case that they
have the right value for the truth of the predicates) when the service are called.
The only working hypotheses are those on global variables; therefore we restrict
Psi(vli, vgk) and Psj (vlj , vgk) predicates to P ′si(vgk) and P ′sj (vgk).

The previous property (P1)

¬(vli : tli; vgk : tgk . Qsi(vli, vgk)⇒ ¬(vlj : tlj ; vgk : tgk . P (vlj , vgk)))

is rewritten with

¬(vgk : tgk . Q′si(vgk)⇒ ¬(vgk : tgk . P ′(vgk)))

and is generalised with the following proof obligation:

¬(vgk : tgk . G′si(vgk)⇒ ¬(vgk : tgk . P ′(vgk)))

Finally, detecting inconsistencies results in the systematic checking of this
proof obligation on components equipped with protocols. The obligation is yet
restrictive (local variables are ignored) but it is possible to alleviate the imposed
restrictions; however the obligation proofs will be very complex as we would
have to explore some value constraints for local variables. The current compro-
mise (i.e. considering only global variables) helps to detect some inconsistencies
with proof obligations which are tractable. Therefore we should integrate, after
preprocessing if needed to meet the input language of the prover, the G′ and P ′

predicates with their contexts (types, variables) into the targeted prover. We are
using the Atelier B prover as a support for our experimentations.

6 Conclusion and Perspectives

We have extended the horizontal structuring mechanisms of the Kmelia model
with two vertical structuring mechanisms: state annotation to deal with op-
tional service calls at some running stage and transition annotation to deal
with mandatory service calls when they are needed by the component users.
We have shown that these structuring mechanisms, first dedicated to service
and component composition, are also appropriate for describing protocols. In
this context component protocols are viewed as specific provided services. The
behaviour of a protocol is described as a service using a LTS with restricted
labels; for example they cannot include basic communication actions. The con-
cept of protocol is added to the model without changing it. The inconsistency
of service ordering may be detected through the protocols. Compared to the
existing approaches, our abstract component model is easily extensible; it can
be incrementally strengthened: in this case by defining the protocol property.

We studied protocol inconsistency detection using service pre/post condi-
tions. That led to the generation of obligation proofs that can be managed using
existing theorem provers. Robustness with respect to component maintenance
was dealt with: when a service is restructured its clients are not broken. We
have already implemented the structuring mechanisms within our COSTO tool-
box that integrates: Kmelia specification parser, translators to LOTOS and MEC,
static interoperability checkers, dynamic interoperability checkers, a translator
of Kmelia services into dot (for the visualisation of service behaviours).

The challenge of building trusted components remains exciting. The Kmelia
proposal does not yet overcome all aspects of this challenge; additionally to the

improvment of the data and assertion part of the specification language, mech-
anised correctness analysis of services and components, equipped with protocols
or not, are planned as short term research goals. We started some experiments
with the Atelier B prover to deal with aspects reated to assertions and not cover-
ered by LOTOS or MEC. In this direction, further work is planned to mechanise
the detection of inconsistency. The refinement of Kmelia model into executable
framework such as Fractal and SOFA is also an exciting investigation area.

References

1. R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213–249, July 1997.

2. P. André, G. Ardourel, and C. Attiogbé. Coordination and Adaptation for Hier-
archical Components and Services. In Third International ECOOP Workshop on
Coordination and Adaptation Techniques for Software Entities (WCAT’06), pages
15–23, 2006.

3. P. C. Attie and D. H. Lorenz. Establishing Behavioral Compatibility of Software
Components without State Explosion. Technical Report NU-CCIS-03-02, College
of Computer and Information Science, Northeastern University, 2003.

4. C. Attiogbé, P. André, and G. Ardourel. Checking Component Composability.
In 5th International Symposium on Software Composition, SC’06, volume 4089 of
LNCS. Springer, 2006.

5. S. Becker, S. Overhage, and R. Reussner. Classifying Software Component Inter-
operability Errors to Support Component Adaption. In Ivica Crnkovic, Judith A.
Stafford, Heinz W. Schmidt, and Kurt C. Wallnau, editors, Proc. of CBSE 2004,
LNCS, pages 68–83. Springer, 2004.

6. A. Beugnard, J-M. Jézéquel, N. Plouzeau, and D. Watkins. Making Components
Contract Aware. Computer, 32(7):38–45, 1999.

7. C. Canal, L. Fuentes, E. Pimentel, J. M. Troya, and A. Vallecillo. Adding Roles
to CORBA Objects. IEEE Trans. Softw. Eng., 29(3):242–260, 2003.

8. D. Giannakopoulou, J. Kramer, and S-C. Cheung. Behaviour Analysis of Dis-
tributed Systems Using the Tracta Approach. ASE, 6(1):7–35, 1999.

9. B. Meyer. The Grand Challenge of Trusted Components. In Proceedings of 25th
International Conference on Software Engineering, pages 660–667. IEEE Computer
Society, 2003.

10. OMG. The OMG Unified Modeling Language Specification, V2.0 Rfp. Superstruc-
ture Specification available at www.omg.org/docs/ptc/05-07-04.pdf, Infrastructure
Specification available at www.omg.org/docs/ptc/03-09-15.pdf, 2005.

11. S. Pavel, J. Noye, P. Poizat, and J-C. Royer. Java Implementation of a Compo-
nent Model with Explicit Symbolic Protocols. In 4th International Symposium on
Software Composition, SC’05, volume 3628 of LNCS. Springer, 2005.

12. F. Plasil and S. Visnovsky. Behavior protocols for software components, 2002.
IEEE Transactions on SW Engineering, 28 (9), 2002.

13. M. Südholt. A Model of Components with Non-regular Protocols. In T. Gschwind,
U. Aßmann, and O. Nierstrasz, editors, Software Composition, volume 3628 of
Lecture Notes in Computer Science, pages 99–113. Springer, 2005.

14. D.M. Yellin and R.E. Strom. Protocol Specifications and Component Adaptors.
ACM Transactions on Programming Languages and Systems, 19(2):292–333, 1997.

15. W. Zimmermann and M. Schaarschmidt. Checking of Component Protocols in
Component-Based Systems. In 5th International Symposium on Software Compo-
sition, SC’06, volume 4089 of LNCS. Springer, 2006.

