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Abstract: We continue the analysis of optimal execution strategies in the model for a limit
order book with nonlinear price impact and exponential resilience that was considered in our
earlier paper with A. Fruth [2]. We now allow for non-homogeneous resilience rates and arbitrary
trading dates and consider the extended problem of optimizing jointly over trading dates and
sizes. Our main results show that, under general conditions on the shape function of the
limit order book, placing the deterministic trade sizes identified in [2] at trading dates that are
homogeneously spaced is optimal also within the large class of adaptive strategies with arbitrary
trading dates. Perhaps even more importantly, our analysis yields as a corollary that our model
does not admit price manipulation strategies in the sense of Huberman and Stanzl [14]. This
latter result contrasts the recent findings of Gatheral [13], where, in a related but different
model, exponential resilience was found to give rise to price manipulation strategies when price
impact is nonlinear.

1 Introduction.

The problem of optimal execution is concerned with the optimal acquisition or liquidation of
large asset positions. In doing so, it is usually beneficial to split up the large order into a
sequence of partial order, which are then spread over a certain time horizon, so as to reduce
the overall price impact and the execution costs. The optimization problem at hand is thus
to find a trading strategy that minimizes a cost criterion under the constraint of overall order
execution within a given time frame. There are several reasons why studying this problem is
interesting.

First, liquidity risk is one of the least understood sources of financial risk, and one of its
various aspects is the risk resulting from price impact created by trading large positions. Due
to the nonlinear feedback effects on dynamic trading strategies, market impact risk is probably
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also among the most fascinating aspects of liquidity risk for mathematicians. The optimal
execution problem allows studying market impact risk in its purest form. Moreover, the results
obtained for this problem can serve as building blocks in a realistic analysis of more complex
problems such as the hedging of derivatives in illiquid markets.

Second, the mathematical analysis of optimal execution strategies can help in the ongo-
ing search for viable market impact models. As argued by Huberman and Stanzl [14] and
Gatheral [13], any reasonable market impact model should not admit price manipulation strate-
gies in the sense that there are no ‘round trips’ (i.e., trading strategies with zero balance in
shares), whose expected trading costs are negative. Since every round trip can be regarded as
the execution of a zero-size order, a solution of the optimal execution problem also includes an
analysis of price manipulation strategies in the model (at least as limiting case when the order
size tends to zero).

In recent years, the problem of optimal execution was considered for various market impact
models and cost functions by authors such as Bertsimas and Lo [10], Almgren and Chriss
[5, 6], Almgren [4], Obizhaeva and Wang [16], Almgren and Lorenz [7], the second author and
Schöneborn [18, 19], our joint papers with A. Fruth [1, 2], and Bayraktar and Ludkovski [9], to
mention only a few.

Here, we continue our analysis from [1, 2]. The underlying model is a time-inhomogeneous
version of the one in [2] and thus an extension of the limit order book model with linear impact
and exponential resilience that was proposed by Obizhaeva and Wang [16]. In our model, the
ask part of the limit order book consists of a certain distribution of shares offered in the form
of limit orders at prices higher than the current best ask price. When the large trader has not
yet been active, the best ask price fluctuates according to the actions of noise traders. A buy
market order placed by the large trader consumes a block of shares located immediately to the
right of the best ask and thus increases the ask price by a certain amount, the price impact.
Since the distribution of limit orders is allowed to be non-uniform, the price impact created by
a market order is typically a nonlinear function of the order size. In reaction to the increased
bid-ask spread, the best ask price will recover from the impact of the buy order within a certain
time span, i.e., it will show a certain resilience. Thus, the price impact of a market order will
neither be completely instantaneous nor entirely permanent but will decay exponentially with
a time-dependent resilience rate. As in [2], we consider the following two distinct possibilities
for modeling the resilience of the limit order book after a large market order: the exponential
recovery of the number of limit orders, i.e., of the volume of the limit order book (Model 1), or
the exponential recovery of the bid-ask spread (Model 2).

This model is quite close to descriptions of price impact on limit order books found in
empirical studies such as Biais et al. [11], Potters and Bouchaud [17], Bouchaud et al. [12], and
Weber and Rosenow [20]. In particular, the existence of a strong resilience effect, which stems
from the placement of new limit orders close to the bid-ask spread, seems to be a well established
fact, although its quantitative features seem to be the subject of an ongoing discussion.

While in [2] we considered only strategies whose trades are placed at equidistant times,
we now allow the trading times to be stopping times. This problem description is clearly
much more natural than prescribing a priori the dates at which trading may take place. It is
also more realistic than the idealization of trading in continuous time. In addition, the time-
inhomogeneous description allows us to account for time-varying liquidity and thus in particular
for the well-known U-shape patterns in intraday market parameters; see, e.g., [15].
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Optimal execution in this extended framework leads to the problem of optimizing simultane-
ously over both trading times and sizes. This problem is more complex than the one considered
in [2] and requires new arguments. Nevertheless, our main results show that the unique opti-
mum is attained by placing the deterministic trade sizes identified in [2] at trading dates that
are homogeneously spaced with respect to the average resilience rate in between trades.

As a corollary, we show that neither of the two variants of our model admits price manipu-
lation strategies in the sense of Huberman and Stanzl [14] and Gatheral [13], provided that the
shape function of the limit order book belongs to a certain class of functions (which slightly
differs for each variant). This corollary is fairly surprising and puzzling in view of recent results
by Gatheral [13]. There it was shown that, in a closely related market impact model, exponen-
tial resilience leads to the existence of price manipulation strategies as soon as price impact is
nonlinear.

As of now, it is not clear to us which of the features in Gatheral’s model that are different
from ours are responsible for the creation of price manipulation strategies. In fact, one of our
motivations for the research reported in this paper was to understand whether the restriction
to equidistant time grids in [2] prevented the emergence of price manipulation strategies in our
model.

In view of our results on the nonexistence of price manipulation strategies, we must therefore
deduce that, in contrast to Gatheral’s conclusion, exponential resilience of a limit order book
is a viable possibility for describing the decay of market impact, at least from a theoretical
perspective.

This paper is organized as follows. In Section 2.1 we introduce the limit order book model
with its two variants. The cost optimization problem is explained in Section 2.2. In Section 2.3
we state our main results for the case of a block-shaped limit order book, which corresponds
to linear price impact. This special case is much simpler than the case with nonlinear price
impact. We therefore give a self-contained description and proof for this case, so that the reader
can gain a quick intuition on why our results are true. The proofs for the block-shaped case
rely on the results from our earlier paper [1] with A. Fruth and are provided in Section 3.2.
As in [2], we refer to the variant of our model with exponential resilience for the volume of
the limit order book as Model 1. The main results for this case are stated in Section 2.4. The
corresponding proofs are given in Section 3.3. Model 2 refers to the exponential resilience of
the bid-ask spread. The results for this variant are stated in Section 2.5, while proofs are given
in Section 3.4.

2 Setup and main results

In this section we first introduce the two variants of our model and state the optimization
problem. We then state our results for the particularly simple case of a block-shaped limit
order book. Subsequently, we formulate our theorems for each model variant individually.

2.1 Model description

The model variants that we consider here are time-inhomogeneous versions of the ones in [2].
The general aim is to model the dynamics of a limit order book that is exposed to repeated
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market orders by a large trader, whose goal is to purchase a large amount X0 > 0 of shares
within a certain time period [0, T ]. Hence, emphasis is on buy orders, and we concentrate
first on the upper part of the limit order book, which consists of shares offered at various ask
prices. The lowest ask price at which shares are offered is called the best ask price. Symmetric
statements hold of course for the liquidation of a given asset position of X0 > 0 shares.

When the large trader is inactive, the dynamics of the limit order book are determined by
the actions of noise traders only. We assume that the corresponding unaffected best ask price
A0 is an arbitrary martingale on a given filtered probability space (Ω, (Ft),F , P) and satisfies
A0

0 = A0.
Above the unaffected best ask price A0

t , we assume a continuous ask price distribution for
available shares in the limit order book: the number of shares offered at price A0

t + x is given
by f(x) dx for a bounded and continuous density function f : R\{0} −→ (0,∞). We call f the
shape function of the limit order book. It determines the impact of a market order placed by
our large trader. The choice of a constant shape function corresponds to linear market impact
and to the block-shaped limit order book model of Obizhaeva and Wang [16].

The actual best ask price at time t, i.e., the best ask price after taking the price impact
of previous buy orders of the large trader into account, is denoted by At. It is clearly above
the unaffected best ask price, and the extra spread caused by the actions of the large trader is
denoted by

DA
t := At −A0

t .

A buy market order of xt > 0 shares placed by the large trader at time t will consume all the
shares offered at prices between At and

At+ := At + DA
t+ −DA

t = A0
t + DA

t+,

where DA
t+ is determined by the condition

Z DA
t+

DA
t

f(x)dx = xt.

Thus, the process DA captures the impact of market orders on the current best ask price.
Clearly, the price impact DA

t+ −DA
t will be a nonlinear function of the order size xt unless f is

constant between DA
t and DA

t+.

Example 2.1. Consider the shape functions of the form

f(x) =






q+

(1 + λ+x)α+
for x > 0,

q−
(1− λ−x)α−

for x < 0,

where q± and λ± are positive constants and α± ∈ (0, 1]. We will see later that these shape
functions satisfy the assumptions of our main results.

The quantity

EA
t =

Z DA
t

0

f(x)dx, (1)
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describes the volume impact in the limit order book present at time t. By introducing the
antiderivative

F (z) =

Z z

0

f(x) dx (2)

of f , the relation (1) can also be expressed as

EA
t = F (DA

t ) and DA
t = F−1(EA

t ),

where we have used our assumption that f is strictly positive to obtain the second identity.
For simplicity, the function F is supposed to be unbounded in the sense that

lim
x↑∞

F (x) = ∞ and lim
x↓−∞

F (x) = −∞, (3)

i.e., we assume that the limit order book has infinite depth. Relaxing this assumption is possible
but would require constraints on the order sizes and thus complicate the problem description.

When the large trader is inactive in between market orders, DA and EA revert back to
zero on an exponential scale with a deterministic, time-dependent rate t 7→ ρt, called resilience
speed. More precisely, we will consider the following two model variants for the resilience of the
market impact:

Model 1: EA evolves according to

dEA
t = −ρtE

A
t dt

if the large investor is not placing buy orders during the time interval [t, t + s).

Model 2: DA evolves according to

dDA
t = −ρtD

A
t dt

if the large investor is not placing buy orders during the time interval [t, t + s).

With these features we model the well-established empirical fact that order books exhibit a
certain resilience as to the price impact of a large buy market orders. That is, after the initial
impact the best ask price reverts back to its previous position; cf. Biais et al. [11], Potters and
Bouchaud [17], Bouchaud et al. [12], and Weber and Rosenow [20] for empirical studies.

Up to now, we have only described the effect of buy orders on the upper half of the limit
order book. Since the overall goal of the larger trader is to buy X0 > 0 shares up to time T , a
restriction to buy orders would seem to be reasonable. However, we do not wish to exclude the
a priori possibility that it could be beneficial to also sell some shares and to buy them back at
a later point in time. To this end, we also model the impact of sell market orders on the lower
part of the limit order book, which consists of a certain number of bids for shares at each price
below the best bid price. As for ask prices, we will distinguish between an unaffected best bid
price B0

t and the actual best bid price Bt, for which the price impact of previous sell orders of
the large trader is taken into account. All we assume on the dynamics of B0 is

B0
t ≤ A0

t at all times t.
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The distribution of bids below B0
t is modeled by the restriction of the shape function f to the

domain (−∞, 0). In analogy to the ask part, we introduce the the extra spread in the bid price
distribution,

DB
t := Bt −B0

t ,

which will be nonpositive. A sell market order of xt < 0 shares placed at time t will consume
all the shares offered at prices between Bt and

Bt+ := Bt + DB
t+ −DB

t = B0
t + DB

t+,

where DB
t+ is determined by the condition

xt =

Z DB
t+

DB
t

f(x)dx = F (DB
t+)− F (DB

t ) = EB
t+ − EB

t ,

for EB
s := F (DB

s ). Note that F is defined via (2) also for negative arguments. If the large
trader is inactive during the time interval [t, t + s[, then the processes DB and EB behave just
as their counterparts DA and EA, i.e.,

dEB
t = −ρtE

B
t dt in Model 1,

dDB
t = −ρtD

B
t dt in Model 2.

(4)

2.2 The cost optimization problem

When placing a single buy market order of size xt > 0 at time t, the large trader will purchase
f(x) dx shares at price A0

t + x, with x ranging from DA
t to DA

t+. Hence, the total cost of the
buy market order amounts to

πt(xt) :=

Z DA
t+

DA
t

(A0
t + x)f(x) dx = A0

txt +

Z DA
t+

DA
t

xf(x) dx.

Similarly, for a sell market order xt < 0, we have

πt(xt) := B0
t xt +

Z DB
t+

DB
t

xf(x) dx.

We assume that the large trader needs to buy a total of X0 > 0 shares until time T and
that trading can occur at N + 1 trades within the time interval [0, T ]. An admissible sequence
of trading times will be a sequence T = (τ0, . . . , τN) of stopping times such that 0 = τ0 ≤ τ1 ≤
· · · ≤ τN = T . For such an admissible sequence of trading times, T , we define a T -admissible
trading strategy as a sequence ξ = (ξ0, ξ1, . . . , ξN) of random variables such that

•
PN

n=0 ξn = X0,

• each ξn is measurable with respect to Fτn,

• each ξn is bounded from below.
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The quantity ξn corresponds to the size of the market order placed at time tn. Note that we
do not a priori require ξn to be positive, i.e., we also allow for intermediate sell orders, but
we assume that there is some lower bound on sell orders. Finally, an admissible strategy is a
pair (T , ξ) consisting of an admissible sequence of trading times T and a T -admissible trading
strategy ξ.

The average cost C(ξ, T ) of an admissible strategy (ξ, T ) is defined as the expected value
of the total costs incurred by the consecutive market orders:

C(ξ, T ) = E
h NX

n=0

πτn(ξn)
i
. (5)

In our earlier paper with A. Fruth, [2], we considered the case of a constant resilience ρ and
a fixed, equidistant time spacing Teq = {iT/N | i = 0, . . . , N}. In this setting, we determined
trading strategies that minimize the cost C(ξ, Teq) among all Teq-admissible trading strategies ξ.
Our goal in this paper consists in simultaneously minimizing over trade times and sizes, i.e., to
minimize the cost C(ξ, T ) among all admissible strategies (ξ, T ).

In our present setting of an inhomogeneous resilience function ρt it is natural to replace the
equidistant time spacing by the homogeneous time spacing

T ∗ = (t∗0, . . . , t
∗
N)

defined via Z t∗i

t∗i−1

ρs ds =
1

N

Z T

0

ρs ds, i = 1, . . . , N.

We also define
a∗ := e−

1
N

R T
0 ρudu. (6)

Our main result states that, under certain technical assumptions, T ∗ is in fact the unique
optimal time grid for portfolio liquidation with N + 1 trades in [0, T ]. In addition, the unique
optimal T ∗-admissible strategies in Model 1 and 2 are given by the corresponding trading
strategies in [2].

As a corollary to our main results, we are able to show that our models do not admit price
manipulation strategies in the following sense, introduced by Huberman and Stanzl [14] (see
also Gatheral [13]).

Definition 2.2. A round trip is an admissible strategy (ξ, T ) such that
PN

i=0 ξi = 0. A price
manipulation strategy is a round trip (ξ, T ) such that C(ξ, T ) < 0.

Our result on the non-existence of profitable price manipulation strategies strongly contrasts
Gatheral’s conclusion [13] that “the widely-assumed exponential decay of market impact is
compatible only with linear market impact.”

2.3 Main results for the block-shaped limit order book

We first discuss our problem in the particularly easy case of a block-shaped limit order book
in which f(x) = q. In that case Models 1 and 2 coincide. It follows from the results in [1]
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Figure 1: Relative gain between the extra liquidity cost of the optimal strategy on the optimal
grid T ∗ and the optimal strategy on the equidistant grid Teq as a function of N , when T = 1
and ρ(t) = 2 + cos(t/2π).

that for every admissible sequence of trading times T = (τ0, . . . , τN) there is a T -admissible
trading strategy that minimizes the cost C(·, T ) among all T -admissible trading strategies.
This strategy can even be computed explicitly; see [1, Theorem 3.1]. In the following theorem
we consider the problem of optimizing jointly over trading times and sizes.

Theorem 2.3. In a block-shaped limit order book, there is a unique optimal strategy (ξ∗, T ∗)
consisting of homogeneous time spacing T ∗ and the deterministic trading strategy ξ∗ defined by

ξ∗0 = ξ∗N =
X0

2 + (N − 1)(1− a∗)
and ξ∗1 = · · · = ξ∗N−1 = ξ∗0(1− a∗), (7)

where a∗ is as in (6).

While the preceding theorem is a special case of or main results, Theorem 2.7 and Theo-
rem 2.13, it admits a particularly easy proof based on the results in [1]. This proof is given in
Section 3.2.

Corollary 2.4. In a block-shaped limit order book, any nontrivial round trip has a strictly
positive average cost. In particular, there are no profitable price manipulation strategies.

Figure 1 gives an illustration of the situation when ρ(t) = a + b cos(t/(2π)), 0 ≤ t ≤ 1.
For a > b > 0 the resilience is greater near the opening and the closure of the stock exchange.
We plot here the relative gain, i.e., quotient of the respective expected costs, for the optimal
strategies corresponding to the optimal time grid T ∗ and the equidistant time grid Teq. More
precisely, we plot the quotient of the respective cost functions defined in equation (18) below.
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2.4 Main results for Model 1

In this section we state our main results for Model 1. They hold under the following assumption,
which includes the important cases of an immediate price impact following a power law or a
logarithmic price impact; see Example 2.1.

Assumption 2.5. In Model 1, we assume in addition to (3) that the shape function f is
nondecreasing on R− and nonincreasing on R+.

We start by looking at optimal trading strategies when an admissible sequence of trading
times T = (τ0, . . . , τN) is fixed. If ξ is a T -admissible trading strategy and it happens that
τi = τi+1, then the corresponding trades, ξi and ξi+1, are executed simultaneously. We therefore
say that two T -admissible trading strategies ξ and ξ are equivalent if ξi +ξi+1 = ξi +ξi+1 P-a.s.
on {τi = τi+1}.

Proposition 2.6. Suppose that an admissible sequence of trading times T is given and that
Assumption 2.5 holds. Then there exists a T -admissible trading strategy ξ(1),T , unique up to
equivalence, that minimizes the cost C(·, T ) among all T -admissible trading strategies. More-

over, it consists only of nontrivial buy orders, i.e., ξ(1),T
i > 0 P-a.s. for all i up to equivalence.

As we will see in the proof of Proposition 2.6, the optimal trading strategy ξ(1),T can be
implicitly characterized via a certain nonlinear equation. Our main result for Model 1 states,
however, that things become much easier when optimizing simultaneously over trading times
and sizes:

Theorem 2.7. Under Assumption 2.5, there is a unique optimal strategy (ξ(1), T ∗) consisting
of homogeneous time spacing T ∗ and the deterministic trading strategy ξ(1) that is defined as
follows. The initial market order ξ(1)

0 is the unique solution of the equation

F−1
°
X0 −Nξ(1)

0 (1− a∗)
¢

=
F−1(ξ(1)

0 )− a∗F−1(a∗ξ(1)
0 )

1− a∗
, (8)

the intermediate orders are given by

ξ(1)
1 = · · · = ξ(1)

N−1 = ξ(1)
0 (1− a∗) , (9)

and the final order is determined by

ξ(1)
N = X0 − ξ(1)

0 − (N − 1)ξ(1)
0 (1− a∗) .

Moreover, ξ(1) consists only of nontrivial buy orders, i.e., ξ(1)
n > 0 for all n.

In the limit X0 ↓ 0, the preceding result yields the nonexistence of price manipulation
strategies in the sense of Definition 2.2:
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Corollary 2.8. Under Assumption 2.5, any nontrivial round trip has a strictly positive average
cost. In particular, there are no price manipulation strategies.

Remark 2.9. The preceding corollary shows that, in our Model 1, exponential resilience of
price impact is well compatible with nonlinear impact governed by a shape function that satis-
fies Assumption 2.5. This fact is in stark contrast to Gatheral’s observation that, in a related
but different continuous-time model, exponential decay of price impact gives rise to price ma-
nipulation as soon as price impact is nonlinear. We thus deduce that, at least from a theoretical
perspective, exponential resilience of a limit order book is a viable possibility for describing the
decay of market impact.

Note that the positivity of the optimal trading strategies in Proposition 2.6 and Theorem 2.7
can be regarded as an additional regularity and viability result for our model. Indeed, it is
possible that a market impact model does not admit price manipulation strategies in the strict
sense of Definition 2.2, while an optimal strategy for a buy program can contain nontrivial sell
orders or the other way round. Such trading strategies can be regarded as price manipulation
strategies in a weak sense. We refer to our forthcoming paper [3] with A. Slynko for a systematic
study and corresponding examples.

Remark 2.10. Let us briefly discuss the asymptotic behavior of the optimal strategy when the
number N of trades tends to infinity. Since for any N we have ξ(1)

0 ∈ (0, X0), we can extract a

subsequence that converges to some ξ(1),∞
0 ≥ 0. One therefore checks that the right-hand side

of (8) tends to

h∞1 (ξ(1),∞
0 ) := F−1(ξ(1),∞

0 ) +
ξ(1),∞
0

f(F−1(ξ(1),∞
0 ))

.

Since N(1− a∗) →
R T

0 ρs ds, the left-hand side of (8) converges as well, and so ξ(1),∞
0 must be

a solution of the equation

F−1
≥
X0 − y

Z T

0

ρs ds
¥

= h∞1 (y).

Note that, under our assumptions, h∞1 is strictly increasing. Hence, the preceding equation has

a unique solution, which consequently must be the limit of ξ(1)
0 as N ↑ ∞. It follows moreover

that Nξ(1)
1 → ξ(1),∞

0

R T

0 ρs ds and that

ξ(1)
N −→ X0 − ξ(1),∞

0 − ξ(1)
0

Z T

0

ρs ds =: ξ(1),∞
T .

Thus, the optimal strategy, described in “resilience time” r(t) :=
R t

0 ρs ds, consists of an initial

block trade of size ξ(1),∞
0 , continuous buying at constant rate ξ(1),∞

0 during (0, T ), and a final

block trade of size ξ(1),∞
T . Transforming back to standard time leaves the initial and final

block trades unaffected, and continuous buying in (0, T ) now occurs at the time-dependent

rate ρtξ
(1),∞
0 .
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2.5 Main results for Model 2

In this section we state our main results for Model 2. This case is analytically more complicated
than Model 1, because the quantity that decays exponentially is no longer a linear function of
the order size. We therefore need a stronger assumption:

Assumption 2.11. In Model 2, we assume in addition to (3) that the shape function f is twice
differentiable on R\{0}, nondecreasing on R− and nonincreasing on R+. We moreover assume:

x 7→ xf 0(x)/f(x) is nondecreasing on R−, nonincreasing on R+, and (−1, 0]-valued, (10)

1 + x
f 0(x)

f(x)
+ 2x2

µ
f 0(x)

f(x)

∂2

− x2f 00(x)

f(x)
≥ 0 for all x ≥ 0. (11)

We will see in Example 2.15 below that this assumption is satisfied for the power law shape
functions from Example 2.1.

We start by looking at optimal trading strategies when an admissible sequence of trading
times T = (τ0, . . . , τN) is fixed. As in Section 2.4, we say that two T -admissible trading
strategies ξ and ξ are equivalent if ξi + ξi+1 = ξi + ξi+1 P-a.s. on {τi = τi+1}.

Proposition 2.12. Suppose that an admissible sequence of trading times T is given and that
Assumption 2.11 holds. Then there exists a T -admissible trading strategy ξ(2),T , unique up to
equivalence, that minimizes the cost C(·, T ). Moreover, it consists only of nontrivial buy orders,

i.e., ξ(2),T
i > 0 P-a.s. for all i up to equivalence.

As in Proposition 2.6, computing the optimal trading strategy ξ(2),T for an arbitrary se-
quence T can be quite complicated. But, again, the structure becomes much easier when
optimizing also over the sequence of trading times, T . To state the corresponding result, let us
recall from (6) the definition of a∗ and let us introduce the function

h2,a∗(x) := x
f(x/a∗)/a∗ − a∗f(x)

f(x/a∗)− a∗f(x)
.

We will see in Lemma 3.7 (a) below that h2,a∗(x) is indeed well-defined for all x ∈ R as soon
as Assumption 2.11 is satisfied.

Theorem 2.13. Suppose that that the shape function f satisfies Assumption 2.11. Then there
is a unique optimal strategy (ξ(2), T ∗), consisting of homogeneous time spacing T ∗ and the

deterministic trading strategy ξ(2) that is defined as follows. The initial market order ξ(2)
0 is the

unique solution of the equation

F−1
≥
X0 −N

£
ξ(2)
0 − F

°
a∗F−1(ξ(2)

0 )
¢§¥

= h2,a∗
°
F−1(ξ(2)

0 )
¢
, (12)

the intermediate orders are given by

ξ(2)
1 = · · · = ξ(2)

N−1 = ξ(2)
0 − F

°
a∗F−1(ξ(2)

0 )
¢
, (13)

11
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and the final order is determined by

ξ(2)
N = X0 −Nξ(2)

0 + (N − 1)F
°
a∗F−1(ξ(2)

0 )
¢
.

Moreover, the optimal strategy consists only of nontrivial buy orders, i.e., ξ(2)
n > 0 for all n.

As for Model 1, the limit X0 ↓ 0 yields the following result on the nonexistence of price
manipulation strategies in our model. We refer to Remark 2.9 for a discussion of this fact.

Corollary 2.14. Under Assumption 2.11, any nontrivial round trip has a strictly positive
average cost. In particular, there are no profitable price manipulation strategies in Model 2.

We conclude this section by showing that the power law shape functions from Example 2.1
are admissible also for Model 2.

Example 2.15 (Power law). Let us show that the power law shape functions from Example
2.1 satisfy our Assumption 2.11. For checking (10) and (11) we concentrate on the branch of f
on the positive part of the real line. So let us suppose that

f(x) =
q

(1 + λx)α
, for x > 0,

with α ∈ [0, 1], q,λ > 0. We have xf 0(x)/f(x) = − αλx
1+λx ∈ (−1, 0] which is nonincreasing

on R+. Moreover, for x ≥ 0 we have

1 + x
f 0(x)

f(x)
+ 2x2

µ
f 0(x)

f(x)

∂2

− x2f 00(x)

f(x)
=

1 + (2− α)λx + (1− 2α + α2)(λx)2

(1 + λx)2
≥ 0.

Remark 2.16. As in Remark 2.10, we can study the asymptotic behavior of the optimal
strategy as the number N of trades tends to infinity. First, one checks that h2,a∗ converges to

h∞2 (x) := x
≥
1 +

f(x)

f(x) + xf 0(x)

¥
,

and that N(y − F (a∗F−1(y))) tends to F−1(y)f(F−1(y))
R T

0 ρs ds. Now, suppose that the
equation

F−1
≥
X0 − F−1(y)f(F−1(y))

Z T

0

ρs ds
¥

= h∞2 (F−1(y))

has a unique solution in (0, X0), which we will call ξ(2),∞
0 . We then see as in Remark 2.10

that ξ(2),∞
0 is the limit of ξ(2)

0 . Next, Nξ(2)
1 converges to F−1(ξ(2),∞

0 )f(F−1(ξ(2),∞
0 ))

R T

0 ρs ds and

ξ(2)
N to

ξ(2),∞
T := X0 − ξ(2),∞

0 − F−1(ξ(2),∞
0 )f(F−1(ξ(2),∞

0 ))

Z T

0

ρs ds.

This yields a description of the continuous-time limit in “resilience time” r(t) :=
R t

0 ρs ds. Using
a time change as in Remark 2.10, we obtain that the optimal strategy consists of an initial block
order of ξ(2),∞

0 shares at time 0, continuous buying at rate ρtF−1(ξ(2),∞
0 )f(F−1(ξ(2),∞

0 )) during

(0, T ), and a final block order of ξ(2),∞
T shares at time T .

12
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3 Proofs

3.1 Reduction to a deterministic problem

First, it will be convenient to work with the quantities

αk :=

Z τk

τk−1

ρsds, k = 1, . . . , N, (14)

instead of the τk themselves. The condition 0 = τ0 ≤ τ1 ≤ · · · ≤ τN = T is clearly equivalent
to α := (α1, . . . ,αN) belonging to

A :=
n
α := (α1, . . . ,αN) ∈ RN

+

ØØØ
NX

k=1

αk =

Z T

0

ρs ds
o
.

As explained in [2, Section A], the martingale assumption on (A0
t , t ≥ 0), allows to reduce

the optimization problem to a deterministic one. This remains true in our extended setting in
which trading times are allowed to be stopping times. Following [2], we introduce a new pair
of discrete-time processes D and E that react on both sell and buy orders according to the
following dynamics.

• We have E0 = D0 = 0 and

En = F (Dn) and Dn = F−1(En).

• For n = 0, . . . , N , regardless of the sign of ξn,

En+ = En + ξn and Dn+ = F−1 (ξn + F (Dn)) .

• For k = 0, . . . , N − 1,

Ek+1 = e−αk+1Ek+ = e−αk+1(Ek + ξk) in Model 1,

Dk+1 = e−αk+1Dk+ = e−αk+1F−1 (ξk + F (Dk)) in Model 2.
(15)

Next, observe that, in each Model i = 1, 2, the simplified extra spread process D evolves
deterministically once the values of α(ω) = (α1(ω), . . . ,αN(ω)) and ξ(ω) = (ξ0(ω), . . . , ξN(ω))
are given. Hence, there exists a deterministic function C(i) : RN+1 ×A→ R such that

NX

n=0

Z Dn+

Dn

xf(x) dx = C(i)(ξ,α). (16)

The relation between the functions C(i) and our original cost function C now is as follows:
if (ξ, T ) is an admissible strategy and α is as in (14), then

C(ξ, T ) ≥ A0X0 + E
£
C(i)(ξ,α)

§
with equality if ξi ≥ 0 P-a.s. for all i. (17)

This follows from the same arguments as in [2, Section A].

13
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We will show in the respective Sections 3.3 and 3.4 that, under our assumptions, the func-
tions C(i), i = 1, 2, have unique minima within the set Ξ×A, where

Ξ :=
n
x = (x0, . . . , xN) ∈ RN+1

ØØ
NX

n=0

xn = X0

o
.

It then follows from (17) that the corresponding minimizers also minimize the original cost
functional (5), provided that the resulting trading strategies consist only of buy orders. When
working with deterministic trading strategies in Ξ rather than with random variables, we will
mainly use Roman letters like x instead of Greek letters such as ξ. We conclude this section
with the following easy lemma.

Lemma 3.1. For X0 > 0, there is no x ∈ Ξ such that En+ = En + xn ≤ 0 (or, equivalently,
Dn+ ≤ 0) for all n = 0, . . . , N .

Proof. Since the effect of resilience is to drive the extra spread back to zero, we have En+ ≥
x0 + · · · + xn up to and including the first n at which x0 + · · · + xn > 0.

3.2 Proofs for a block-shaped limit order book

In this section, we give quick and direct proofs for our results in case of a block-shaped limit
order book with f(x) = q. In this setting, Models 1 and 2 coincide. As explained in [1], the
cost function in (16) is an increasing affine function of

C(x,α) =
1

2
hx,M(α)xi, x ∈ Ξ, α ∈ A, (18)

where h·, ·i is the usual Euclidean inner product and M(α) is the positive definite symmetric
matrix with entries

M(α)n,m = exp
≥
−

Z τn∨m

τn∧m

ρudu
¥

= exp
≥
−

ØØØ
nX

i=1

αi −
mX

j=1

αj

ØØØ
¥
, 0 ≤ n,m ≤ N.

Proof of Theorem 2.3. For α belonging to

A∗ :=
©
α ∈ A |αi > 0, i = 1, . . . , N

™
,

the inverse M(α)−1 of the matrix M(α) can be computed explicitly, and the unique optimal
trading strategy for fixed α is

x∗(α) =
X0

h1,M(α)−11i M(α)−11,

14
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and this strategy has only strictly positive components; see [1, Theorem 3.1]. From [1, Eq.
(17)], it follows that

min
x∈Ξ

C(x,α) = C(x∗(α),α) =
X2

0

2h1,M(α)−11i

=
X2

0

2

√
2

1 + e−α1
+

NX

n=2

1− e−αn

1 + e−αn

!−1

(19)

=
X2

0

2

√
NX

n=1

2

1 + e−αn
− (N − 1)

!−1

.

Minimizing minx∈Ξ C(x,α) over α ∈ A∗ is thus equivalent to maximizing
PN

n=1
2

1+e−αn . The
function x 7→ 2

1+e−x is strictly concave in x > 0. Hence,

NX

n=1

2

1 + e−αn
≤ 2N

1 + e−
1
N

PN
n=1 αn

=
2N

1 + e−
1
N

R T
0 ρudu

,

with equality if and only if α = α∗, where α∗ corresponds to to homogeneous time spacing T ∗,
i.e.,

α∗
i =

1

N

Z T

0

ρs ds, i = 1, . . . , N. (20)

Next, C(x,α) is clearly jointly continuous in x ∈ Ξ and α ∈ A, so infx∈Ξ C(x,α) is upper
semicontinuous in α. One thus sees that the minimum cannot be attained at the boundary
of A. Finally, the formula (7) for the optimal trading strategy with homogeneous time spacing
can be found in [1, Remark 3.2] or in [2, Corollary 6.1].

Proof of Corollary 2.4. Suppose that (x,α) is a round trip such that C(x,α) ≤ 0. We can
assume w.l.o.g. that α ∈ A∗, for otherwise we can simply merge those trades that occur at the
same time into a single trade. Then

C(x,α) = lim
ε↓0

C(x + ε1,α).

But C(x+ε1,α) > 0 for each ε > 0, due to (19). Hence we must have C(x,α) = 0. According
to [1, Theorem 3.3], the matrix M(α) is positive definite for α ∈ A∗, and so there can be at
most one minimizer of C(·,α) in the class of round trips. Since we clearly have C(0,α) = 0,
we must conclude that x = 0. The result now follows from (17).

3.3 Proofs for Model 1

We need a few lemmas before we can prove our main results for Model 1.

Lemma 3.2. Under Assumption 2.5, the following conclusions hold.

15
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(a) For each a ∈ (0, 1), the function

h1,a : R −→ R
y 7−→ F−1(y)− aF−1(ay)

(21)

is strictly increasing.

(b) For all a, b ∈ (0, 1) and ν > 0, we have the inequalities

h−1
1,a

°
ν(1− a)

¢
> b · h−1

1,b

°
ν(1− b)

¢
(22)

and
b · h−1

1,b

°
ν(1− b)

¢
< F (ν). (23)

(c) The function

H1 : (0,∞)× (0, 1) −→ R2

(y, a) 7−→
≥F−1(y)− aF−1(ay)

1− a
, ay

F−1(y)− F−1(ay)

1− a

¥

is one-to-one.

Proof: Part (a) of the assertion follows from [2, Remark 4.3].
For the proof of part (b), let y := h−1

1,a

°
ν(1− a)

¢
. Then y > 0 since h1,a(0) = 0. Note also

that F−1 is convex on R+. Let bf be its derivative. Then,

ν =
F−1(y)− aF−1(ay)

1− a
= F−1(ay) +

F−1(y)− F−1(ay)

1− a

= F−1(ay) +
1

1− a

Z y

ay

bf(x) dx < F−1(y) + y bf(y) =: g(y).

Clearly, g is a strictly increasing function on R+, and so we have y > g−1(ν).
Next, let z := b · h−1

1,b

°
ν(1− b)

¢
. Then,

ν =
F−1(z/b)− bF−1(z)

1− b
= F−1(z) +

F−1(z/b)− F−1(z)

1− b

= F−1(z) +
1

1− b

Z z/b

z

bf(x) dx ≥ F−1(z) + z bf(z) = g(z),

since bf(z) = 1/f(F−1(z)) is nondecreasing for z > 0. Thus, z ≤ g−1(ν) < h−1
1,a

°
ν(1− a)

¢
, and

(22) follows. For (23) it now suffices to note that g(z) > F−1(z).
To prove part (c), let a1, a2 ∈ (0, 1) and y1, y2 > 0 and assume that H1(a1, y1) = H1(a2, y2).

Since
F−1(y)− aF−1(ay)

1− a
= F−1(y) + a

F−1(y)− F−1(ay)

1− a
,

16
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we get

F−1(y1) + a1
F−1(y1)− F−1(a1y1)

1− a1
= F−1(y2) + a2

F−1(y2)− F−1(a2y2)

1− a2
,

a1y1
F−1(y1)− F−1(a1y1)

1− a1
= a2y2

F−1(y2)− F−1(a2y2)

1− a2
.

Assume that y1 6= y2, say, y1 > y2 > 0. Multiplying the first identity by y1 and subtracting the
second identity yields

y1
F−1(y1)− F−1(y2)

y1 − y2
=

a2

1− a2

£
F−1(y2)− F−1(a2y2)

§
.

Since (F−1)0(y) = bf(y) is nondecreasing for y > 0, we obtain that

y1
F−1(y1)− F−1(y2)

y1 − y2
≥ y1

bf(y2) and
a2

1− a2

£
F−1(y2)− F−1(a2y2)

§
≤ a2y2

bf(y2),

which contradicts the previous equation since y1 > y2 ≥ a2y2. Therefore we must have y1 = y2.
It is therefore sufficient to show that

eh(a) :=
a

1− a

£
F−1(y)− F−1(ay)

§
, a ∈]0, 1[,

is one-to-one for any y > 0. Its derivative is equal to

eh0(a) =
1

(1− a)2

£
F−1(y)− F−1(ay)

§
− ay

1− a
bf(ay). (24)

Using again that bf(y) is nondecreasing for y > 0, we get

F−1(y)− F−1(ay) > (1− a)y bf(ay)

and in turn eh0(a) > 0.

Let us introduce the functions

F̃ (x) :=

Z x

0

zf(z) dz and G = F̃ ◦ F−1.

With this notation, the simplified cost function (16) in Model 1 can be represented as

C(1)(x,α) =
NX

n=0

h
G(En + xn)−G(En)

i
, x ∈ Ξ, α ∈ A, (25)

where

E0 = 0 and En =
n−1X

i=0

xie
−

Pn
k=i+1 αk , 1 ≤ n ≤ N.

17
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Lemma 3.3. For i = 0, . . . , N − 1, we have the following recursive formula,

∂C(1)

∂xi
= F−1(Ei + xi)− e−αi+1F−1(Ei+1) + e−αi+1

∂C(1)

∂xi+1
. (26)

Moreover, for i = 1, . . . , N ,

∂C(1)

∂αi
= Ei

NX

n=i

£
F−1(En + xn)− F−1(En)

§
e−

Pn
k=i+1 αk . (27)

Proof: To prove (26), we first need to calculate ∂En/∂xi. We obtain:

∂En

∂xi
= 0 if i ≥ n, and

∂En

∂xi
= e−

Pn
k=i+1 αk if i < n.

Using the fact that G0 = F−1, we therefore get

∂C(1)

∂xi
= F−1(Ei + xi) +

NX

n=i+1

£
F−1(En + xn)− F−1(En)

§
e−

Pn
k=i+1 αk

= F−1(Ei + xi)− e−αi+1F−1(Ei+1)

+e−αi+1

√

F−1(Ei+1 + xi+1) +
NX

n=i+2

£
F−1(En + xn)− F−1(En)

§
e−

Pn
k=i+2 αk

!

,

which yields (26).
For the proof of (27), we have first to compute ∂En/∂αi. We obtain:

∂En

∂αi
= 0 if i > n, and

∂En

∂αi
= −

i−1X

m=0

xme−
Pn

k=m+1 αk for i ≤ n.

From here, we get

∂C(1)

∂αi
= −

NX

n=i

£
F−1(En + xn)− F−1(En)

§ i−1X

m=0

xme−
Pn

k=m+1 αk

= Ei

NX

n=i

£
F−1(En + xn)− F−1(En)

§
e−

Pn
k=i+1 αk ,

which is (27).

Remark 3.4. A consequence of this lemma is that homogeneous time spacing α∗ and the
optimal strategy ξ(1) given in [2] yield a critical point for the minimization in (x,α). Indeed,

we have then Ei = a∗ξ(1)
0 for any i, and therefore ∂C(2)

∂αi
does not depend on i.

Lemma 3.5. For each α ∈ A the function C(1)(·,α) has a minimizer x∗(α) ∈ Ξ, which is
unique up to equivalence.

18
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Proof: First note that we may assume without loss of generality that α ∈ A∗ = {α ∈ A |αi >
0, i = 1, . . . , N}. Indeed, if αi = 0 we can merge the trades xi−1 and xi into a single one and
reduce N to N − 1.

We next extend the arguments in [2, Lemma B.1] to prove the existence of a unique mini-
mizer of C(1)(·,α) in Ξ.

Using the convention
Pn

k=n+1 αk := 0, we obtain by rearranging the sum in (25) that

C(1)(x,α) = G
≥ NX

i=0

xie
−

PN
k=i+1 αk

¥
−G(0)

+
N−1X

n=0

∑
G

≥ nX

i=0

xie
−

Pn
k=i+1 αk

¥
−G

≥
e−αn+1

nX

i=0

xie
−

Pn
k=i+1 αk

¥∏
.

Let us define the linear map T : RN+1 → RN+1 via

(Tx)n =
nX

i=0

xie
−

Pn
k=i+1 αk , n = 0, . . . , N.

We can thus write

C(1)(x,α) = G
°
(Tx)N

¢
−G(0) +

N−1X

n=0

h
G

°
(Tx)n

¢
−G

°
e−αn+1(Tx)n

¢i
. (28)

Note first that G is strictly convex since G0 = F−1 is strictly increasing. Second, for a ∈ (0, 1),
the function x → G(x) − G(ax) is also strictly convex, because its derivative is equal to the
strictly increasing function h1,a in Lemma 3.2 (a). And third, T is one-to-one. Hence, C(1)(·,α)
is strictly convex in is first argument, and there can be at most one minimizer.

To show the existence of a minimizer, note that G0 = F−1 is increasing with F−1(0) = 0,
and hence G(y)−G(ay) ≥ (1− a)|y| · |F−1(ay)|. Therefore, (28) yields

C(1)(x,α) ≥ G
°
(Tx)N

¢
−G(0)

+
N−1X

n=0

(1− e−αn+1) ·
ØØF−1

°
e−αn+1(Tx)n

¢ØØ ·
ØØØ(Tx)n

ØØ.

Hence,
C(1)(x,α) ≥ Λ

°
|Tx|∞

¢
−G(0),

where | · |∞ is the `∞-norm on RN+1 and Λ is the function

Λ(y) := G(y) ∧G(−y) ∧ min
n=0,...,N−1

n
|y| · (1− an+1)

≥ØØF−1(an+1 · y)
ØØ ∧

ØØF−1(−an+1 · y)
ØØ
¥o

,

where an+1 := e−αn+1. Since F is unbounded, both G(y) and |F−1(y)| tend to +∞ for |y|→∞,
and the fact that T is one-to-one implies that Λ

°
|Tx|∞

¢
→ +∞ for |x| → ∞. Note also that

by assumption αn > 0 for each n. Hence, C(1)(·,α) must attain its minimum on Ξ.

We are now in a position to prove the main results for Model 1.
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Proof of Proposition 2.6: The result will follow via (17) if we can show that the minimizer
in Lemma 3.5 consists only of strictly positive components. Here, we may assume without loss
of generality that the admissible sequence of trading times is strictly increasing, or equivalently
that α ∈ A∗, for otherwise we can simply merge two trades occurring at the same time into a
single trade.

If x is the minimizer of C(1)(·,α) on Ξ, then there must be a Lagrange multiplier ν such
that x is a critical point of y 7→ C(1)(y,α)− ν

PN
i=0 yi. Hence, (26) yields that

ν(1− ai+1) = F−1(Ei + xi)− ai+1F
−1(Ei+1) = h1,ai+1(Ei + xi), i = 0, . . . , N − 1, (29)

where ai+1 = e−αi+1 and h1,a is as in (21). For the final trade, we have

ν = F−1(EN + xN). (30)

Since h1,a(0) = 0 = F−1(0) and both h1,a and F−1 are strictly increasing, we conclude that
E0 + x0, . . . , EN + xN have all the same sign as ν. Thus, ν > 0 by Lemma 3.1. Next, (29)
implies that Ei +xi = h−1

1,ai+1
(ν(1−ai+1)) and hence Ei+1 = ai+1h

−1
1,ai+1

(ν(1−ai+1)). Using (29)
once again yields

x0 = h−1
1,a1

(ν(1− a1)) and xi = h−1
1,ai+1

(ν(1− ai+1))− aih
−1
1,ai

(ν(1− ai)), i = 1, . . . , N − 1.

The inequality (22) thus gives xi > 0 for i = 0, . . . , N − 1. As for the final trade, (30) gives
xN = F (ν)− aNh−1

1,aN
(ν(1− aN)), which is strictly positive by (23).

Proof of Theorem 2.7: We will show that (ξ(1),α∗), defined via (8), (9), and (20), is the
unique minimizer of C(1) on Ξ×A. The result will then follow from (17). The first step is to
show the existence of a minimizer. To this end, note that Proposition 2.6 allows us to restrict
the minimization of C(1) to Ξ+ × A, where Ξ+ = {x ∈ Ξ |xi ≥ 0, i = 0, . . . , N}. The set
Ξ+×A is in fact the product of two compact simplices, and so the continuity of C(1) yields the
existence of a global minimizer, which lies in Ξ+ ×A.

We next argue that any minimizer must belong to the relative interior of Ξ+×A. To this end,
suppose that x ∈ Ξ+ and α ∈ A are given and such that αi = 0 for some i. We then define α :=
(α0, . . . ,αi−1,αi+1/2,αi+1/2,αi+2, . . . ,αN) and x := (x0, . . . , xi−2, xi−1+xi, 0, xi+1, . . . , xN) and
observe that C(1)(x,α) = C(1)(x,α). But Proposition 2.6 implies that x cannot be optimal
for α since xi = 0. In particular, (x,α) cannot be optimal. Thus, the α-component of any
minimizer must lie in the relative interior of A. Finally, for α in the relative interior of A,
Proposition 2.6 states that x∗(α) belongs to the relative interior of Ξ+.

Now suppose that (x,α) is a minimizer of C(1). Due to the preceding step, there must
be Lagrange multipliers ν and λ such that (x,α) is a critical point of (y,β) 7→ C(1)(y,β) −
ν

PN
i=0 yi − λ

PN
j=1 βj. The identity (26) thus again yields

ν(1− e−αi+1) = F−1(Ei + xi)− e−αi+1F−1(Ei+1), i = 0, . . . , N − 1, (31)

and
ν = F−1(EN + xN). (32)
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Using the same argument as in the proof of Proposition 2.6, we have ν > 0. Note that this can
also be obtained by writing

X0 =
NX

i=0

xi = F (ν) +
NX

i=1

(1− ai)h
−1
1,ai

(ν(1− ai)).

Indeed, the right-hand side is strictly increasing in ν (F and the functions h−1
1,ai

are strictly
increasing) and vanishes for ν = 0, so ν > 0.

Next, (27) gives

λ = Ej

NX

n=j

£
F−1(En + xn)− F−1(En)

§
e−

Pn
k=j+1 αk , j = 1, . . . , N. (33)

We now rewrite the sum in (33) as follows:

NX

n=j

£
F−1(En + xn)− F−1(En)

§
e−

Pn
k=j+1 αk

= −F−1(Ej)

+
£
F−1(Ej + xj)− F−1(Ej+1)e

−αj+1
§
+ . . .

+
£
F−1(EN−1 + xN−1)− F−1(EN)e−αN

§
e−

PN−1
k=j+1 αk

+F−1(EN + xN)e−
PN

k=j+1 αk .

Plugging in (31) and (32), simplifications occur and we get

NX

n=j

£
F−1(En + xn)− F−1(En)

§
e−

Pn
k=j+1 αk = ν − F−1(Ej).

Plugging this back into (33) yields λ = (ν−F−1(Ej))Ej for j = 1, . . . , N . Solving this equation
together with (31) for ν and λ implies that necessarily

ν =
F−1(Ei−1 + xi−1)− e−αiF−1(e−αi(Ei−1 + xi−1))

1− e−αi
,

λ = e−αi(Ei−1 + xi−1)
F−1(Ei−1 + xi−1)− F−1(e−αi(Ei−1 + xi−1))

1− e−αi
,

for i = 1, . . . , N . Lemma 3.2 (c) thus implies that

α1 = · · · = αN and x0 = E1 + x1 = · · · = EN−1 + xN−1.

This gives α = α∗. Moreover, (9) holds since xi = (1− a∗)x0 for i = 1, . . . , N − 1. We also get
Ei = a∗x0 for i = 1, . . . , N . Note next that xN = X0 − x0 − (N − 1)(1 − a∗)x0 and therefore
EN + xN = X0 −N(1− a∗)x0. Equation (8) now follows from the fact that

F−1(X0 −N(1− a∗)) = F−1(EN + xN) =
∂C(1)

∂xN
(x,α) = ν =

F−1(x0)− a∗F−1(a∗x0)

1− a∗
.
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This concludes the proof of the theorem.

Proof of Corollary 2.8: Suppose that (x,α) is a round trip such that C(1)(x,α) ≤ 0. We
can assume w.l.o.g. that α ∈ A∗, for otherwise we can simply merge those trades that occur
at the same time into a single trade. Then

C(1)(x,α) = lim
ε↓0

C(1)(x + ε1,α).

But C(1)(x + ε1,α) > 0 for each ε > 0, due to our previous results. Hence we must have
C(1)(x,α) = 0. The strict convexity of C(1)(·,α), established in the proof of Lemma 3.5,
implies that there can be at most one minimizer of C(1)(·,α) in the class of round trips. Since
we clearly have C(1)(0,α) = 0, we must conclude that x = 0.

3.4 Proofs for Model 2

We first need two technical lemmas. The first one states some properties for functions satisfying
Assumption 2.11, while the second one is the analogue of Lemma 3.2 and prepares for the
uniqueness of a critical point.

Lemma 3.6. Under Assumption 2.11, the following conclusions hold.

(a) x 7→ xf(x) is increasing on R (or, equivalently, F̃ is convex).

(b) For all a ∈ (0, 1), x 7→ af(ax)/f(x) is nondecreasing on R+ and nonincreasing on R−
and takes values in (0, 1).

(c) For all x > 0,

(0, 1) 3 a 7−→ 1− a2f(ax)/f(x)

1− af(ax)/f(x)

is increasing.

(d) For all x > 0,

(0, 1) 3 a 7−→ a−11− a2f(x)/f(x/a)

1− af(x)/f(x/a)

is decreasing.

Proof: (a) The derivative is positive since xf 0(x)/f(x) > −1 by Assumption 2.11.
(b) Since x 7→ xf(x) is increasing, af(ax)/f(x) = [axf(ax)]/[xf(x)] ∈ (0, 1). The derivative

of x 7→ af(ax)/f(x) is equal to [a2f 0(ax)f(x) − af(ax)f 0(x)]/f(x)2. It is nonnegative on R+

and nonpositive on R− if and only if

af 0(ax)

f(ax)
≥ f 0(x)

f(x)
for x ≥ 0, and

af 0(ax)

f(ax)
≤ f 0(x)

f(x)
for x ≤ 0.

These conditions hold as a direct consequence of (10).
(c) For a fixed x ≥ 0, we set ψ(a) = af(ax)/f(x), which takes values in (0, 1). We need to

show that
d

da

1− aψ(a)

1− ψ(a)
=

(1− a)ψ0(a)− ψ(a)(1− ψ(a))

(1− ψ(a))2
> 0.
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This condition holds if and only if

ψ0(a)

ψ(a)
>

1− ψ(a)

1− a
.

It is thus sufficient to show that ψ0/ψ is nonincreasing, since then we would have

1− ψ(a) <

Z 1

a

ψ0(u)

ψ(u)
du ≤ (1− a)

ψ0(a)

ψ(a)
.

This leads to requiring ψψ00 − (ψ0)2 ≤ 0, which in turn leads to the following condition:

1 + (ax)2

µ
f 0(ax)

f(ax)

∂2

− (ax)2f 00(ax)

f(ax)
≥ 0 for a ∈ (0, 1).

The latter condition is ensured by Assumption (11), since xf 0(x)/f(x) ∈ (−1, 0] and thus

≥xf 0(x)

f(x)

¥2
+

xf 0(x)

f(x)
< 0.

(d) We fix x > 0 and let ψ̃(a) := af(x)/f(x/a). We need to show that

d

da
a−11− aψ̃(a)

1− ψ̃(a)
=

ψ̃(a)− 1 + aψ̃0(a)(1− a)

a2(1− ψ̃(a))2
< 0.

This condition holds if and only if

aψ̃0(a) <
1− ψ̃(a)

1− a
.

Hence it is enough to show that a 7→ aψ̃0(a) is nondecreasing, because then we would have

1− ψ̃(a) >

Z 1

a

uψ̃0(u) du ≥ (1− a)aψ̃0(a).

Some calculations lead to

d

da
aψ̃0(a) =

1

f(x/a)

√

1 +
x

a

f 0(x/a)

f(x/a)
+ 2

µ
x

a

f 0(x/a)

f(x/a)

∂2

−
≥x

a

¥2 f 00(x/a)

f(x/a)

!

,

which is nonnegative by Assumption (11).

Lemma 3.7. Under Assumption 2.11, the following conclusions hold.

(a) For each a ∈ (0, 1), the function

h2,a : R −→ R

x 7−→ x
f(x/a)/a− af(x)

f(x/a)− af(x)

(34)

is well-defined and strictly increasing.
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(b) For all a, b ∈ (0, 1) and ν > 0, we have the inequalities

h−1
2,a(ν)/a > h−1

2,b(ν)

and
h−1

2,b(ν) < ν.

(c) The function

H2 : (0,∞)× (0, 1) −→ R2

(x, a) 7−→
≥
x
f(x/a)/a− af(x)

f(x/a)− af(x)
,−x2f(x)

f(x/a)(1/a− 1)

f(x/a)− af(x)

¥

is one-to-one.

Proof: (a) First let us observe that the denominator of h2,a is positive, since x 7→ xf(x) is
increasing by Lemma 3.6 (a). We have

h2,a(x) = x

µ
1 +

a−1 − 1

1− af(x)/f(x/a)

∂
. (35)

Again by Lemma 3.6, the fraction is positive and, as a function of x, nondecreasing on R+ and
nonincreasing R−, which gives the result.

(b) It is clear from (35) that h2,a(x) > x for x > 0 and therefore h−1
2,a(x) < x. Let us now

consider a, b ∈ (0, 1), ν > 0 and set x0 = h−1
2,a(ν)/a, x = h−1

2,b(ν). Then both x and x0 are
positive, and we need to show that x0 > x. It follows that

ν = x0
f(x0)− a2f(ax0)

f(x0)− af(ax0)
= x

f(x/b)/b− bf(x)

f(x/b)− bf(x)
.

Let us suppose by a way of contradiction that x0 ≤ x. Then, using Lemma 3.6 (b) and the fact
that u ∈ [0, 1) 7→ (1− au)/(1− u) is increasing, we get:

1− a2f(ax)/f(x)

1− af(ax)/f(x)
≥ 1− a2f(ax0)/f(x0)

1− af(ax0)/f(x0)
≥ b−11− b2f(x)/f(x/b)

1− bf(x)/f(x/b)
.

Again by Lemma 3.6, the left-hand-side is increasing w.r.t a and the right-hand side is decreasing
w.r.t. b. Moreover, both have the same limit,

2 + xf 0(x)/f(x)

1 + xf 0(x)/f(x)
,

when a ↑ 1 and b ↑ 1, which leads to a contradiction.
(c) Let (a1, y1), (a2, y2) ∈ (0, 1)× (0,∞) be such that H2(a1, y1) = H2(a2, y2). By (35), we

then have
(

y1(1 + α1) = y2(1 + α2)

y2
1f(y1)α1 = y2

2f(y2)α2,
where αi :=

(a−1
i − 1)f(yi/ai)

f(yi/ai)− aif(yi)
for i = 1, 2. (36)
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Let us assume for example that α2 ≤ α1 and set η = α2/α1 ∈ (0, 1]. Eliminating y1 in (36)
yields

φ(η) :=
≥1 + ηα1

1 + α1

¥2
f
≥
y2

1 + ηα1

1 + α1

¥
− ηf(y2) = 0.

Note that αi ∈ (0, 1) by Lemma 3.6 (b) and hence 2α1 < 1 + α1. By using in addition that f
is nonincreasing on R+ and that x 7→ xf(x) is increasing by Lemma 3.6, we obtain

φ0(η) =
2α1

1 + α1

1 + ηα1

1 + α1
f
≥
y2

1 + ηα1

1 + α1

¥
+

α1y2

1 + α1

≥1 + ηα1

1 + α1

¥2
f 0

≥
y2

1 + ηα1

1 + α1

¥
− f(y2)

<
1 + ηα1

1 + α1
f
≥
y2

1 + ηα1

1 + α1

¥
− f(y2) ≤ 0.

Thus, η = 1 is the only zero of φ(η). We may thus conclude that α1 = α2 and in turn that
y1 = y2. Finally, the equality α1 = α2 leads to a1 = a2 due to Lemma 3.6 (d), since

1 + αi = a−1
i

1− a2
i f(yi)/f(yi/ai)

1− aif(yi)/f(yi/ai)
.

In Model 2, we need to minimize the following the cost functional:

C(2)(x0, . . . , xn,α) =
NX

n=0

G(F (Dn) + xn)−G(F (Dn)), (37)

where D0 = 0 and Dn = e−αnF−1(xn−1 + F (Dn−1)) for 1 ≤ n ≤ N . By bf(x) = 1/f(F−1(x))
we denote again the derivative of F−1.

Lemma 3.8. We have the following recursive formula for i = 0, . . . , N − 1,

∂C(2)

∂xi
= F−1

°
F (Di) + xi

¢
+ e−αi+1f(Di+1) bf

°
xi + F (Di)

¢h∂C(2)

∂xi+1
−Di+1

i
. (38)

Moreover, for j = 1, . . . , N ,

∂C(2)

∂αj
= −Djf(Dj)

µ
∂C(2)

∂xj
−Dj

∂
(39)

Proof: We have for n ∈ {1, . . . , N},
Dn

k
e−αnF−1(xn−1+ F (Dn−1))

k
. . .

e−αi+2F−1(xi+1+ F (Di+1))
k

e−αi+1F−1(xi+ F (Di))
k
. . .

e−α1F−1(x0).
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Using this scheme, we obtain the following recursive relations between the derivatives of Dn

with respect to xi.

∂Dn

∂xi
= 0 for i ≥ n,

∂Dn

∂xn−1
= e−αn bf(xn−1 + F (Dn−1)),

∂Dn

∂xi
= e−αi+1f(Di+1) bf(xi + F (Di))

∂Dn

∂xi+1
for 1 ≤ i ≤ n− 1.

Thus, by (37),

∂C(2)

∂xi
= F−1(xi + F (Di)) +

NX

n=i+1

f(Dn)
£
F−1(xn + F (Dn))−Dn

§∂Dn

∂xi
(40)

= F−1(xi + F (Di)) + e−αi+1f(Di+1) bf
°
xi + F (Di)

¢£
F−1(xi+1 + F (Di+1))−Di+1

§

+e−αi+1f(Di+1) bf
°
xi + F (Di)

¢ NX

n=i+2

f(Dn)
£
F−1(xn + F (Dn))−Dn

§ ∂Dn

∂xi+1
.

By (40), the sum in the preceding line satisfies

NX

n=i+2

f(Dn)
£
F−1(xn + F (Dn))−Dn

§ ∂Dn

∂xi+1
=

∂C(2)

∂xi+1
− F−1(xi+1 + F (Di+1)).

Hence,

∂C(2)

∂xi
= F−1(xi + F (Di)) + e−αi+1f(Di+1) bf(xi + F (Di))

h∂C(2)

∂xi+1
−Di+1

i
,

which is our formula (38).
As to (39), we use again the recursive scheme at the beginning of this proof to obtain

formulas for the derivatives of Dn with respect to αj:

∂Dn

∂αj
= 0 for j > n,

∂Dn

∂αn
= −Dn,

∂Dn

∂αj
= −Djf(Dj)

∂Dn

∂xj
for 1 ≤ j ≤ n− 1.

26



Optimal execution and absence of price manipulations

We therefore obtain from (37):

∂C(2)

∂αi
=

NX

n=i

f(Dn)
£
F−1(xn + F (Dn))−Dn

§∂Dn

∂αi

= −Dif(Di)[F
−1(xi + F (Di))−Di]

−
NX

n=i+1

f(Dn)Dif(Di)
£
F−1(xn + F (Dn))−Dn

§∂Dn

∂xi

= −Dif(Di)

µ
F−1(xi + F (Di))−Di +

∂C(2)

∂xi
− F−1(xi + F (Di))

∂

= −Dif(Di)

µ
∂C(2)

∂xi
−Di

∂
.

Remark 3.9. A consequence of this lemma is that the optimal strategy given by [2] on the
homogeneous time spacing grid T ∗ is a critical point for the minimization in (x,α). Indeed,

we have then Di = a∗F−1(ξ(2)
0 ) for any i, and therefore ∂C(2)

∂αi
does not depend on i.

Lemma 3.10. Assume that α ∈ A∗. Then, C(2)(x,α) →∞ as |x|→∞.

Proof: Equation (37) yields

C(2)(x,α)

=
NX

n=0

F̃
°
F−1(F (Dn) + xn)

¢
− F̃ (Dn))

=
N−1X

n=0

h
F̃

°
F−1(F (Dn) + xn)

¢
− F̃

°
e−αn+1F−1(F (Dn) + xn)

¢i
+ F̃

°
F−1(F (DN) + xN

¢
.

Since f is nondecreasing on R− and nonincreasing on R+, we have for x ∈ R, a ∈ [0, 1),

F̃ (x)− F̃ (ax) =

Z x

ax

xf(x)dx ≥ 1

2
f(x)x2(1− a2) =: H(x).

Defining a = maxi=1,...,N e−αi < 1, we thus get

C(2)(x,α) ≥ 1

2
(1− a2)H(|T2(x)|∞),

where
T2(x) =

°
x0, x1 + F−1(D1), . . . , xN + F−1(DN)

¢
.

From (10), x 7→ xf(x) is increasing and therefore H(x) → +∞ as |x| → +∞. It is therefore
sufficient to have T2(x) → +∞ for |x|→ +∞. To this end, let (xk) be a sequence such that the
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sequence (T2(xk)) is bounded. We will show that (xk) then must also be bounded. It is clear
that the first coordinate xk

0 is bounded. Therefore, F−1(Dk
1) is also bounded, which in turn

implies that the second coordinate of (T2(xk)) is bounded. We then get that (xk
1) is bounded.

An easy induction on coordinates thus gives the desired result.

We are now in position to prove the main results for Model 2.

Proof of Proposition 2.12: We can assume without loss of generality that α ∈ A∗, for
otherwise we can simply merge two trades occurring at the same time into a single trade. If x
is the minimizer of C(2)(·,α) on Ξ, then there must be a Lagrange multiplier ν such that x is
a critical point of y 7→ C(1)(y,α)− ν

PN
i=0 yi. Hence, (38) yields that

ν = h2,ai+1(Di+1), i = 0, . . . , N − 1,

where ai+1 = e−αi+1 and h2,a is defined as in (34). Since Di+1 = ai+1F−1(xi + F (Di)), we get
with Lemma 3.7 that

x0 = F (h−1
2,a1

(ν)/a1), xi = F (h−1
2,ai+1

(ν)/ai+1)− F (h−1
2,ai

(ν)), i = 1, . . . , N − 1.

For the last trade, we also get that ν = F−1(xN + F (DN)) and xN = F (ν) − F (h−1
2,aN

(ν)).
Therefore, summing all the trades, we get:

X0 = F (ν) +
NX

i=1

£
F (h−1

2,ai
(ν)/ai)− F (h−1

2,ai
(ν))

§
. (41)

Now let us observe that F is increasing on R, and for any a ∈ (0, 1), y 7→ F (y/a) − F (y) is
increasing (its derivative is positive by Lemma 3.6 (a)). Besides, F and h−1

2,a are increasing for
any a ∈ (0, 1) and therefore ν is uniquely determined by the above equation. We have moreover
ν > 0 because the left-hand side vanishes when ν is equal to 0. This proves that there a unique
critical point, which then is necessarily the global minimum of C(2) by Lemma 3.10.

Finally, xi > 0 for i = 0, . . . , N , due to Lemma 3.6 and the fact that F is increasing.

Proof of Theorem 2.13: We get the existence of a minimizer (ξ(2),α∗) and the fact that it
belongs to Ξ+ ×A∗ exactly as in the proof of Theorem 2.7.

Now suppose that (x,α) is a minimizer of C(2). Due to the preceding step, there must
be Lagrange multipliers ν,λ ∈ R such that (x,α) is a critical point of (y,β) 7→ C(2)(y,β) −
ν

PN
i=0 yi − λ

PN
j=1 βj.

From (38), we easily obtain that for i = 1, . . . , N ,

ν =
e−αif(Di)

f(eαiDi)
[ν −Di] + eαiDi

and ν = F−1(xN + F (DN)) for the last trade. We then deduce from (39) that

ν = Di
eαif(eαiDi)− e−αif(Di)

f(eαiDi)− e−αif(Di)

λ = −D2
i f(Di)

(eαi − 1)f(eαiDi)

f(eαiDi)− e−αif(Di)
,
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i.e., (ν,λ) = H2(Di, ai) with ai = e−αi . As in the proof of Proposition 2.12 we get (41), which
ensures ν > 0 and in turn Di > 0 for i = 1, . . . , N . Due to Lemma 3.7, H2 is one-to-one on
(0,∞) × (0, 1), and therefore α1 = · · · = αN and D1 = · · · = DN . Then, D1 = a∗F−1(x0).
Since Di+1 = a∗F−1(xi + F (Di)), we get xi = x0 − F (Di) = x0 − F (a∗F−1(x0)), and therefore
xN = X0 −Nx0 + (N − 1)F (a∗F−1(x0)). Combining this with ν = F−1(xN + F (DN)), we get

F−1
°
X0 −N [x0 − F (a∗F−1(x0))]

¢
= h2,a∗(F

−1(x0)).

We refer to [2, Lemma C.3] for the existence, uniqueness, and positivity of the solution x0 of
this equation. It follows that there is a unique critical point of C(2) on Ξ+ × A∗, which is
necessarily the global minimum.

Proof of Corollary 2.14: As in Model 2, we can show that a round trip such that C(2)(x,α) ≤
0 necessarily satisfies C(2)(x,α) = 0. Moreover for α ∈ A∗, we see looking at the proof of
Proposition 2.12 that (0, . . . , 0) is the only critical point when X0 = 0 since we necessarily have
ν = 0 by (41). Therefore, it is also the unique minimum of C(2) by Lemma 3.10.
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