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Abstract. Component-Based Software Engineering (CBSE) is one of
the approaches to master the development of large scale software. In this
setting, the verification concern is still a challenge. The current work
addresses the composability of components and their services. A com-
ponent model (Kmelia) is introduced; an associated formalism, simple
but expressive is introduced; it describes the services as extended LTSs
and their structuring as components. The composability of components
is defined on the basis of the composability of services. To ensure the cor-
rectness of component composition, we check that an assembly is possible
via the checking of the composability of the linked services, and their be-
havioural compatibility. In order to mechanize our approach, the services
and the components are translated into the Lotos formalism. Finally the
Lotos CADP toolbox is used to perform experiments.
Key words: Components, Services, Behavioural Interface Description,
Composability, Behavioural Verification

1 Introduction

The rigorous development of large systems with methods that scale up and that
are reusable in various projects is still a challenging research topic. Component-
Based Software Engineering (CBSE) motivates a number of works on this topic
[19, 15, 6, 12]. The component approach promotes the (re)use of components com-
ing from third party developers to build new large systems. The success of the
large scale development of component-based systems depends on the availability
of: reliable components libraries, tools to search for components (in libraries),
expressive languages of composition of the components and especially tools for
checking the correct use of components.
The motivation for this work lies on the need of a sound basis for developing cor-
rect components, for studying composition and for implementing related tools.
While many component approaches focus on the structural aspects of component
composition, we insist on the functional (services) and dynamic (behaviour) as-
pects of the components because they are a main criteria for component reuse. In
this perspective, related works deal with the behavioural compatibility for simpli-
fied abstract component models [6, 8, 5]. On the other hand there are mechanized
approaches such as Tracta [10] or SOFA [17] but their component models are
restricted. These works associate behaviour(s) to components and not to ser-
vices. But this is a limitation since the services provide a finer description of the



component usage.
The goal of the work is to provide the designer of component-based systems with
a high level component model and also with the methods to assist his/her use
of the components. We are interested in building an experimental toolbox for
component study and development.
The main contribution of this article is a simple formal model (named Kmelia)
for modelling and composing components; it supports the verification of compos-
ability. We define composability of components by considering the links between
their services and the behavioural compatibility of these services. Therefore, we
get a hierarchical definition of composition and assemblies. In our work, a com-
ponent is viewed and used through the services which constitute its interface.
The use of services is central for the verification of composability when assem-
bling components.
It is important to detect the defects which could lead to a faulty behaviour of the
developed system early in the development. A bad interaction between a called
service and the calling one may lead to a blocking of the whole system. To ensure
a good level of correctness of the components and their assemblies, the formal
verification of the service descriptions with respect to the desired properties of
the component is necessary. Consequently, the specifications of components and
their service behaviours should be abstract and formal. The use of an abstract
formal model makes it possible to hide the implementation details of the com-
ponents in order to have general reasoning techniques which are adaptable to
various implementation environments.

The article is structured as follows. Section 2 presents the Kmelia model
through the description of services and components. It is illustrated with an ex-
ample of a bank Automatic Teller Machine system. Further details on Kmelia

are given in [3]. The Section 3 introduces the service links and sublinks used
to describe component assemblies and compositions. Section 4 is devoted to the
composability of services and components. Behavioural compatibility between
component services is also treated there. In the Section 5 we present the mech-
anization approach undertaken to support the Kmelia model. Experiments are
done with Lotos. Section 6 concludes with a discussion and the perspectives.

2 A Component Model Based on Services: Kmelia

In the Kmelia model, a component is characterised by: a name (the component
identifier), a state (variables and an invariant predicate on them), an interface
made of services and the description of the services. The interface specifies the
component interactions with its environment [1, 15]. A Kmelia component in-
terface is made of provided services and required services. A provided service
offers a functionality, while a required service is the expression of the need of a
functionality. This need is fulfilled when the component is combined with other
components (in an assembly), one of them supplying the corresponding required
service. Therefore, in Kmelia, component services interact with synchronous com-
munication supported by message exchanges or service calls/responses via com-
munication channels. Related works [17, 18, 16] associate dynamic behaviours



(or protocols) to components and services are atomic operations (messages).
Unlike these approaches, we consider services as units of interaction and they
are equipped with dynamic behaviours (service behaviours). This provides finer
component descriptions where services are the main entities [2].

2.1 Service Specification

A service s of a component C is defined with an interface Is and a (dynamic)
behaviour Bs: 〈Is,Bs〉. Usually a required service does not have the same level
of detail as a provided service since a part of these details is already in the
(provided) service that calls it.
The interface Is of a service s is defined by a 5-tuple 〈σ, P, Q, Vs, Ss〉 where
σ is the service signature (name, arguments, result), P is a precondition, Q is
a postcondition, Vs is a set of local declarations and the service dependency Ss

is a 4-tuple Ss = 〈subs, cals, reqs, ints〉 of disjoint sets where subs (resp. cals,
reqs, ints) contains the provided services names (resp. the services required from
the caller, the services required from any component, the internal services) in
the scope of s. Using a required service r in calp of a service p (as opposed to a
component interface) implies r to be provided by the component which calls p.
Using a provided service p in the subr of a service r but not in the component
interface, means that p is accessible only during an interaction with r.

The behaviour Bs of a service s is an extended labelled transition system
(eLTS) defined by a 6-tuple 〈S, L, δ, Φ, S0, SF 〉 with S the set of the states of s;
L is the set of transition labels and δ is the transition relation (δ ∈ S ×L → S).
S0 is the initial state (S0 ∈ S), SF is the finite set of final states (SF ⊆ S),
Φ is a state annotation partial function (Φ ∈ S → subs). An eLTS is obtained
when we allow nested states and transitions. This provides a means a flexible
description with optional behaviours named branching states and also reduces
the LTS size. A branching state is the one annotated with sub-service names
(using the Φ function), which are (sub-)services of the component C that may
be called when the evolution reaches this state (but the control returns to this
state when the launched sub-service is terminated). Formally, the unfolding of
(the branching states of) an eLTS results in an LTS.

Transitions: The elements ((ss, label), ts) of δ have the concrete Kmelia syn-
tax ss--label-->ts where the labels are (possibly guarded) combinations of ac-
tions: [guard] action*. The actions may be elementary actions or communica-
tion actions. An elementary action (an assignment for example) does not involve
other services; it does not use a communication channel. A communication ac-
tion is either a service call/response or a message communication. Therefore
communications are matching pairs: send message(!)-receive message(?), call
service(!!)-wait service start(??), emit service result(!!)-wait service result(??).
The Kmelia syntax of a communication action (inspired by the Hoare’s CSP) is:
channel(!|?|!!|??) message(param*).

Channels: A communication channel is established between the interacting ser-
vices when assembling components. A channel defines a context for the com-
munication actions. At the moment one writes a behaviour, one does not know



which components will communicate, but one has to know which channels will
be used. A channel is usually named after the required service that represents
the context. The placeholder keyword CALLER is a specific channel that stands
for the channel open for a service call. From the point of view of a provided
service p, CALLER is the channel that is open when p is called. From the point of
view of the service that calls p, this channel is named after one of its required
service, which is probably named p. The placeholder keyword SELF is a specific
channel that stands for the channel opened for an internal service call. In this
case, the required service is also the provided service.

2.2 Component Specification

A component (C) is a 8-tuple 〈W , Init,A,N , I,DS , ν, CS〉 with:

– W = 〈T, V, VT , Inv〉 the state space where T is a set of types, V a set of
variables, VT ⊆ V ×T a set of typed variables, and Inv is the state invariant;

– Init the initialisation of the VT variables;
– A a finite set of elementary actions;
– N a finite set of service names;
– I the component interface which is the union of two disjoints finite sets: Ip

the set of names of the provided services that are visible in the component
environment and Ir the names of required services.

– DS is the set of service descriptions; it is partitioned into the provided ser-
vices (DSp

) and the required services (DSr
).

– ν : N → DS is the function that maps service names to service descriptions.
Moreover there is a projection of the I partition on its image by ν:
n ∈ Ip ⇒ ν(n) ∈ DSp

∧ n ∈ Ir ⇒ ν(n) ∈ DSr

– CS is a constraint related to the services of the interface of C in order to
control the usage of the services.

The behaviour of the component relies on the behaviours of its services. The
constraint CS describes general conditions on the service usage: it may be an
ordering of services or a predicate (temporal condition, mutual exclusion...). A
specific service offered (like a main) as a single provided service may implement
a Component Behaviour Protocol in the sense of [10, 17].

2.3 Component Assembly

Assembling Kmelia components consists in linking their pairwise services: re-
quired services may be linked to provided services. Formal details are given in
the Sect. 3.3. Let consider two main semantics for the link operator: the monadic
and the polyadic semantics. With the monadic semantics, only one provided ser-
vice may be associated to a required service; a component is both a component
type and the unique instance of it; a required service may be linked to at most
one provided service (no overloading); only one instantiation of a service exists
at any time. The service evolutions are concurrent processes with shared compo-
nent state. With the polyadic semantics a provided service may be linked with
various required services (allowing broadcast communications); in the same way



a required service may be linked to various providers. As an example, a chat
application provides services for multiple clients. Only the monadic semantic is
considered in this article.

2.4 Illustration

We illustrate the model with a simplified real-world problem: a bank Automatic
Teller Machine (ATM). Since the case is very common, the details are omitted
here. Fig. 1 shows a simplified component assembly for the ATM, that includes
four components: the central ATM CORE which handles the ATM bank services,
the USER INTERFACE component which controls the user access, the AAC stands
for the bank management and the LOCAL BANK holds the local management ac-
cess. The component usage is quite flexible: an assembly may be correct for
the services whose dependency chains are fulfilled. The USER INTERFACE

AAC

authorization

LOCAL_BANK

balance ask_
account_balance

withdrawal

account_query

USER_INTERFACE

behaviour

ask_for_money

ATM_CORE

code
ask_code

amountask_amount
account_update

ask_
authorization

debit
eject_card
swallow_card
display query_account

deposit

transfer

provided service required service
link

service call

Fig. 1. Assembly for an ATM System

component offers the (provided) code service only in the interface of the be-

haviour service; it means that the USER INTERFACE only gives its code
during a withdrawal operation that it has initiated. In such a situation, code is
a sub-service. The component services are detailed in the Fig. 2. Note that the
USER INTERFACE may also call a withdrawal service that does not require
its code. In the following we focus on the withdrawal provided service which is
linked to the required ask for money service, called by the behaviour service.
This triple constitutes a context for a service verification (see Sect. 4.4). The
links associated to withdrawal are:

(p-r ATM_CORE.withdrawal, USER_INTERFACE.ask_for_money

//p-r stands for provided-required

//sublinks

(r-p ATM_CORE.ask_code, USER_INTERFACE.code)

(r-p ATM_CORE.ask_amount, USER_INTERFACE.amount) )



!result(myCode)

<code, amount>

ask_code?result(c:Integer)

ask_code()

!result(false)

ask_for_money?result(b)

ask_for_money(myCard)

ATM_CORE.withdrawal(card : CashCard) =

USER_INTERFACE.code () =

USER_INTERFACE.behaviour() =

e0

e1

e2

e0

e1

e2

e4

f

nbt := 3

i

; nbt := nbt - 1[c<>card.code
& nbt >0]
display(...)

e3

[c=card.code]
rep:=ask_authorization
(card.id, c)

[c<>card.code & nbt = 0]
display(...) ; swallow_Card()

[not rep] display(...) ;
eject_card()

e5

[rep] display(...)

e6

ask_amount() 

e8

[m <= card.limit]
debit(c,m);
eject_card() 

!result(true)

[m > cart.limit]
display(...) 

!result(a)

USER_INTERFACE.amount () =

a := acceptAmount()
e7

 ask_amount?result
(m:Integer)

<code>

e10

Fig. 2. LTS of the two main services (with the sub-services)

The withdrawal starts with an identification step: card insertion, password
control, authentication by ACD/ATM controller (AAC). If the AAC accepts
the transaction, the ATM asks for the amount of cash, otherwise the card is
ejected and the withdrawal transaction ends. The user enters an amount which
is compared with the current card policy limit. When the allowed amount is lower
than the requested one or if the current ATM cash is not sufficient, the ATM
asks again for the amount of cash. Otherwise the ATM asks the AAC to process
the transaction, updates the card limit, gives the cash and prints a receipt when
it is possible. In any case the withdrawal transaction ends after a card ejection.
There are four elementary actions (debit, eject card, swallow card, display). The
channels may be omitted and deduced either from the context or from default
rules. This syntactic sugar is not currently implemented in our prototype.

The interaction description is made flexible by enabling the call of sub-
services when the evolution reaches branching states. For example, the notation
e1 <code, amount> expresses that the services code and amount may be called
in the e1 (branching) state. Thus the ask for money service may operate with



any withdrawal protocol (whatever the order for amount and code). The angle
brackets are the syntactic counterpart of the Φ function.

3 Component Assembly and Composition

In the Kmelia model, the component assembly and composition are based on
various types of links between services. For instance we have a sublink when a
hidden service (not in the interface of the components) is called in the scope of a
provided service. In an assembly, required services are linked to provided services.
A composition is an assembly where some unlinked services are promoted to the
composite level.

In this section, we provide the formal background for component assembly
and composition. We use a set theory notation close to that of Z or B where
X ↔ Y denotes the relation from X to Y (a set of pairs), id denotes the identity
relation; dom and ran denote respectively the domain and the range of a relation;
a 7→ b denotes the pair (a, b). In the remainder let C be a set of Ck components
with k ∈ 1..n and
Ck = 〈〈Tk, Vk, VT k, Invk〉, Initk,Ak,Nk, Ik,DSk, νk, CSk〉 as defined in Sect. 2.
Let N be the set of service names of C (N =

S

k∈1..nNk).

3.1 Dependencies between Component Services

Let dependsk be a relation between component services defined as a part of the
service dependency in a component Ck where sm = νk(m):

dependsk : Nk ↔ Nk

∀(n, m) : dependsk • (n ∈ calsm) ∨ (n ∈ reqsm) ∨ (n ∈ subsm)

3.2 Links and Sublinks between Component Services

Basically, the links are 4-tuple of component and service names with the following
properties: (1) the service names are those of their owner components, (2) any
component service is not linked to itself (not recursive).

BaseLink : IP (C ×N × C ×N )
(1) ∀(Ci, n1, Cj , n2) : BaseLink • n1 ∈ Ni ∧ n2 ∈ Nj

(2) ∀Ci : C, n1 : Ni • (Ci, n1, Ci, n1) /∈ BaseLink

A link connects two services of the interfaces of their owner components.

Link ⊆ BaseLink ∧ ∀(Ci, n1, Cj , n2) : Link • n1 ∈ Ii ∧ n2 ∈ Ij

A sublink is a base link between two services such that one of them at least is
hidden. For instance we have a sublink when a hidden service is called in the
scope of a provided service.

SubLink ⊆ BaseLink ∧ ∀(Ci, n1, Cj , n2) : SubLink • n1 /∈ Ii ∨ n2 /∈ Ij



The sublink makes explicit the relation between the service dependencies de-
clared in the interfaces of the services involved in a Link. In the following these
relationships are constrained in order to define a specific component assembly
and component composition.

3.3 Component Assembly

A component assembly is a triple A = (C, links, subs) where C is a set of
components, links is a set of links between the services of C and subs is a
relation from links to sublinks.

links ⊆ Link ∧
(1) (∀(Ci, n1, Cj , n2) : links • Ci ∈ C ∧ Cj ∈ C ∧

((n1 ∈ Ipi
∧ n2 ∈ Irj) ∨ (n1 ∈ Iri ∧ n2 ∈ Ipj

)))

subs : Link ↔ SubLink ∧
(2) dom subs = links ∧
(3) (∀((Ci, n1, Cj , n2) 7→ (Ck, n3, Cl, n4)) ∈ subs • Ci = Ck ∧ Cj = Cl) ∧
(4) (∀(Ci, n1, Cj , n2) : ran subs • ((νi(n1) ∈ DSpi

) xor (νj(n2) ∈ DSpj
)))

The components of the links are the components of the assembly (1). The sub-
links are related to links (2) that concern the same components (3). Provided
services are linked to required services (1 and 4).

The triple A is a well-formed component assembly if the following property
holds: the services in the sublinks are not in the involved component interfaces,
but they are in the dependencies of the involved services (w.r.t sublinks).

(5) ∀(l, sl) ∈ subs | l = (Ci, n1, Cj , n2) ∧ sl = (Ck, n3, Cl, n4) •
((n3, n1) ∈ dependsi

∗ ∨ (n4, n2) ∈ dependsj
∗)

where dependsi
∗ is the transitive closure of dependsi.

Practically a link establishes an implicit communication channel between the
involved services. This channel is share with the sub-services.

3.4 Component Composition

A composition is a well-formed component assembly which is encapsulated within
a component. We define an operator named compose that builds a new compo-
nent by combining one or several components.
The parameters of the compose operator are:

– an outer component oC (the composite) together with its interface, new
services and services of its constituents;

– a well-formed assembly A = (C, links, subs) (see section 3.3);
– the desired promotions, that are set of links between the services of oC and

those of Ck ∈ C.

The promotion is a relation between a service of the composite oC and an
unlinked service of the components in A, that preserves existing sublinks; such



promoted service becomes usable at the composite level.

promotions ⊆ BaseLink ∧
(∀(Ci, n1, Cj , n2) : promotions •

(1) (Ci = oC) ∧ (Cj ∈ C) ∧
(2) ((νoC(n1) ∈ DSpoC

∧ n2 ∈ Ipj
) ∨ (νoC(n1) ∈ DSroC ∧ n2 ∈ Irj)))

The resulting component is an enhancement of oC: it contains every provided
and required services of oC and provides/requires the promoted services from
other components in C (using promotions). Here the sub-services of the promoted
services are also promoted.

From the methodological point of view, the composition operator may be
used to refine an abstract component with a component assembly; it may also
be used to structure simple components or to provide a more restrictive interface
of existing components.

4 Formal Verification of Components and Assemblies

Formal verification of components is performed according to various aspects. In
the Section 4.1, we overview the main issues of component formal verification
so as to situate the composability of components. Thereafter we focus on one
specific aspect: the verification of the correct interaction between components.
Indeed, a part of the service composability lies on the behavioural compatibility
of the services: a correct service interaction is a guarantee for the composition
of components. In the following, both static aspect and dynamic aspect of the
verification are considered to check composability.

4.1 Formal Analysis of Components

The safety and liveness verifications apply to software components; but they
should be adapted to component features. The behavioural compatibility between
components is related to both safety and liveness. It is a widely studied topic [21,
8, 4, 7]. Behavioural introspection (discovering the component behaviour) is one
way to deal with behavioural compatibility; but one has to prove compatibility.
Checking behavioural compatibility often relies on checking the behaviour of a
(component based) system through the construction of a finite state automaton.
However the state explosion limitation is a flaw of this approach [8, 4]. More
generally, the following properties should be considered for verification.

– (Static) Interoperability properties : it is the compatibility of signatures and
interfaces (naming and typing); do a component gives enough information
about its interface(s) in order to be (re)usable by other components;

– Architectural properties : that means the availability of the required compo-
nents, the availability of the needed services, the correctness of the links
between interfaces of components (providers and callers);

– Behavioural compatibility : it is about the correct interaction between two or
more components which are combined. Several points need to be considered:
various kinds of interaction, synchronous or not, atomic actions or non atomic
ones.



– Correctness of functional properties : do the components do what they should
do? These properties may be independently checked on the components
which are used and also on the composition of the components;

– Flexibility of maintenance (modifiability, evolution): that means the com-
ponents should be simply updated on needs, without affecting drastically
the third party components which use them. The update of a component
includes, the modification of the implementation of its service(s), the remov-
ing/adding of a service, etc.

– Heterogeneity : within the CBSE approach, the components coming from
various providers may be composable to develop large systems. This is a
challenging concern because the components may have different models.

– Compositionality : the properties of a global system should be deduced from
the properties of the composed components; it is an important concern.

The first three categories of properties are related to composability.

4.2 Composability

We define composability at different related levels: service level and component
level.

Definition 1 (Service Composability).
A provided service spCi

= 〈〈σp, Pp, Qp, Vsp, Ssp〉,Bsp〉 of a component Ci and
a required service srCj

= 〈〈σr , Pr, Qr, Vsr, Ssr〉,Bsr〉 of a component Cj are
s-composable (noted s-composable(spCi

, srCj
)) when srCj

is required in the be-
haviour Bs of a service s of Cj if:

1. the interfaces of spCi
and srCj

are compatible; that is,
(a) their signatures are matching (no type conflict: σp and σr are identical),
(b) the assertions (pre/post) are consistent (post(spCi

) ∼ post(srCj
)) and

(c) their mutually dependent services Ssp, Ssr (see service dependencies in
Sect. 2.1) are not conflicting: the inner required-provided relationship is
preserved: that means they involve a well-formed assembly(see Sect. 3.4).

2. the behaviour Bsp of spCi
and Bs of s are compatible: compatible(Bsp,Bs);

that is, their eLTSs are matching; either they evolve independently or they
perform complementary communication actions until a termination without
a deadlock.

The conditions 1.c. and 2. are checked in the context of each service s that
calls srCj

. Bsr is nul since the required srCj
does not have a behaviour. The

compatibility of behaviours is dealt with in more details in the following.

Definition 2 (Component Composability).
Two components Ci and Cj are c-composable according to a set of service pairs
ss, if all the pairs (si, sj) of ss are composable:
c-composable(Ci, Cj , ss) ⇔ ∀(si, sj) ∈ ss • s-composable(si, sj)

Proposition 1 (Assembly ’Checkability’). When two components Ci and
Cj are c-composable wrt to a list of services ss, then Ci and Cj can be linked in
a well-formed assembly via ss. This generalises to several components.



Accordingly Kmelia component assemblies and compositions may be formally
checked for correctness.

4.3 Checking Composability: Static Analysis

The interface of a component contains the sets of provided and required ser-
vices (with the naming and typing informations); additionally, informations on
required or called sub-services are attached to the interface. In a similar way,
these informations are available for the service descriptions. Accordingly, the
static analysis of the interface of a component is achieved using:

i) simple correspondence checking algorithms and possibly standard typing al-
gorithms;

ii) a deep investigation on the availability of required or called sub-services.

The definitions given above are used to perform this static level analysis. At this
stage, some incompatibilities may be detected. We cover by the way a main part
of (static) interoperability properties and architectural properties.

4.4 Checking Composability: Behavioural Compatibility Analysis

At this stage, we assume that a verification of the static and architectural prop-
erties is already performed for a given assembly. This implies that each service
of the components is completely and correctly described. Now, the main concern
is to check that a given component interacts correctly with others (which may
be provided by a third party developer) over the links. Remind that each ser-
vice is described with an eLTS where the transitions are labelled with guarded
elementary actions and communication actions (see Sect. 2.1).

The component interacts correctly with its environment if its services are
composable with the other services. We consider only one caller service and one
called service at time. We check that Bp a given eLTS matches with Br a second
eLTS: compatible(Bp, Br). A complete interaction between the services of several
components results in a pairwise local analysis between the LTS of a caller and
that of the called service. The eLTSs are unfolded to obtain LTSs. Therefore, two
services interact until a terminal state if the labels of their associated LTSs are in
correspondence according to a set of rules that define compatible. They are based
on the labels of the transitions going from a current state to the following states
(output transitions). The rules indicate the correct evolutions according to the
current states of two involved services: from a current state considered in each
LTS, we explore the labels on the output transitions. In the case of elementary
actions on the labels, each LTS evolves independently, their current states are
updated. In the case of communication actions on the labels, the transitions
match if for the considered services (hence the appropriate channels), we have
the matching pairs: send(!)-receive(?), call service(!!)-wait service start(??), emit
service result(!!)-wait service result(??). In this case each LTS evolves in its next
state. If the labels do not match, an incompatibility or a deadlock is detected.
After a final state of a called service, the caller may continue with independent



transitions or with transitions that imply other (sub-)services. When the final
states are reached without deadlock, the services are compatible.

In the following we focus on a practical verification of the behavioural com-
patibility aspect, that (re)uses an existing verification toolbox.

5 Formal Verification with Lotos/CADP

We use Lotos [14] and its associated CADP [9] toolbox to experiment on the
composability checking. We encode the Kmelia components into Lotos processes
which are the input of the CADP tools. In order to exploit the CADP tools, the
behavioural compatibility is based on communication between processes.

5.1 Lotos

Lotos [14] is an ISO standard formal specification language. It is initially de-
signed for the specification of network interconnection (OSI) but is also suitable
for concurrent and distributed systems. Lotos extends the process algebra CCS
and CSP and integrates (algebraic) abstract data types. A Lotos specification
is structured with process behaviours. It has the main behaviour description op-
erators of the basic process algebra CCS and CSP. Lotos uses the ”!” and ”?”
operators of CSP which denote respectively emission and reception. The salient
features of Lotos are: the powerful multi-way synchronisation; the use of com-
munication channels called gates ; the synchronous interaction of processes; the
use of algebraic data types to model data part of systems; the availability of the
CADP toolbox [9].

A process is the description in the time, of the observational behaviour of a
given system. The description is given as the non-deterministic combination of
the sequence of events feasible by the system. The set of events of a behaviour
is called the alphabet of the process. In a process specification, a sequence of
events is denoted with ”;”. The choice between alternative behaviours B and
C is described with B [] C. The notation [Bterm] -> B describes a process
behaviour B guarded with a boolean term Bterm. The inaction is denoted with
stop. A successful termination is denoted with exit. The sequential composition
of behaviours B and C is described with B >> C.

Three parallel composition operators are used to compose processes: ||| is
used for the interleaving behaviour of the composed processes; || is used for the
strict (on all the events) synchronisation of the involved processes; |[L]| where
L is a synchronisation list (of events) is used to synchronise the processes on the
events within the list L; when L is empty this results on a interleaving. The use of
L forces the related processes to perform matching communication actions. Both
synchronous and asynchronous communications may be described in Lotos.

The ISO Lotos has an operational semantics in terms of labelled transitions
systems. The semantic rules define the behaviour of the Lotos processes and
their communication. As far as the data part is concerned, algebraic term rewrit-
ing is considered to evaluate data terms and each variable may be instantiated
by the values corresponding to its type.



5.2 Translating the Services into Lotos Processes

Our working hypotheses are the followings. To deal with the communication,
each service has a default channel made by prefixing the service name with
the keyword ”Chan ”. Thus, Chan serv denotes the default channel of a ser-
vice named serv. This channel is used as an alphabet element of the process
corresponding to the service. In the same way, the channels associated to the
services with which a service serv communicates (service calls appearing in the
behaviour) are listed in the alphabet. We treat the activation of a service with
a communication (to enter the initial state of the called service). A process cor-
responding to a service waits for a call. The caller service sends a call. Initially
each service (the associated process) waits for a communication using its default
channel. A caller service calls a service by sending a message (with the called
name as parameter) on the default channel of the called service. The parameters
are also sent using the default channel of the called process.

Translation Principle and Result

Remind that the behaviour of a component service is a transition system where
each label is a combination of actions which may be elementary actions, or
communication actions. From each state of a service there are one or several
(outgoing) transitions going to other states.

Lotos processes are basically state machines. Therefore the transition sys-
tem which describes a service is described with one or several Lotos processes;
one main process is associated to the service and one or several subprocesses
are used to described the former one. Basically, each state is translated into a
process. The behaviour of the latter describes the transitions which are attached
to the corresponding state.

The translation procedure is performed as follows: each service state is ex-
amined; each outgoing transition of the state corresponds to a Lotos action
followed by the translation of the reached state. The used channels, the com-
munication actions and the elementary actions are collected to form the current
process alphabet. According to these working hypotheses, we define a semantic
encoding (namely LotosEncoding) of the service specifications. The encoding
into Lotos of service specifications is inductively performed by considering: ser-
vice interface without formal parameters; service interface with formal parame-
ters; service states (initial, final, intermediary and branching) and the transitions
related to each service state.

During the translation process, the data type spaces are reduced1 to avoid
the state explosion problem: we use enumerated or byte types. For each service
ServName, we define a Lotos data type. It has a constructor which is named
according to the service; this permits the call of the service. Besides, all the
messages which are sent to the default channel associated to a service are used
as constructors of the data type associated to this service. Enumerated data are
translated with constructors of abstract data types. The expressions used within

1 Model checking tools consider all the possible values of a type.



actions are not evaluated; they are translated by simple actions in the Lotos

process. The guards are not evaluated; each guard is encoded by an action.

5.3 Using CADP to Check the Behavioural Compatibility

The behavioural compatibility checking is based on Lotos processes communica-
tion. We use the |[L]| composition operator. A compatibility checking involves
a pair of services: the caller service and the called one; for example behaviour

and withdrawal in our case (see Fig. 2). The withdrawal service is required
by behaviour via the name ask for money. A renaming of withdrawal with
ask for money is performed. These two services (the caller and the called) are
translated into Lotos processes (say Lbehaviour and Lask for money); each
process has its alphabet (alphabet in the following); the processes are then
composed using the |[L]| operator to get a resulting process called Res in the
following. L is instantiated with the list of channels and actions used for the
communication between both services as illustrated above.

Res = Lbehaviour[alphabet]

|[chan_behaviour, chan_ask_code, chan_ask_amount, ...]|

Lask_for_money [alphabet]

Consequently, the services are compatible if the obtained Res process has no
conflict according to the composition operator.
As far as the running example is concerned, we check that USER INTERFACE and
ATM CORE are composable according to the services (ask for money, withdrawal):
the interface checking is easy. The behaviours of ask for money and withdrawal

are compatible.
To make it easy the experimentation of our component model, we implement

an analyser (using Antlr2 and Java) of component specifications. A prototype
(named kml2lotos) to translate the component services into Lotos is also de-
veloped using Java.

Given an input component specification (in Kmelia), the analyser parses the
specification and generates the corresponding internal structure. The latter is
read by the kml2lotos prototype; it generates communicating Lotos processes
which are used as input to the CADP toolbox. In the ATM case study (see Sec-
tion 2), the experiment deals with an assembly of components. Specific services
(a caller with a called one, branching node with the sub-services) are checked.
The CADP functionalities raise failures when there are lack of channels, wrong
channels, incompatible types, blocking or incompatible behaviours.

The experiment using CADP helps us to discover specification errors; for
example when a wrong communication channel is used. When the errors are
recovered and the communications are fine, the CADP caesar utility generates
the (execution) graph corresponding to the system. The graph is very large in
the case of brute translation; but when we erase independent alphabet actions
and minimise the generated graph, we get a graph with less than hundred states.

2 www.antlr.org



Stepwise simulation (using CADP executor utility) is performed to analyse the
evolution of the system.

6 Discussion and Perspectives

We have presented a model where a component provides several behaviours via
services. This flexibility offered to the user results in a non trivial formalisation
of the model and its composability. A formal model is built to serve reasoning
purpose and the composability is defined. Composable components may be used
to build component assemblies or compositions. Some experiments are performed
with the Lotos CADP toolbox. A prototype toolbox (COSTO: COmponent
Study TOolbox) is under development to support our experiments; it already
integrates some modules: a Kmelia analyser, an architectural correctness checker,
a translator to generate Lotos processes from the component specifications. We
also have a translator to MEC.

Compared to related works [4, 13], our approach works at the abstract spec-
ification level, it offers a more flexible formalism than the ones proposed by [21,
4] for the description of interacting services. We adopt a pairwise verification
approach that avoids state explosion like in [4]. From the practical point of view,
our proposal follows the mechanized approaches like Tracta [10] or SOFA [17].
The latter already provides many analysis tools; but we have a different com-
ponent model that needs deep investigation before tool reuse and development.
However we can build on the experiences gained with these works. Most of the
approaches that integrate behavioural specifications to components [17, 16, 18]
work at a protocol (or component) level while our approach is mainly based on
the services, the protocol level is handled by a constraint in our model. More-
over, their communication actions refer only to messages and not to services (no
service call or result). The non-regular protocols of [18] may be represented in
Kmelia using guards and nested states, but using algebraic grammar provides a
more efficient solution for the given applications. The work of [16] addresses as-
semblies and implementation issues in Java but does not deal with composition.

Many exciting investigations remain to be done. Whatever the component
model, the compositionality is still a challenge [20]. The perspectives of this
work are: to reinforce the correctness properties of component with supplemen-
tary study of correctness of components and services with regard to their envi-
ronment; to extend the COSTO (COmponent Study TOolbox) prototype under
development so as to cover more mechanized analysis concerns.
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