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Self-similar trajectories in multi-input systems

Self-similar trajectories play an important role in deterministic feedback control systems that possess a symmetry group of Fuller type. We consider self-similar trajectories in multi-input systems and the linear part of the associated Poincaré maps in orbit space with respect to the symmetry group. We show that Fuller groups contract the symplectic structure of the system's phase space and derive some properties of the spectrum and the eigenvectors of the Poincaré map.

Introduction

We consider self-similar trajectories in deterministic feedback control systems, which give rise to Hamiltonian dynamics via Pontryagins maximum principle. Self-similar trajectories were discovered by Fuller in 1960 [START_REF] Fuller | Relay control systems optimized for various performance criteria[END_REF]. Fuller considered the optimal control system ẋ = y, ẏ = u ∈ [-1, 1], x(0) = x 0 , y(0) = y 0 , J(u(

•)) = 1 2 ∞ 0 x 2 (t) dt → inf . ( 1 
)
Here u is a bounded scalar control; x, y parametrize the state space R 2 ; and the cost functional J is to be minimized over all measurable control functions u(t). Fuller has found that outside the origin the optimal feedback control is bang-bang. The origin itself is a singular stationary trajectory of second order. The ratio of successive intervals of time between successive control switchings turned out to be constant. Therefore Fuller named the corresponding trajectories constant-ratio trajectories. They are the prototype of selfsimilar trajectories. In system (1) the origin is an accumulation point of control switchings. This phenomenon is called chattering and is closely related to self-similar trajectories.

Fuller discovered [START_REF] Fuller | Dimensional properties of optimal and sub-optimal nonlinear control systems[END_REF] that system (1) possesses a one-parametric symmetry group G F . Namely, if (x(t), y(t), u(t)) is an optimal trajectory of the system, then (λ 2 x( t λ ), λy( t λ ), u( t λ )) is also an optimal trajectory for any positive number λ. We say that a trajectory is selfsimilar if it is invariant with respect to a nontrivial subgroup of G F . Consider an orbit of G F in state space. The phase velocity of the optimal synthesis has the same direction at any point of this orbit, and determines a direction field on orbit space. Without the origin (0, 0), the orbit space will be homeomorphic to S 1 . It consists of a single periodic orbit of the direction field and corresponds to a one-parametric family of self-similar trajectories.

This example demonstrates that self-similar trajectories are important elements in the structure of the optimal synthesis of systems with a symmetry of Fuller type. Namely, they correspond to periodic orbits and stationary points of the direction field that is defined on orbit space with respect to the symmetry group. Fuller [START_REF] Fuller | Constant-ratio trajectories in optimal control systems[END_REF] developped a detailed algorithm for calculating self-similar trajectories in the case of a symmetrically bounded scalar input. He considered the case where the control jumps between the two extremal values and the intervals between successive control switchings form a decreasing geometric progression.

The techniques presented in this paper allow to find self-similar trajectories in the general case and to reveal the behaviour of the system in the neighbourhood of these trajectories.

Applications of self-similar trajectories are not restricted to systems with a Fuller group. Zelikin and Borisov developped a theory of chattering [START_REF] Zelikin | Theory of Chattering Control with Applications to Astronautics[END_REF]. In particular, they showed that, provided a certain approximate Fuller symmetry holds, singular manifolds of codimension 2 and order 2 serve as base of a fibration in state space with fibres orbitally equivalent to the optimal synthesis of system [START_REF] Fuller | Relay control systems optimized for various performance criteria[END_REF]. The global structure of the synthesis is retained in the fibre, and the self-similar trajectories of the non-perturbed system possess equivalents in the perturbed system, although the latter are no more self-similar.

The paper is organized as follows. In section 1 we define self-similar trajectories and Fuller groups and describe the treated class of optimal control systems. In sections 2 and 3 we develop algorithms for finding self-similar trajectories and calculating the linear part of the Poincaré map associated with the corresponding periodic orbits, or alternatively, the linearization in the neighbourhood of corresponding stationary points (Algorithms 1 and 2, Theorem 2.1). We provide a criterion of optimality of a self-similar trajectory (Theorem 2.4) and investigate integral manifolds consisting of optimal trajectories in a neighbourhood of a hyperbolic periodic orbit (Theorem 3.3). In the next section we show that Fuller groups contract the sympletic structure of phase space and derive some properties of the spectrum and the eigenvalues of the Poincaré map (Theorems 4.10 and 4.11). Finally we draw some conclusions.

Definitions and preliminaries

We look for self-similar trajectories in systems given by the following generalization of (1).

x = (x 1 , . . ., x l ) ∈ R l , l i=1 m i x (j) i = 0 ∀ j = 1, . . ., n -1; J(u(•)) = 1 2 ∞ 0 l i=1 m i x 2 i dt → inf; x (n) = u, u ∈ U = (u 1 , • • • , u l ) ∈ R l | u i ≤ 1 ∀ i = 1, . . ., l; l i=1 m i u i = 0 . (2) 
Here m i > 0; the state space M is parametrized by the l components of the vector x and its time derivatives x (j) i up to order n -1. Since there are restrictions l i=1 x (j) i = 0, the state space has n × (l -1) dimensions. The cost functional J is to be minimized over all measurable inputs u(t). The set U of admissible control values is an (l -1)-dimensional simplex embedded in the space R l parametrized by the coordinates u 1 , . . . , u l . Suppose the initial point (x(0), ẋ(0), . . ., x (n-1) (0)) in state space is fixed; then the functional J is strictly convex on the convex set of all admissible functions u(•). Hence by Kuhn-Tucker's theorem, the optimal solution exists and is unique for any fixed initial point in state space.

Let us apply Pontryagin's maximum principle [START_REF] Pontryagin | The mathematical theory of optimal processes[END_REF] to system [START_REF] Fuller | Dimensional properties of optimal and sub-optimal nonlinear control systems[END_REF]. We obtain the Pontryagin function

H = -1 2 l i=1 m i x 2 i + n-1 j=1 l i=1 ψ j i x (j) i + l i=1 u i ψ n i .
Here the vector ψ j = (ψ j 1 , . . . , ψ j l ) is conjugated to the vector of (j -1)-th order derivatives x (j-1) . The conjugated variables satisfy the equations ψ1 i = m i x i ∀ i = 1, . . ., l; ψj = -ψ j-1 ∀ j = 2, . . . , n. The control u is determined by ψ n according to the maximum principle. Suppose there exists a i ∈ {1, . . ., l} such that

ψ n i m i < ψ n i m i
for any i = i, then the control is given by

u i = 1 ∀ i = i, u i = - i =i m i m i . (3) 
Without loss of generality we can put l i=1 ψ j i = 0 for all j = 1, . . . , n [START_REF] Hildebrand | An open problem in optimal control theory[END_REF]. We consider only regular trajectories in system [START_REF] Fuller | Dimensional properties of optimal and sub-optimal nonlinear control systems[END_REF]. By [4, Remark on p.3] we then cover also the case of singular trajectories, anyway.

Let us introduce coordinates y j i in phase space; here i ∈ {1, . . . , l}, j ∈ {1, . . ., 2n}:

y j i = (-1) j-1 ψ n-j+1 i m i , y n+j i = (-1) n-1 x (j-1) i , ∀ i = 1, . . . , l; j = 1, . . ., n.
Let us join coordinates with equal upper indices to vectors y j ∈ R l . Then the restrictions and Hamiltonian dynamics are given by ẏj = y j+1 ∀ j = 1, . . ., 2n -1; ẏ2n = (-1) n-1 u;

l i=1 m i y j i = 0 ∀ j = 1, . . . , 2n. ( 4 
)
The control u is given by (3); here i is the index for which y 1 i is smallest. The phase space of the system is parametrized by the 2nl components of the vectors y 1 , . . . , y 2n with 2n restrictions. Hence it has 2n(l -1) dimensions. The phase space can be considered as the cotangent fibration T * M over the state space M . The latter is parametrized by the components of the vectors y n+1 , . . . , y 2n with n restrictions. It has n(l -1) dimensions. Proposition 1.1. [4, Proposition 1] Suppose ρ is a trajectory of system (4). Then ρ is a lifting to T * M of an optimal trajectory if and only if it tends to the origin of T * M .

In the sequel, we shall call any trajectory in phase space T * M optimal, if it is a lift of an optimal trajectory in state space M .

On phase space there acts a one-parametric group G of linear transformations. It is parametrized by a multiplicative parameter λ ∈ R + . The element G λ corresponding to the number λ multiplies the coordinate y j i by λ 2n-j+1 , G λ : (y 1 , . . . , y 2n ) → (λ 2n y 1 , . . . , λy 2n ).

Definition 1.2. We call the group G Fuller group.

The action of G on T * M induces an action on state space M , because the action on the variables y n+1 , . . . , y 2n does not depend on the values of the other variables. It is readily seen that G λ takes any trajectory of system (4) to another trajectory with a change of time scale by the factor λ. Optimal trajectories are taken to optimal trajectories. Corollary 1.3. Suppose y(t) is a trajectory of system (4); then for any λ > 0 the trajectory y (t) = G λ (y( t λ )) is also a solution of system (4). If y(t) is optimal, then so is y (t). Thus system (4) induces a direction field on orbit space (T * M )/G. If we remove the origin, which is a separate orbit, orbit space will be homeomorphic to the sphere S 2n(l-1)-1 . Denote the space ((T * M )/G) \ {0} ∼ = S 2n(l-1)-1 by Σ * . Since at any point of an orbit the same control is applied, the control function u given by ( 3) is defined also on Σ * . We have the same situation in state space. The velocity field defined on M by the optimal synthesis points in the same direction at any point of a given orbit with respect to G. Hence the optimal synthesis induces a direction field on orbit space M/G. If we remove the origin, then this orbit space will be homeomorphic to the sphere S n(l-1)-1 . Denote the space (M/G) \ {0} ∼ = S n(l-1)-1 by Σ. The optimal synthesis defines a section M → T * M of the cotangent fibration. This section induces an embedding Σ → Σ * . In the sequel, we will identify Σ with its image in Σ * . In view of the above, we call a trajectory in Σ * an optimal trajectory if it belongs to Σ. Definition 1.4. We call any trajectory of system (4) self-similar, if it is invariant with respect to a non-trivial subgroup of G.

Corollary 1.5. The preimage of a self-similar trajectory in Σ * consists of stationary points and/or periodic orbits. Definition 1.6. We call a periodic orbit ζ in Σ * an s-chain, if the restriction of the control function to ζ is piecewise constant and has s points of discontinuity.

It can be shown that any periodic orbit in Σ is an s-chain for some s > 1. Hence we can restrict our study to stationary points and s-chains consisting of regular arcs.

An algorithm for finding self-similar trajectories

Beside the group G, there exists a subgroup of the permutation group S l that acts on state space of system (4). This group permutes components y j i of the vectors y j that correspond to equal weights m i . Let us denote this subgroup by S. Clearly it takes optimal trajectories to optimal trajectories. Moreover, the action of S commutes with the action of G. Hence, S acts also on the spaces Σ and Σ * .

There exists an involution T of system (4), which multiplies the coordinate y j i by (-1) j+1 . Suppose y(t) is a trajectory of system (4); then y (t) = T (y(-t)) is also a trajectory. However, T does not take optimal trajectories to optimal ones.

We look for periodic orbits in Σ * that have a finite number of control switchings and consist of regular arcs. Let us index the l vertices of the simplex U of admissible controls. We denote control (3) by control i, i = 1, . . . , l.

Theorem 2.1. Self-similar trajectories with constant control exist only for odd n. In this case for any i ∈ {1, . . ., l} there is a unique self-similar trajectory with constant control i. This trajectory passes through the origin and consists of three orbits of the group G. One of them corresponds to a stationary point on Σ.

The proof is by integrating the system dynamics and applying Proposition 1.1.

Proposition 2.2. If n is even, then there are no stationary points on Σ. If n is odd, then there exist exactly 2 l -2 stationary points on Σ. l of them correspond to regular trajectories. Proof. There is a bijection between stationary points on Σ and optimal self-similar trajectories with constant control. By Theorem 2.1, there are no such trajectories for even n.

Suppose n is odd. It is not hard to deduce from the maximum principle that any proper face of the simplex U contains a unique control that is realized on an optimal trajectory with constant control. But there are 2 l -2 such faces. The regular trajectories correspond to the l vertices of the simplex. Consider an s -chain ζ (s > 1), where the controls i 1 , . . . , i s are used successively, thereafter the chain closes. Denote the initial switching point of ζ by q0 . Denote the next switching point, which is attained after using control i 1 , by q1 , the next by q2 and so on, up to the terminal point qs , which coincides with q0 . Consider a point q 0 ∈ T * M on the orbit q0 . Denote the trajectory of system (4) that goes through q 0 by ρ. Denote the next switching point on ρ by q 1 , the next by q 2 and so on, up to q s . The point q s lies again on the orbit qs = q0 , but in general it does not coincide with q 0 . There exists exactly one positive number λ such that the element G λ ∈ G takes q 0 to q s . Definition 2.3. We call the number λ the contraction coefficient of the s -chain ζ.

The definition is correct, because λ does not depend on the initial point q 0 ∈ q0 . By Proposition 1.1, the following assertions hold.

Theorem 2.4. An s-chain with contraction coefficient λ is optimal if and only if λ < 1.

Corollary 2.5. Trajectories in Σ * that converge to on optimal s -chain ζ are optimal and lie in the space Σ.

The complexity of the equations determining q0 and λ quickly increases with s . But if we restrict our investigations to chains that are invariant with respect to an element of the discrete symmetry group S, then the number of relevant switchings can be reduced.

Suppose there exists a divisor s of s and a permutation σ ∈ S such that σ takes q0 to qs . There exists a number λ such that G λ (σ(q 0 )) = q s . Clearly λ = λ s /s , and the condition λ < 1 is equivalent to λ < 1. Instead of the equation G λ (q 0 ) = q s we can now consider the simpler equation G λ (σ(q 0 )) = q s , for fixed σ and i 1 , . . . , i s .

By definition, put i 0 = σ -1 (i s ) and i s+1 = σ(i 1 ). For any k ∈ {1, . . ., s} the point q k lies on the orbit qk . On the arc that connects q k-1 and q k the control i k is applied. On the interior of this arc the condition of optimality of control i k holds:

y 1 i k < y 1 i k ∀ i k = i k . (5) 
Denote the time that system (4) needs to pass from q k-1 to q k by t k . Let us compute q k as a function of q k-1 by integrating (4) with control i k . Assemble the coordinates of phase space in a vector y = (y 2n 1 , . . . , y 2n l , y 2n-1 1 , . . . , y 1 l ) T ∈ R 2nl . Then we can rewrite system (4) as ẏ = Ay + b i k . Here A is a constant matrix. The diagonal that is obtained by shifting the main diagonal by l positions downwards is filled with 1's, the rest with zeros. The constant vector b i depends only on the control i. Its first l elements form the control i multiplied by (-1) n-1 , the other elements are zero. The matrix exponent F (t) = e tA is

F (t) =      D 0 0 . . . 0 D 1 D 0 . . . 0 . . . . . . . . . . . . D 2n-1 D 2n-2 . . . D 0     
.

Here D i = t i i! I l and I l is the l × l identity matrix. By integrating the system with initial value q k-1 we obtain y(q k ) = F (t k )y(q k-1 ) + Bk . Here Bk depends only on t k and b i k ,

Bk = t k 0 F (t k -τ )b i k dτ = C(t k ) 1 0 F (1 -τ )b i k dτ = C(t k )B i k .
Here C(t) = diag(tI l , t 2 I l , . . . , t 2n I l ) is a diagonal 2nl×2nl-matrix, and

B i = 1 0 F (1-τ )b i
dτ is a constant vector, which depends only on control i.

By iterating the equation y(q k ) = F (t k )y(q k-1 ) + Bk we finally obtain

y(q k ) = F ( k i=1 t i )y(q 0 ) + k j=1 F ( k i=j+1 t i ) Bj . (6) 
By definition empty sums are zero. Denote the linear operator corresponding to the permutation σ by H σ . The action of the element G λ can be described as multiplication by the matrix C(λ). Hence we get the polynomial system of equations

y(q s ) = y(G λ (σ(q 0 ))) = C(λ)H σ y(q 0 ) = F ( s i=1 t i )y(q 0 ) + s j=1 F ( s i=j+1 t i ) Bj . (7) 
Further, F (t) is block-triangular with identity matrices on the diagonal. Since eigenvalues of permutation matrices have absolute value 1, we get Proposition 2.6. Suppose |λ| = 1, then det(C(λ)H σ -F ( s i=1 t i )) = 0. For optimal chains we have |λ| = 1, and equations ( 7) can be resolved with respect to y(q 0 ):

y(q 0 ) = C(λ)H σ -F ( s i=1 t i ) -1 s j=1 F ( s i=j+1 t i ) Bj . (8) 
The point q k lies on the switching hypersurface from control i k to control i k+1 . This implies y 1 i k (q k ) = y 1 i k+1 (q k ). By v k denote the 2nl-dimensional row vector that has a 1 on position ((2n -1)l + i k ) and a -1 on position ((2n -1)l + i k+1 ), all other elements being zero. v k depends only on the controls i k and i k+1 . Then

y 1 i k (q k ) = y 1 i k+1 (q k ) transforms into v k F ( k i=1 t i )y(q 0 ) + k j=1 F ( k i=j+1 t i ) Bj = 0. ( 9 
)
For k = 0, . . ., s -1 we obtain a system of s polynomial equations. It is easily checked that equation (9) for k = s follows from equation (9) for k = 0 and equation [START_REF] Zelikin | Theory of Chattering Control with Applications to Astronautics[END_REF].

Equations ( 7) and ( 9) form an overdetermined linear system of 2nl + s equations with respect to the 2nl unknown components of the vector y(q 0 ). Let us join the coefficient matrix of this system and its right-hand side to the (2nl + s) × (2nl + 1)-matrix

L =         C(λ)H σ -F ( s i=1 t i ) s j=1 F ( s i=j+1 t i ) Bj v 0 0 v 1 F (t 1 ) -v 1 B1 . . . . . . v s-1 F ( s-1 i=1 t i ) -v s-1 s-1 j=1 F ( s-1 i=j+1 t i ) Bj         . ( 10 
)
System ( 7), (9) has a solution if and only if all minors of dimension 2nl + 1 of L vanish. By Proposition 2.6, this is equivalent to vanishing of all s minors that contain the first 2nl rows. Thus we obtain a system of s polynomial equations on s + 1 unknown quantities t 1 , . . . , t s ; λ. Since the point q 0 on the orbit q0 can be chosen arbitrarily, we can introduce an additional condition, e.g. s i=1 t i = 1. Then the number of unknowns will be equal to the number of equations. Any solution that satisfies conditions (5) and the inequalities t i > 0 ∀ i = 1, . . . , s; λ > 0, λ = 1 determines an s -chain on Σ * . The coordinates of the point q 0 are to be found from (8). It can easily be seen that the restrictions on y j i are fulfilled. On ζ the a priori chosen sequence of controls i 1 , . . . , i s is realized and ζ is invariant with respect to the symmetry σ. Theorem 2.4 yields that ζ is optimal if λ < 1.

Any minor of L that contains the first 2nl rows is a homogeneous polynomial of degree 2n with respect to t 1 , . . . , t s and a polynomial of degree nl(2n + 1) with respect to λ. Hence the degree of the polynomials does not depend on the parameters s, σ, i 1 , . . . , i s .

Thus we obtain the following algorithm for detection of chains with a given sequence of controls and invariance with respect to a given symmetry σ ∈ S. Any solution corresponds to a one-parametric family of self-similar trajectories related by the action of G.

Algorithm 1: (compare also [START_REF] Hildebrand | An open problem in optimal control theory[END_REF]Section 3]) Calculation of optimal self-similar trajectories.

1. Calculate the matrix L according to (10). 2. Compose a system of polynomial equations by putting all minors of dimension 2nl + 1 of L to zero that contain the first 2nl rows.

3. Solve the system with an additional constraint eliminating homogeneity in the t i . 4. Calculate the coordinates of the initial point q 0 of the self-similar trajectory according to (8), and of the other switching points according to [START_REF] Pontryagin | The mathematical theory of optimal processes[END_REF].

5. Check the conditions λ ∈ (0, 1), t i > 0 and (5).

A similar algorithm was given in [START_REF] Fuller | Constant-ratio trajectories in optimal control systems[END_REF] for the case l = 2, m 1 = m 2 = 1, s = 1, σ = (12), n arbitrary, and in [START_REF] Marchal | Chattering arcs and chattering controls[END_REF] for the case l = 2, n = 2, s = s = 2, m i arbitrary.

The linear part of the Poincaré map

Let ζ be an s -chain, invariant with respect to the permutation σ ∈ S, with parameters t 1 , . . . , t s ; λ and switching points q0 , . . ., qs . Let us investigate the behaviour of the dynam-ical system on Σ * in a neighbourhood of ζ. We consider only the generic case, when ζ transversally intersects the switching hypersurfaces at the switching points and the switching points do not lie on the intersection of more than one switching hypersurface. Then

y 1 i k (q k ) = y 1 i k+1 (q k ) < y 1 i k (q k ) ∀ i k ∈ {i k , i k+1 }; ẏ1 i k (q k ) -ẏ1 i k+1 (q k ) = y 2 i k (q k ) -y 2 i k+1 (q k ) > 0.
(11) Let us consider a neighbourhood Q of q0 on the switching hypersurface Γi 0 i 1 from control i 0 to control i 1 . If q ∈ Q is sufficiently close to q0 , then the trajectory that goes through q will intersect Γi 0 i 1 again in some point P (q) ∈ Q after s control switchings. The mapping P that takes q to P (q) is called the Poincaré map associated with the periodic orbit ζ. The point q0 is a fixed point of P . It is not hard to prove that conditions (11) are sufficient for nondegeneracy of the Poincaré map at q0 .

Let us define a mapping P on a neighbourhood of q0 . Suppose the point q ∈ Q is sufficiently close to q0 . Consider the trajectory that goes through q. After s control switchings on this trajectory we obtain a point q . By definition, put P (q) = σ -1 (q ). Clearly q0 is a fixed point of the map P , and P ≡ P s /s . Conditions (11) are sufficient for nondegeneracy of P at q0 . The map P is the Poincaré map associated with the image of ζ in orbit space Σ * /σ.

Let us compute the maps P , P . Define operators F i (t) (i = 1, . . . , l) acting on T * M by F i (t) : y → F (t)y + C(t)B i . The operator F i (t) is given by the transition matrix of the dynamical system defined by the control i.

Let Q k ⊂ T * M be a neighbourhood of q k ∈ qk . Then q k lies on the switching hypersurface Γ i k i k+1 from control i k to control i k+1 . Let q be a point in Q k . By ρ k (resp. ρ k+1 ) denote the trajectory through q of the dynamical system on T * M defined by control i k (resp. i k+1 ). The trajectories ρ k , ρ k+1 intersect the hypersurface Γ i k i k+1 in some points q , q . By τ k (resp. τ k+1 ) denote the time that is needed to get from q to q (resp. q ) along the trajectory ρ k (resp. ρ k+1 ). The functions τ k (q), τ k+1 (q) are smooth in the neighbourhood Q k , provided Q k is sufficiently small. These functions are zero on Γ i k i k+1 , specifically at q k . Let us define the mapping

T i k i k+1 = F i k+1 (τ k )•F i k (-τ k ) on Q k . Any point on Γ i k i k+1 is a fixed point of T i k i k+1 ,
specifically q k . We can define the following mappings on a sufficiently small neighbourhood Q 0 of q 0 : P

= σ -1 • G λ -1 • T isi s+1 • F is (t s ) • • • • • T i 1 i 2 • F i 1 (t 1 ), P = G (λ ) -1 • T i s i s +1 • F i s (t s ) • • • • • T i 1 i 2 • F i 1 (t 1
). The point q 0 is a fixed point of the mappings P, P . These mappings commute with the action of G. The mapping F i 1 (τ 1 ), which projects Q 0 on the switching surface Γ i 0 i 1 along the trajectories of the system defined by control i 1 , also commutes with G. Hence the compositions F i 1 (τ 1 ) • P , F i 1 (τ 1 ) • P induce mappings of a neighbourhood of q0 on the switching surface Γi 0 i 1 in Σ * . It is not hard to see that these induced mappings coincide with the Poincaré maps P , P . Therefore the linear part of P , P can be computed from the linear part of the mappings P , P at q 0 . Note that the phase velocity vector v t = Ay(q 0 ) + b i 1 is an eigenvector of the Jacobi matrices ∂P (y) ∂y | y=y(q 0 ) , ∂P (y) ∂y | y=y(q 0 ) with eigenvalues λ -1 , (λ ) -1 respectively. Hence the differentials of P and P induce linear operators on the quotient space T q 0 (T * M )/span{v t }.

Since any point of the switching surface Γ i 0 i 1 is invariant with respect to the projec-tion operator F i 1 (τ 1 ), the differential of the restriction of the mapping F i 1 (τ 1 ) • P (resp. F i 1 (τ 1 ) • P ) on Γ i 0 i 1 coincides with the differential of P (resp. P ). Hence the action of the differentials D(F i 1 (τ 1 ) • P ), D(F i 1 (τ 1 ) • P ) on the tangent space T q 0 Γ i 0 i 1 can be identified with the action of the differentials of P , P on the quotient space T q 0 (T * M )/span{v t }.

The vector v λ given by ∂ ∂λ G λ (y(q 0 ))| λ=1 = dC(λ) dλ | λ=1 y(q 0 ) in the tangent space to q 0 is tangent to the orbit q0 . Since the mappings F i 1 (τ 1 )•P , F i 1 (τ 1 )•P commute with the action of G, v λ is an eigenvector of the differentials D(F i 1 (τ 1 ) • P ), D(F i 1 (τ 1 ) • P ) with eigenvalue 1. The vector v λ consists of the components of the vectors y 2n (q 0 ), 2y 2n-1 (q 0 ), . . ., 2ny 1 (q 0 ) written one after the other. Hence the differentials D(F i 1 (τ 1 ) • P ), D(F i 1 (τ 1 ) • P ) induce an action on the quotient space T q 0 Γ i 0 i 1 /span{v λ }. This action can be identified with the action of the differentials of the Poincaré maps P , P on the tangent space T q0 Γi 0 i 1 . We proved the following assertion.

Corollary 3.1. The action of the differentials of the Poincaré maps P , P can be canonically identified with the action induced by the differentials of the mappings P , P on the quotient space T q 0 (T * M )/span{v t , v λ }.

Let us compute the derivatives ∂P ∂y , ∂P ∂y . Consider the differential DT i k i k+1 at the point q k . Note that any vector in T q k (T * M ) tangent to Γ i k i k+1 is invariant with respect to DT i k i k+1 . Furthermore, DT i k i k+1 takes the phase velocity vector Ay(q k ) + b i k induced by the control i k to the phase velocity vector Ay(q k ) + b i k+1 induced by the control i k+1 .

Denote the base vectors in the tangent fibration T (T * M ) corresponding to differentiation with respect to y j i by e j i . Let us introduce another system of base vectors e j i , where e 1 i k is replaced by e 1 i k = e 1 i k + e 1 i k+1 , e 1 i k+1 is replaced by e 1 i k+1 = Ay(q k ) + b i k , and the other vectors e j i coincide with the corresponding vectors e j i . Denote the image of e j i under the action of DT i k i k+1 by e j i . Then e 1 i k+1 is given by e 1 i k+1 = Ay(q k ) + b i k+1 , and the other vectors e j i coincide with the corresponding vectors e j i . The switching surface Γ i k i k+1 is given by y 1 i k (q k ) = y 1 i k+1 (q k ). It is easily shown that all vectors e j i , e j i except e 1 i k+1 , e 1 i k+1 are tangent to Γ i k i k+1 . By (11), the vectors Ay(q k ) + b i k , Ay(q k ) + b i k+1 are transversal to Γ i k i k+1 . Hence the matrix E (resp. E ) consisting of the column vectors e j i (resp. e j i ) is nonsingular. Note that the vectors b i k , b i k+1 differ only at the i k -th and i k+1 -th positions. By substituting these vectors we obtain e 1 i k+1 -

e 1 i k+1 = (-1) n-1 1 m i k ( l i=1 m i )e 2n i k + (-1) n 1 m i k+1 ( l i=1 m i )e 2n i k+1 . At the ((2n -1)l + i k )-th position of e 1 i k+1 , e 1 i k+1
, which corresponds to the base vector e 1 i k , we have the term y 2 i k (q k ); at the ((2n -1)l + i k+1 )-th position, which corresponds to the base vector e 1 i k+1 , we have the term

y 2 i k+1 (q k ). The differential DT i k i k+1 is given by E (E ) -1
. By substituting we obtain

DT i k i k+1 = I 2nl + (-1) n-1 1 m i k l i=1 m i y 2 i k (q k ) -y 2 i k+1 (q k ) e i k ,(2n-1)l+i k + (-1) n 1 m i k l i=1 m i y 2 i k (q k ) -y 2 i k+1 (q k ) e i k ,(2n-1)l+i k+1 + (-1) n 1 m i k+1 l i=1 m i y 2 i k (q k ) -y 2 i k+1 (q k ) e i k+1 ,(2n-1)l+i k + (-1) n-1 1 m i k+1 l i=1 m i y 2 i k (q k ) -y 2 i k+1 (q k ) e i k+1 ,(2n-1)l+i k+1 , (12) 
of Σ. The preimage of this submanifold in state space is an (m -+ 2)-dimensional integral submanifold, which consists of optimal trajectories. These trajectories undergo chattering with periodic sequence i 1 , . . ., i s of controls when approaching the origin.

Contracting groups and Poincaré map

In this section we prove that the action of G contracts the symplectic structure on T * M . We will deduce some properties of the linear part of the Poincaré maps associated with optimal periodic orbits in Σ * . We depart from a generalization of the Theorem of Lyapunov-Poincaré, whose proof is purely algebraic and omitted here for space limitation reasons.

Proposition 4.1. Suppose B is a regular complex n × n matrix and Λ = 0 is a complex number. Suppose W is a complex n × n matrix such that ΛB = W T BW . Then for any complex number λ = 0 and any natural number m ∈ N the equations

B[Ker(W -λ) m ] = Ker(W T -Λ λ ) m , B T [Ker(W -λ) m ] = Ker(W T -Λ λ ) m are satisfied.
Corollary 4.2. Suppose λ is an eigenvalue of W ; then Λ λ is also an eigenvalue of W . The dimensions of their root subspaces and their proper subspaces coincide.

Suppose the matrices B, W and the number Λ are real, and W has only simple eigenvalues. The space R n decomposes into a direct sum of minimal invariant subspaces of the operator W . A minimal invariant subspace has dimension 1 if the corresponding eigenvalue is real, and it has dimension 2, if it corresponds to a complex-conjugated pair of eigenvalues. Denote the minimal invariant subspaces of W by V 1 , . . ., V r . Let us put in correspondence to each subspace V i a number λ i . If V i is onedimensional, then define λ i as the corresponding real eigenvalue. If V i is twodimensional, then define λ i as the corresponding complex eigenvalue that has positive imaginary part. By ¯denote complex conjugation. Definition 4.3. We call a minimal invariant subspace V j conjugated to the subspace V i , if λ j λi = Λ.

By Corollary 4.2, for any subspace V i there exists a conjugated subspace V j . Suppose V i , V j are conjugated subspaces. Then we have V i = V j if and only if |λ i | 2 = Λ. Proposition 4.4. Suppose the assumptions made above are satisfied. Then a) For any minimal invariant subspace V i of W there exist vectors w i ∈ V i , w j ∈ V j such that w T i Bw j = 0. Here V j is the subspace conjugated to V i . b) Suppose the minimal invariant subspaces V i , V j are not conjugated. Then for any vectors w i ∈ V i , w j ∈ V j we have w T i Bw j = 0. The proof uses the theorem on the Jordan structure of a matrix and is omitted here. Consider a differentiable manifold V of even dimension 2m. Let ω be a closed nondegenerate differential 2-form inducing a symplectic structure on V . By T z V denote the tangent space to V at the point z ∈ V . Then to any vector v ∈ T z V a 1-form θ v ∈ T * z V in the cotangent space at the point z is assigned. The form θ v takes any vector u ∈ T z V to θ v (u) = ω(v, u) and is the convolution i v ω of the form ω with the vector v. Now we apply these results to the self-similar trajectories of system (4). In our case V is the phase space T * M with its canonical symplectic structure. The section of T * M corresponding to the optimal synthesis is a Lagrange submanifold. Proposition 4.9. The Fuller group G is a contracting group. The parameters γ and λ are related to each other by the equation λ 2n+1 = e γ . Proof. We have v G (q) = dG λ (q) dλ ( d((2n+1) ln λ) dλ

) -1 | λ=1 = 1 2n+1 dC(λ)
dλ y(q). Hence the relation between the generating vector field v G and the vector field v λ , which was defined in the previous section, is given by

v G (q) = 1 2n + 1 v λ = 1 2n + 1 l i=1 2n j=1 (2n + 1 -j)y j i (q) ∂ ∂y j i .
The phase velocity vector v t is given by

v t (q) = Ay(q) + b k = l i=1 2n j=2 y j-1 i (q) ∂ ∂y j i + l i=1 u i ∂ ∂y 1 i .
Here k is the applied control. It is easily checked that the Lie bracket

[v t , v G ] is equal to 1 2n+1 v t . Therefore condition (15) with κ = 1 2n+1 is satisfied. The symplectic form on V = T * M is given by ω = 1 2 l i=1 2n j=1 (-1) n+1-j m i dy 2n+1-j i ∧ dy j i .
In coordinate representation we have

(ω ij ) = 1 2        0 0 . . . 0 (-1) n ∆ m 0 0 . . . (-1) n-1 ∆ m 0 . . . . . . . . . . . . . . . 0 (-1) -n+2 ∆ m . . . 0 0 (-1) -n+1 ∆ m 0 . . . 0 0        . ( 16 
)
Here ∆ m = diag{m 1 , . . . , m l } is a diagonal l × l-matrix.

Hence the form θ

v G = i v G ω is given by θ v G (q) = 1 2n + 1 l i=1 2n j=1 (-1) n+1-j m i jy 2n+1-j i (q)dy j i .
It is not hard to prove that the differential of this form after alternation is equal to (16). Proposition 4.6 concludes the proof. Since the mappings σ

-1 •T isi s+1 •F is (t s )•• • ••T i 1 i 2 •F i 1 (t 1 ), T i s i s +1 •F i s (t s )•• • ••T i 1 i 2 • F i 1 (t 1 )
are not transitions in time of system (4), Proposition 4.7 cannot be applied formally to the mappings P and P . But recall that for proving Propositions 4.7 and 4.8 we used only that Φ T preserves the form ω. The mappings F i (t) are transitions in time and preserve ω. Clearly the action of the group S preserves ω. The differential of the mapping T i k i k+1 can be represented as a composition of differentials of the mappings F i k+1 (τ k ) and F i k (-τ k ) with frozen argument τ k and the differential of T i k i k+1 at some point on the switching surface Γ i k i k+1 . The first two differentials are differentials of transitions in time and hence preserve ω. By multiplying (12) and ( 16), we obtain (ω ij ) = (DT i k i k+1 ) T (ω ij )DT i k i k+1 . Therefore T i k i k+1 also preserves ω.

Note that on any self-similar trajectory corresponding to an s -chain with s > 1 the vector fields v G and v t are linearly independent. Hence Propositions 4.7 and 4.8 remain valid also for system [START_REF] Hildebrand | An open problem in optimal control theory[END_REF]. By L denote the Lagrange section of the cotangent fibration T * M that is induced by the optimal synthesis. We proved the following assertion on the differentials of the mappings P , P . Theorem 4.10. Suppose the differential DP has only simple eigenvalues. Then the minimal subspaces V 1 , . . . , V 2r of the space T q 0 (T * M ) that are invariant under the action of DP , and the corresponding eigenvalues λ 1 , . . . , λ 2r with nonnegative imaginary part can be arranged in a manner such that the following conditions hold. a) If L is differentiable at q 0 , then 2n+1) for any i = 1, . . ., r. c) For any i = 1, . . ., r there exist v i ∈ V i , v r+i ∈ V r+i such that ω(v i , v r+i ) = 0. d) For any v i ∈ V i , v j ∈ V j such that (j -i) ≡ 0 mod(r) we have ω(v i , v j ) = 0. e) λ 1 = λ -1 , λ 2 = 1, V 1 = span{v t }, V 2 = span{v λ + P s i=1 t i 1-λ v t }. f ) dim V i = dim V r+i for any i = 1, . . . , r.

T q 0 L = V 1 ⊕ V 2 ⊕ • • • ⊕ V r . b) λ i λr+i = λi λ r+i = λ -(
Here the vector v t is the phase velocity vector defined by control i 1 , and the vector v λ is tangent to the orbit q0 .

Analogous assertions hold for the differential DP , with λ, s replaced by λ , s . By L denote the image of the intersection L ∩ Γ i 0 i 1 in space Σ * . The results on the differentials of the Poincaré maps P , P can be summarized as follows.

Theorem 4.11. Suppose the differential DP has only simple eigenvalues. Then the minimal subspaces Ṽ1 , . . . , Ṽ2r-2 of the space T q0 Γi 0 i 1 that are invariant under the action of the differential D P , and the corresponding eigenvalues λ 1 , . . . , λ 2r-2 with nonnegative imaginary part can be arranged in a manner such that the following conditions hold. a) If L is differentiable at q0 , then T q0 L = Ṽ1 ⊕ Ṽ2 ⊕ • • • ⊕ Ṽr-2 . b) λ i λr-2+i = λi λ r-2+i = λ -(2n+1) for any i = 1, . . ., r -2. c) dim Ṽ2r-3 = dim Ṽ2r-2 = 1, λ 2r-3 = λ -2n , λ 2r-2 = λ -(2n+1) . d) dim Ṽi = dim Ṽr-2+i for any i = 1, . . ., r -2.

Analogous assertions hold for the differential D P , with λ replaced by λ .

Note that the spectrum of the matrices (13) does not coincide with the spectrum of the differentials DP, DP . By Corollary 3.2, the eigenvalues λ -1 , λ -2n (resp. (λ ) -1 , (λ ) -2n ) of matrices (13) are always multiple, whereas absence of multiple eigenvalues in the spectrum of the differentials DP, DP is the generic case. Corollary 3.2 yields the following criterion of absence of multiple eigenvalues in the spectrum of the differentials DP, DP . Proposition 4.12. The differential DP (resp. DP ) has only simple eigenvalues if and only if the numbers λ -1 , . . . , λ -2n (resp. λ -1 , . . . , λ -2n ) are eigenvalues of the corresponding matrix (13) with multiplicity not greater than 2, and any other eigenvalue is simple.

Conclusions

When constructing an optimal synthesis in a deterministic control problem, one usually first considers singular trajectories and submanifolds provided by the maximum principle. These act as structuring elements in the phase portrait. In classical dynamical systems, however, the structuring elements are fixed points, periodic cycles and associated invariant submanifolds. If the optimal control problem possesses a certain symmetry group (a Fuller group), one can consider these classical objects in orbit space with respect to the group. Computing them yields valuable information on the global structure of optimal synthesis.

In this paper we provide tools and algorithms to compute such elements. To this end we expolited the interaction of the symplectic structure of the Hamiltonian dynamics emanating from the maximum principle on the one hand and the Fuller group on the other hand.

where e r,s is a matrix which has a 1 at position (r, s) and is elsewhere filled with zeros. Thus the matrix DT i k i k+1 differs from I 2nl at four positions, which are located at rows i k , i k+1 , which correspond to the base vectors e 2n i k , e 2n i k+1 , and columns (2n -1)l + i k , (2n -1)l + i k+1 , which correspond to the base vectors e 1 i k , e 1 i k+1 . The mappings F i k (t k ) are affine and their differential is given by F (t k ). Since every element of the groups S, G is a linear transformation, it coincides with its differential. Thus DP = H σ -1 C(λ -1 )DT isi s+1 F (t s ) . . .DT i 1 i 2 F (t 1 ), DP = C((λ ) -1 )DT i s i s +1 F (t s ) . . .DT i 1 i 2 F (t 1 ).

(13)

We obtain the following algorithm for calculating the differentials of the Poincaré maps P , P of a given s -chain ζ that is invariant with respect to a given permutation σ.

Algorithm 2: Calculus of the linear part of the Poincaré map of a given periodic orbit. 1. Compute the matrices DP, DP according to (12),(13). 2. Compute the vector v t = Ay(q 0 ) + b i 1 and the vector v λ , which consists of the components of the vectors y 2n (q 0 ), 2y 2n-1 (q 0 ), . . . , 2ny 1 (q 0 ) written one after the other. The vectors v t , v λ span a subspace, which is invariant with respect to the transformations DP, DP .

3. Compute the linear transformations that are induced by DP, DP on the quotient space T q 0 (T * M )/span{v t , v λ }.

The space T q 0 (T * M ) has dimension 2n(l -1), whereas the matrices of the differentials DP, DP given by (13) have size 2nl × 2nl. The space T q 0 (T * M ) is an invariant subspace of these matrices. Now we shall investigate the linear transformations induced by matrices (13) on the quotient space span{e 2n 1 , . . . , e 1 l }/T q 0 (T * M ). Firstly, consider how the maps P, P act on the quotient space of the 2nl-dimensional space parametrized by the coordinates y 2n 1 , . . . , y 1 l with respect to the subspace T * M . This quotient space can be parametrized by the coordinates Y j = l i=1 m i y j i , j = 1, . . . , 2n. Since l i=1 m i u i = 0, the derivatives Ẏ j do not depend on the control. They are given by Ẏ 2n = 0, Ẏ j = Y j+1 , j = 1, . . . , 2n -1. Hence transition by time t is a linear operator given by a triangular matrix with 1's on the diagonal. The sums Y j are invariant with respect to the action of S, whereas G λ multiplies Y j by λ 2n+1-j . Therefore the mapping P (resp. P ) acts linearly on Y j , and this action is given by a triangular 2n × 2n-matrix with λ -1 , . . . , λ -2n (resp. λ -1 , . . ., λ -2n ) on the diagonal. Obviously the induced mappings coincide with their differentials. Thus we proved the following assertion.

Corollary 3.2. The action induced by matrices (13) on the quotient space span{e 2n 1 , . . . , e 1 l }/T q 0 (T * M ) is given by diagonizable operators with simple eigenvalues λ -1 , . . . , λ -2n (resp. λ -1 , . . . , λ -2n ).

From the spectrum of DP, DP we can conclude on the behaviour of the optimal synthesis in a neighbourhood of optimal self-similar trajectories. By Corollary 2.5, we have Theorem 3.3. Suppose ζ is an optimal s -chain with control sequence i 1 , . . ., i s , satisfying conditions (11). Let its Poincaré map P be hyperbolic, and m -be the dimension of its stable invariant manifold. Then ζ is embedded in an (m -+ 1)-dimensional integral submanifold Definition 4.5. A one-parametric group G of diffeomorphisms g γ of V , where γ ∈ R is an additive parameter, is called a contracting group, if the following condition holds. By the action of g γ the form ω is multiplied by e -γ , i.e. for any point z ∈ V we have ω(z) = e -γ g * γ ω(g(z)). Suppose L is a Lagrange submanifold of V , i.e. a submanifold of dimension m on whose tangent space ω is zero. Then for any z ∈ L and v ∈ T z L we have T z L ⊂ Ker θ v . Obviously any element of a contracting group takes Lagrange manifolds to Lagrange manifolds.

Suppose v G is a smooth vector field on V . It generates a one-parametric group G of diffeomorphisms of the manifold V .

Proposition 4.6. The following conditions are equivalent: (i) the group G is a contracting group, (ii) the form

Proof. By L v denote the Lie derivative with respect to the vector field v. By definition, a group is contracting iff for any point z ∈ V and any two vectors u, w ∈ T z V we have ω(g γ (z))(Dg γ (u), Dg γ (w)) = e γ ω(z)(u, w). This equation is satisfied iff the equation

Suppose v t (z) is a vector field on V . Parametrize the trajectories of the corresponding flow by time t. It is well-known that the form θ vt (z) is closed if and only if the symplectic form ω is invariant with respect to transitions along the trajectories of v t . In this case v t is a Hamiltonian flow. If θ vt is exact, then there exists a Hamiltonian H(z) such that θ vt = -dH.

Let L be a continuously differentiable integral Lagrange manifold, which is invariant with respect to the action of a contracting group G. Then the generating vector field v G of G and the vector field v t are tangent to L. Suppose there exists a point z 0 ∈ L and numbers T > 0, γ = 0 such that g γ • Φ T (z 0 ) = z 0 , where g γ is an element of the group G and Φ T is a shift by time T along the trajectories of the Hamiltonian system. The differential of the mapping g γ • Φ T is an automorphism of the tangent space T z 0 V . Suppose u, v are tangent vectors at the point z 0 . Since the form ω is invariant under shifts in time, we have ω(u, v) = ω(DΦ T (u), DΦ T (v)), where DΦ T (u), DΦ T (v) are tangent vectors at the point Φ T (z 0 ). On the other hand, the action of the differential Dg γ multiplies the form ω by e γ . Therefore we have

By W denote the matrix of the linear mapping D(g γ •Φ T ), by ω z 0 denote the skew-symmetric matrix that corresponds to the form ω(z 0 ). Then ( 14) becomes e γ ω z 0 = W T ω z 0 W . Since L is invariant under any shift Φ T and any diffeomorhism g γ , the subspace T z 0 L of the tangent space T z 0 V is invariant under the mapping W .

Suppose W has only simple eigenvalues. Then the space T z 0 V decomposes into a direct sum of minimal invariant subspaces of W . Denote these subspaces by V 1 , . . . , V r . The tangent space T z 0 L is an invariant subspace of W . Hence there exists a subset

Since the matrix ω z 0 is nonsingular, the matrix W satisfies the assumptions of Propositions 4.1 and 4.4. By Corollary 4.2, the set of eigenvalues of W breaks up into pairs. The product of the eigenvalues in each pair equals e γ . By Proposition 4.4, conjugated subspaces V i , V j cannot at the same time be contained in the set V S . Since dim T z 0 L = 1 2 dim T z 0 V , there cannot exist any subspace V i that coincides with its conjugated subspace. Hence the number of minimal invariant subspaces is even. There exist exactly 2 r 2 Lagrange subspaces of T z 0 V that are invariant under W . Let us summarize these results. Proposition 4.7. Suppose the matrix W = D(g γ • Φ T ) has only simple eigenvalues. Then the minimal invariant subspaces V 1 , . . . , V 2r of W and the corresponding eigenvalues λ 1 , . . . , λ 2r with nonnegative imaginary part can be arranged in a manner such that the following conditions hold. a)

b) λ i λr+i = λi λ r+i = e γ for any i = 1, . . . , r. c) For any i = 1, . . ., r there exist

Suppose the differential of the diffeomorphism g γ multiplies the vector field v t by e κγ , κ > 0, i.e. at any point z ∈ V we have Dg γ (v t (z)) = e κγ v t (g γ (z)). This equation holds iff

Let us compute the images W (v t ), W (v G ). We have DΦ T (v t (z 0 )) = v t (Φ T (z 0 )). Now we shall compute DΦ T (v G (z 0 )). We have

). The differential Dg γ multiplies the vector field v t by e κγ and leaves v G invariant. This yields

Thus the vectors v t and v G + κT 1-e -κγ v t are eigenvectors of the matrix W with eigenvalues e κγ and 1, respectively. Suppose v t , v G are linearly independent at z 0 . Denote the (2m-2)-dimensional quotient space T z 0 V /span{v t , v G } by Ṽ . The linear operator W induces an automorphism W of Ṽ . Since v t , v G ∈ T z 0 L, the quotient space L = T z 0 L/span{v t , v G } is well-defined. It is a (m -2)-dimensional subspace of Ṽ . By Proposition 4.7, the following assertion holds. Proposition 4.8. Suppose W has only simple eigenvalues, and the assumptions made above are satisfied. Then the 2r -2 minimal subspaces Ṽ1 , . . . , Ṽ2r-2 of Ṽ that are invariant under the action of W , and the corresponding eigenvalues λ 1 , . . . , λ 2r-2 with nonnegative imaginary part can be arranged in a manner such that the following conditions hold. a) L = Ṽ1 ⊕ Ṽ2 ⊕ • • • ⊕ Ṽr-2 . b) λ i λr-2+i = λi λ r-2+i = e γ for any i = 1, . . ., r -2. c) dim Ṽ2r-3 = dim Ṽ2r-2 = 1, λ 2r-3 = e (1-κ)γ , λ 2r-2 = e γ . d) dim Ṽi = dim Ṽr-2+i for any i = 1, . . ., r -2.