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Abstract

We show that every rational knot K of crossing number N admits a polynomial
parametrization x = Ta(t), y = Tb(t), z = C(t) where Tk(t) are the Chebyshev poly-
nomials, a = 3 and b + degC = 3N. We show that every rational knot also admits a
polynomial parametrization with a = 4. If C(t) = Tc(t) is a Chebyshev polynomial,
we call such a knot a harmonic knot. We give the classification of harmonic knots for
a ≤ 4.
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1 Introduction

We study the polynomial parametrization of knots, viewed as non singular space curves.
Vassiliev proved that any knot can be represented by a polynomial embedding R → R3 ⊂ S3

([Va]). Shastri ([Sh]) gave another proof of this theorem, he also found explicit parametriza-
tions of the trefoil and of the figure-eight knot (see also [Mi]).

We shall study polynomial embeddings of the form x = Ta(t), y = Tb(t), z = C(t) where
a and b are coprime integers and Tn(t) are the classical Chebyshev polynomials defined by
Tn(cos t) = cosnt. The projection of such a curve on the xy-plane is the Chebyshev curve
C(a, b) : Tb(x) = Ta(y) which has exactly 1

2(a− 1)(b− 1) crossing points ([Fi, P1, P2]). We
will say that such a knot has the Chebyshev diagram C(a, b).

We observed in [KP1] that the trefoil can be parametrized by Chebyshev polynomials:
x = T3(t); y = T4(t); z = T5(t). This led us to study Chebyshev knots in [KP3].

Definition 1.1. A knot in R3 ⊂ S3 is the Chebyshev knot C(a, b, c, ϕ) if it admits the
one-to-one parametrization

x = Ta(t); y = Tb(t); z = Tc(t+ ϕ)

where t ∈ R, a and b are coprime integers, c is an integer and ϕ is a real constant.

When ϕ = 0 and a, b, c are coprime, it is denoted by H(a, b, c) and is called a harmonic
knot.

We proved that any knot is a Chebyshev knot. Our proof uses theorems on braids by
Hoste, Zirbel and Lamm ([HZ]), and a density argument. In a joint work with F. Rouillier
([KPR]), we developed an effective method to enumerate all the knots C(a, b, c, ϕ), ϕ ∈ R
where a = 3 or a = 4, a and b coprime.

Chebyshev knots are polynomial analogues of Lissajous knots that admit a parametrization
of the form

x = cos(at); y = cos(bt+ ϕ); z = cos(ct+ ψ)

where 0 ≤ t ≤ 2π and where a, b, c are pairwise coprime integers. These knots, introduced
in [BHJS], have been studied by V. F. R. Jones, J. Przytycki, C. Lamm, J. Hoste and L.
Zirbel. Most known properties of Lissajous knots are deduced from their symmetries (see
[BDHZ, Cr, HZ, JP, La1]).

The symmetries of harmonic knots, obvious from the parity of Chebyshev polynomials, are
different from those of Lissajous. For example, the figure-eight knot which is amphicheiral
but not a Lissajous knot, is the harmonic knot H(3, 5, 7).

We proved that the harmonic knot H(a, b, ab − a− b) is alternate, and deduced that there
are infinitely many amphicheiral harmonic knots and infinitely many strongly invertible
harmonic knots. We also proved ([KP3]) that the torus knot T (2, 2n + 1) is the harmonic
knot H(3, 3n + 2, 3n + 1).
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In this article, we give the classification of the harmonic knots H(a, b, c) for a ≤ 4. We
also give explicit polynomial parametrizations of all rational knots. The diagrams of our
knots are Chebyshev curves of minimal degrees with a small number of crossing points. The
degrees of the height polynomials are small.

In section 2. we recall the Conway notation for rational knots, and the computation of
their Schubert fractions with continued fractions. We observe that Chebyshev diagrams
correspond to continued fractions of the form [±1, . . . ,±1] when a = 3 and of the form
[±1,±2, . . . ,±1,±2] when a = 4. We show results on our continued fraction expansion:

Theorem 2.6.
Every rational number r has a unique continued fraction expansion r = [e1, e2, . . . , en],
ei = ±1, where there are no two consecutive sign changes in the sequence (e1, . . . , en).

We have a similar theorem for continued fractions of the form r = [±1,±2, . . . ,±1,±2]. We
provide a formula for the crossing number of the corresponding knots. Then we study the
matrix interpretation of these continued fraction expansions. As an application, we give
optimal Chebyshev diagrams for the torus knots T (2, N), the twist knots Tn, the generalized
stevedore knots and some others.

In section 3. we describe the harmonic knots H(a, b, c) where a ≤ 4. We begin with a careful
analysis of the nature of the crossing points, giving the Schubert fractions of H(3, b, c) and
H(4, b, c). Being rather long, the proofs of these results will be given in the last paragraph.
We deduce the following algorithmic classification theorems.

Theorem 3.7.
Let K = H(3, b, c). There exists a unique pair (b′, c′) such that (up to mirror symmetry)

K = H(3, b′, c′), b′ < c′ < 2b′, b′ 6≡ c′ (mod 3).

The crossing number of K is
1

3
(b′ + c′).

The Schubert fractions
α

β
of K are such that β2 ≡ ±1 (modα).

Theorem 3.13.
Let K = H(4, b, c). There exists a unique pair (b′, c′) such that (up to mirror symmetry)

K = H(4, b′, c′), b′ < c′ < 3b′, b′ 6≡ c′ (mod 4).

The crossing number of K is
1

4
(3b′ + c′ − 2).

K has a Schubert fraction
α

β
such that β2 ≡ ±2 (modα).

We notice that the trefoil is the only knot which is both of form H(3, b, c) and H(4, b, c). We
remark that the 61 knot (the stevedore knot) is not a harmonic knot H(a, b, c), a ≤ 4.

In section 4. we find explicit polynomial parametrizations of all rational knots. We first
compute the optimal Chebyshev diagrams for a = 3 and a = 4. Then we define a height
polynomial of small degree. More precisely:
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Theorem 4.4.
Every rational knot of crossing number N can be parametrized by x = T3(t), y = Tb(t), z =
C(t) where b+ degC = 3N . Furthermore, when the knot is amphicheiral, b is odd and we
can choose C to be an odd polynomial.

In the same way we show: Every rational knot of crossing number N can be parametrized
by x = T4(t), y = Tb(t), z = C(t) where b is odd and C is an odd polynomial.

As a consequence, we see that any rational knot has a representation K ⊂ R3 such that K
is symmetrical about the y-axis (with reversed orientation). It clearly implies the classical
result: every rational knot is strongly invertible.

We give polynomial parametrizations of the torus knots T (2, 2n+ 1). We also give the first
polynomial parametrizations of the twist knots and the generalized stevedore knots. We
conjecture that the lexicographic degrees of our polynomials are minimal (among odd or
even polynomials).

2 Continued fractions and rational Chebyshev knots

A two-bridge knot (or link) admits a diagram in Conway’s normal form. This form, denoted
by C(a1, a2, . . . , an) where ai are integers, is explained by the following picture (see [Con],
[Mu] p. 187). The number of twists is denoted by the integer |ai|, and the sign of ai is

a1

a2 an−1

an

a1

a2

an−1

an

Figure 1: Conway’s normal forms

defined as follows: if i is odd, then the right twist is positive, if i is even, then the right
twist is negative. On Fig. 1 the ai are positive (the a1 first twists are right twists).

Examples 2.1. The trefoil has the following Conway’s normal forms C(3), C(−1,−1,−1),
C(4,−1) and C(1, 1,−1,−1). The diagrams in Figure 2 clearly represent the same trefoil.
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C(3) C(−1,−1,−1) C(4,−1) C(1, 1,−1,−1)

Figure 2: Diagrams of the standard trefoil

The two-bridge links are classified by their Schubert fractions

α

β
= a1 +

1

a2 +
1

a3 +
1

· · · +
1

an

= [a1, . . . , an], α > 0.

We shall denote S
(α
β

)
a two-bridge link with Schubert fraction

α

β
. The two-bridge links

S(
α

β
) and S(

α′

β′
) are equivalent if and only if α = α′ and β′ ≡ β±1(mod α). The integer

α is odd for a knot, and even for a two-component link. If K = S(
α

β
), its mirror image is

K = S(
α

−β
).

We shall study knots with a Chebyshev diagram C(3, b) : x = T3(t), y = Tb(t). It is
remarkable that such a diagram is already in Conway normal form (see Figure 1). Conse-
quently, the Schubert fraction of such a knot is given by a continued fraction of the form
[±1,±1, . . . ,±1]. For example the only diagrams of Figure 2 which may be Chebyshev are
the second and the last (in fact they are Chebyshev).

Figure 3 shows a typical example of a knot with a Chebyshev diagram.

−

−

−

+

+

+

−

−

−

Figure 3: A Chebyshev diagram of the torus knot T (2, 7)

This knot is defined by x = T3(t), y = T10(t), z = −T11(t). Its xy-projection is in the

Conway normal form C(−1,−1,−1, 1, 1, 1,−1,−1,−1). Its Schubert fraction is then
7

−6

and this knot is the torus knot T (2, 7) = S(
7

−6
) = S(7).
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We shall also need to study knots with a diagram illustrated by the following picture. In

b1

a1

c1

bn

an

cn

Figure 4: A knot isotopic to C(b1, a1 + c1, b2, a2 + c2, . . . , bn, an + cn)

this case, the ai and the ci are positive if they are left twists, the bi are positive if they are
right twists (on our figure ai, bi, ci are positive). Such a knot is equivalent to a knot with
Conway’s normal form C(b1, a1 + c1, b2, a2 + c2, . . . , bn, an + cn) (see [Mu] p. 183-184).

We shall study the knots with a Chebyshev diagram C(4, k) : x = T4(t), y = Tk(t). In this
case we get diagrams of the form illustrated by Figure 4. Consequently, such a knot has a
Schubert fraction of the form [b1, d1, b2, d2, . . . , bn, dn] with bi = ±1, di = ±2 or di = 0.

Once again, the situation is best explained by typical examples. Figure 5 represents two
knots with the same Chebyshev diagram C(4, 5) : x = T4(t), y = T5(t). A Schubert fraction

of the first knot is
5

2
= [1, 0, 1, 2], it is the figure-eight knot. A Schubert fraction of the

second knot is
7

−4
= [−1,−2, 1, 2], it is the twist knot 52.

+

−

+

+

+

+

−

−

−

+

+

+

41 52

C(1, 0, 1, 2) C(−1,−2, 1, 2)

Figure 5: Knots with the Chebyshev diagram C(4, 5)
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2.1 Continued fractions

Let α, β be relatively prime integers. Then
α

β
admits the continued fraction expansion

α

β
= [q1, q2, . . . , qn] if and only if there exist integers ri such that






α = q1β + r2,
β = q2r2 + r3,

...
rn−2 = qn−1rn−1 + rn,
rn−1 = qnrn.

The integers qi are called the quotients of the continued fraction. Euclidean algorithms
provide various continued fraction expansions which are useful to the study of two-bridge
knots (see [BZ, St]).

Definition 2.2. Let r > 0 be a rational number, and r = [q1, . . . , qn] be a continued fraction
with qi > 0. The crossing number of r is defined by cn (r) = q1 + · · · + qn.

Remark 2.3. When qi are positive integers, the continued fraction expansion [q1, q2, . . . , qn]

is unique up to [qn] = [qn − 1, 1]. cn (
α

β
) is the crossing number of the knot K = S

(α
β

)
. It

means that it is the minimum number of crossing points for all diagrams of K ([Mu]).

We shall be interested by algorithms where the sequence of remainders is not necessarily

decreasing anymore. In this case, if
α

β
= [a1, . . . , an], we have cn (

α

β
) ≤

∑n
k=1 |ai|.

Definition 2.4. A continued fraction [a1, a2, . . . , an] is regular if it has the following
properties:

ai 6= 0, an−1an > 0, and aiai+1 < 0 ⇒ ai+1ai+2 > 0, i = 1, . . . , n − 2.

If a1a2 > 0 she shall say that the continued fraction is biregular.

Proposition 2.5. Let
α

β
= [a1, . . . , an] be a biregular continued fraction. Its crossing

number is

cn (
α

β
) =

n∑

k=1

|ai| − ♯{i, aiai+1 < 0}. (1)

Proof. We prove this result by induction on the number of sign changes k = ♯{i, aiai+1 < 0}.
If k is 0, then K is alternate and the result is true. If k > 0 let us consider the first change
of sign. The Conway normal form of K is [x, a, b,−c,−d,−y] where a, b, c, d are positive
integers and x is a sequence (possibly empty) of positive integers and y is a sequence of
integers. We have [x, a, b,−c,−d,−y] = [x, a, b− 1, 1, c − 1, d, y].
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• Suppose (b − 1)(c − 1) > 0, then the sum of absolute values has decreased by 1 and
the number of changes of sign has also decreased by 1.

• Suppose b = 1, c 6= 1 (resp. c = 1, b 6= 1). Then [x, a, b,−c,−d,−y] = [x, a, 0, 1, c −
1, d, y] = [x, a+ 1, c− 1, d, y]. (resp. [x, a− 1, c+ 1, d, y]). The sum of absolute values
has decreased by 1 and the number of changes of sign has also decreased by 1.

• Suppose b = c = 1. Then [x, a, b,−c,−d,−y] = [x, a, 0, 1, 0, d, y] = [x, a + d + 1, y].
The sum of absolute values has decreased by 1 and the number of changes of sign has
also decreased by 1. 2

Note that Formula (1) is also true in other cases. For instance, Formula (1) still holds when
a1, . . . , an are non zero even integers (see [St]).

We shall now use the basic (subtractive) Euclidean algorithm to get continued fractions of
the form [±1,±1, . . . ,±1].

2.2 Continued fractions [±1,±1, . . . ,±1]

We will consider the following homographies:

P : x 7→ [1, x] = 1 +
1

x
, M : x 7→ [1,−1,−x] =

1

1 + x
. (2)

Let E be the set of positive real numbers. We have P (E) =]1,∞[ and M(E) =]0, 1[. P (E)
and M(E) are disjoint subsets of E.

Theorem 2.6. Let
α

β
> 0 be a rational number. There is a unique regular continued

fraction such that
α

β
= [1, e2, . . . , en], ei = ±1.

Furthermore, α > β if and only if [e1, e2, . . . , en] is biregular.

Proof. Let us prove the existence by induction on the height h(
α

β
) = α+ β.

• If h = 2 then
α

β
= 1 = [1] and the result is true.

• If α > β, we have
α

β
= P (

β

α− β
) = [1,

β

α− β
]. Since h(

β

α− β
) < h(

α

β
), we get our

regular continued fraction for r by induction.

• If β > α we have
α

β
= M(

β − α

α
) = [1,−1,−

β − α

α
]. And we also get a regular

continued fraction for r.

Conversely, let r be defined by the regular continued fraction r = [1, r2, . . . , rn], ri = ±1,
n ≥ 2. Let us prove, by induction on the length n of the continued fraction, that r > 0 and
that r > 1 if and only if r2 = 1.
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• If r2 = 1 we have r = P ([1, r3, . . . , rn]), and by induction r ∈ P (E) and then r > 1.

• If r2 = −1, we have r3 = −1 and r = M([1,−r4, . . . ,−rn]). By induction, r ∈
M(E) =]0, 1[.

The uniqueness is now easy to prove. Let r = [1, r2, . . . , rn] = [1, r′2, . . . , r
′
n′ ].

• If r > 1 then r2 = r′2 = 1 and [1, 1, r3, . . . , rn] = [1, 1, r′3, . . . r
′
n′ ]. Consequently,

[1, r3, . . . , rn] = [1, r′3, . . . , r
′
n′ ], and by induction ri = r′i for all i.

• If r < 1, then r2 = r3 = r′2 = r′3 = −1 and [1,−1,−1, r4, . . . , rn] = [1,−1,−1, r′4, . . . , r
′
n′ ].

Then, [1,−r4, . . . ,−rn] = [1,−r′4, . . . ,−r
′
n′ ] and by induction ri = r′i for all i. 2

Definition 2.7. Let
α

β
> 0 be the regular continued fraction [e1, . . . , en], ei = ±1. We will

denote its length n by ℓ(
α

β
). Note that ℓ(−

α

β
) = ℓ(

α

β
).

Examples 2.8. Using our algorithm we obtain

9

7
= [1,

7

2
] = [1, 1,

2

5
] = [1, 1, 1,−1,−

3

2
] = [1, 1, 1,−1,−1,−

2

1
] = [1, 1, 1,−1,−1,−1,−1],

9

2
= [1,

2

7
] = [1, 1,−1,−

5

2
] = [1, 1,−1,−1,−

2

3
] = [1, 1,−1,−1,−1, 1,

1

2
]

= [1, 1,−1,−1,−1, 1, 1,−1,−1] = [4, 2].

C(1, 3, 2) C(1, 1, 1,−1,−1,−1,−1) C(4, 2)

Figure 6: Diagrams of the knot 61 = S(
9

7
) and its mirror image S(

9

2
)

We will rather use the notation

9

7
= P 2MP 3(∞),

9

2
= PMPM2P (∞).

We get ℓ(
9

7
) = 7, ℓ(

9

2
) = 9. The crossing numbers of these fractions are cn (

9

7
) =

cn ([1, 3, 2]) = 6 = 7 − 1 and cn (
9

2
) = cn ([4, 2]) = 6 = 9 − 3. If the fractions

9

7
and

9

2

have the same crossing number, it is because the knot S(
9

7
) is the mirror image of S(

9

2
).
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In order to get a full description of two-bridge knots we shall need a more detailed study of
the homographies P and M .

Proposition 2.9. The multiplicative monoid G = 〈P,M〉 is free. The mapping g : G 7→
G(∞) is a bijection from G ·P to Q>0 and g(P ·G ·P ) = Q>1, the set of rational numbers
greater than 1.

Proof. Suppose that PX = MX ′ for some X,X ′ in G. Then we would have PX(1) =
MX ′(1) ∈ P (E)

⋂
M(E) = ∅. Clearly, this means that G is free. Similarly, from P (∞) = 1,

we deduce that the mapping G 7→ G ·P (∞) is injective. From Theorem 2.6 and P (∞) = 1,
we deduce that g is surjective. 2

Remark 2.10. Let r = G(∞) = [e1, . . . , en], ei = ±1, be a regular continued fraction.
It is easy to find the unique homography G ∈ G · P such that r = G(∞). Consider the
sequence (e1, . . . , en). For any i such that eiei+1 < 0, replace the couple (ei, ei+1) by M,
and then replace each remaining ei by P .

Let G = P p1Mm1 · · ·MmkP pk+1. Let p = p1 + · · · + pk+1 be the degree of G in P and
m = m1 + · · · +mk its degree in M . Then we have n = ℓ(r) = p+ 2m and cn (r) = p+m.

We shall consider matrix notations for many proofs. We will consider

[α
β

]
= P p1Mm1 · · ·MmkP pk+1

[
1
0

]
, P =

[
1 1
1 0

]
, M =

[
0 1
1 1

]
.

Lemma 2.11. Let
α

β
= [e1, . . . , en] be a regular continued fraction (ei = ±1). We have

• n ≡ 2 (mod 3) if and only if α is even and β is odd.

• n ≡ 0 (mod 3) if and only if α is odd and β is even.

• n ≡ 1 (mod 3) if and only if α and β are odd.

Proof. Let us write
[α
β

]
= P p1Mm1 · · ·MmkP pk+1

[
1
0

]
. We have (from remark 2.10) n =

p+ 2m. Since P 3 ≡ Id and M ≡ P 2 (mod 2), we get P p1Mm1 · · ·MmkP pk+1 ≡ Pn (mod 2)

If n ≡ 2 (mod 3), then
[α
β

]
≡M

[
1
0

]
≡

[
0
1

]
(mod 2).

If n ≡ 1 (mod 3), then
[α
β

]
≡ P

[
1
0

]
≡

[
1
1

]
(mod 2).

If n ≡ 0 (mod 3), then
[α
β

]
≡

[
1
0

]
(mod 2). 2
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Definition 2.12.
We define on G the anti-homomorphism G 7→ G with M = M , P = P .
We define on G the homomorphism G 7→ Ĝ with M̂ = P, P̂ = M .

Proposition 2.13. Let α > β and consider
α

β
= PGP (∞) and N = cn (

α

β
). Let β′ such

that 0 < β′ < α and ββ′ ≡ (−1)N−1 (modα). Then we have

β

α
= MĜP (∞),

α

α− β
= PĜP (∞),

α

β′
= PGP (∞).

We also have

ℓ(
β

α
) + ℓ(

α

β
) = 3N − 1, ℓ(

α

α− β
) + ℓ(

α

β
) = 3N − 2, ℓ(

α

β′
) = ℓ(

α

β
).

Proof. We use matrix notations for this proof. Let us consider

PGP =

[
α β′

β α′

]
= P p1Mm1 · · ·MmkP pk+1.

From detP = detM = −1, we obtain αα′ − ββ′ = (−1)N . Let A =
[ a c
b d

]
be a matrix

such that 0 ≤ c ≤ a and 0 ≤ d ≤ b. From PA =
[
a+ c b+ d
a c

]
and MA =

[
b d

a+ b c+ d

]

we deduce that PGP satisfies 0 < α′ < β and 0 < β′ < α. We therefore conclude that, β′

is the integer defined by 0 < β′ < α, ββ′ ≡ (−1)N−1 (modα). By transposition we deduce
that [

α β
β′ α′

]
= P pk+1Mmk · · ·Mm1P p1 = PGP,

which implies
α

β′
= PGP (∞).

Let us introduce J =
[
0 1
1 0

]
. We have J2 = Id,M = JPJ and P = JMJ. Therefore

[
β
α

]
= J

[α
β

]
= Mp1Pm1 · · ·PmkMpk+1−1JP

[
1
0

]
= Mp1Pm1 · · ·PmkMpk+1−1P

[
1
0

]
,

that is
β

α
= MĜP (∞).

Then,
[ α
α− β

]
= PM−1

[
β
α

]
= PĜP

[
1
0

]
. That is

α

α− β
= PĜP (∞).

Relations on lengths are derived from the previous relations and remark 2.10. 2

We deduce

Proposition 2.14. Let G ∈ G and
α

β
= [e1, . . . , en] = PGP (∞). Let K = S(

α

β
) and

N = cn (K). The following properties are equivalent:
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1. G is palindromic (i.e. G = G).

2. the sequence of sign changes in [e1, . . . , en] is palindromic (i.e. eiei+1 = en−ien−i+1).

3. β2 ≡ (−1)N−1 (modα).

Moreover we have

• β2 ≡ −1 (modα) (i.e. K = K is amphicheiral) if and only if N is even and G = G.
Furthermore, the length n = ℓ(α

β
) is even and the sequence [e1, . . . , en] is palindromic

(i.e. ei = en−i+1).

• β2 ≡ 1 (modα) if and only if N is odd and G = G or N is even and Ĝ = G (in this
case K is a two-component link).

Proof. From Remark 2.10, it is straightforward that if [ε1, . . . , εn] = PGP (∞) then
PGP (∞) = εn[εn, . . . , ε1]. We deduce that G = G is palindromic if and and only if the
sequence of sign changes in [e1, . . . , en] is palindromic.

Let 0 < β′ < α such that β′β ≡ (−1)N−1 (modα). We have from the previous propo-

sition:
α

β′
= PGP (∞) We thus deduce that G = G is equivalent to β = β′, that is

β2 ≡ (−1)N−1 (modα).
Suppose now that β2 ≡ 1 (modα). If N is even then β′ = α− β, that is PGP = PĜP

and G = Ĝ. We have p+2m = m+2p−2 and then 2n = 2(p+2m) = 3N −2. This implies
n ≡ 2 (mod 3). By Lemma 2.11, α is even and K is a two-component link. If N is odd then
β′ = β and G = G by the first part of our proof.

Suppose now that β2 ≡ −1 (modα). If N is odd then β′ = α − β and by the same
argument we should have n = 3N − n− 2, which would imply that N is even. We deduce
that amphicheiral rational links have even crossing numbers and from β′ = β we get G = G.
The crossing number N = m+ p is even and G is palindromic so m and p are both even.
Consequently n = p + 2m is even and the number of sign changes is even. We thus have
en = 1 and (en, . . . , e1) = (e1, . . . , en). 2

We deduce also a method to find a minimal Chebyshev diagram for any rational knot.

Proposition 2.15. Let K be a two-bridge knot with crossing number N .

1. There exists
α

β
> 1 such that K = S(±

α

β
) and n = ℓ(

α

β
) < 3

2N − 1.

2. There exists a biregular sequence (e1, . . . , en), ei = ±1, such that K = C(e1, . . . , en).

3. If K = C(ε1, . . . , εm), εi = ±1, then m ≥ n ≥ N .

Let K be a two-bridge knot. Let r =
α

β
> 1 such that K = S(r). We have K = S(r′) where

r′ =
α

α− β
. From Proposition 2.13 and Proposition 2.5, we have ℓ(r) + ℓ(r′) = 3N − 2

and therefore N ≤ min(ℓ(r), ℓ(r′)) < 3
2N . From Lemma 2.11, we have ℓ(r) 6≡ 2 (mod 3)

so ℓ(r) 6= ℓ(r′) and min(ℓ(r), ℓ(r′)) < 3
2N − 1. We may suppose that n = ℓ(r). Let
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r = ±[e1, . . . , en], then C(e1, . . . , en) is a Conway normal form for K with n < 3
2N−1. This

Conway normal form is a Chebyshev diagram C(3, n + 1) : x = T3(t), y = Tn+1(t).

Let us consider γ such that βγ ≡ 1 (modα) and 0 < γ < α. Let ρ =
α

γ
and ρ′ =

α

α− γ
. We have K = S(ρ) and K = S(ρ′) and from Proposition 2.13: min(ℓ(ρ), ℓ(ρ′)) =

min(ℓ(r), ℓ(r′)). Suppose that K = C(ε1, . . . , εm) then K = S(x) where x = [ε1, . . . , εm].

We thus deduce that x =
α

β + kα
or x′ =

α

γ + kα
where k ∈ Z.

– If k = 2p > 0 then we have x = (MP )pr so m = ℓ(x) = ℓ(r) + 3p > ℓ(r).

– If k = 2p+1 > 0 then x = (MP )pM(
1

r
) so ℓ(x) = ℓ(1/r)+3p+2 = ℓ(r′)+3p+3 > ℓ(r′).

– If k = −(2p+ 1) < 0 then −x = (MP )p(r′) so ℓ(x) = ℓ(−x) = ℓ(r′) + 3p > ℓ(r′).

– If k = −2p > 0 then −x = (MP )p−1M(
1

r′
) so ℓ(x) = ℓ(1/r′)+3p−1 = ℓ(r)+3p > ℓ(r).

If x′ =
α

γ + kα
, we obtain the same relations. We deduce that m ≥ min(ℓ(r), ℓ(r′)). 2

Remark 2.16 (Computing the minimal Chebyshev diagram C(3,b)).

Let K = S(
α

β
) with

α

β
= PGP (∞). The condition ℓ(

α

β
) is minimal, that is ℓ(

α

β
) < 3

2N − 1,

is equivalent to p ≥ m + 3 where p = degP (PGP ) and m = degM (PGP ). In this case

b = ℓ(
α

β
) + 1 is the smallest integer such that K = S(

α

β
) has a Chebyshev diagram x =

T3(t), y = Tb(t). If p < m+ 3, using Proposition 2.13, K has a Chebyshev diagram C(3, b′)
with b′ = 3N − b < 3

2N . This last diagram is minimal.

Example 2.17 (Torus knots). The Schubert fraction of the torus knot T (2, 2k + 1) is

2k + 1. We have PM(x) = x+ 2, and then (PM)k(x) = x+ 2k, (PM)kP (x) = 2k + 1 +
1

x
.

So we get the continued fraction of length 3k + 1: 2k + 1 = (PM)kP (∞). This shows that
the torus knot T (2, 2k + 1) has a Chebyshev diagram C(3, 3k + 2). This is not a minimal
diagram.

On the other hand, we get (PM)k−1P 2(∞) = 2k so
2k + 1

2k
= P (PM)k−1P 2(∞) > 1. This

shows that the torus knot T (2, 2k+1) has a Chebyshev diagram C(3, 3k+1). This diagram
is minimal by Remark 2.16. We will see that T (2, 2k + 1) is in fact a harmonic knot.

Example 2.18 (Twist knots). The twist knot Tn is defined by Tn = S(n +
1

2
).

From P 3(x) =
3x+ 2

2x+ 1
, we get the continued fraction of length 3k+3:

4k + 3

2
= (PM)kP 3(∞).

This shows that the twist knot T2k+1 has a Chebyshev diagram C(3, 3k+4), which is minimal
by Remark 2.16.
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We also deduce that P (PM)k−1P 3(∞) = P
(

1
2(4k − 1)

)
=

4k + 1

4k − 1
. This shows that the

twist knot T2k has a minimal Chebyshev diagram C(3, 3k + 2).

We shall see that these knots are not harmonic knots for a = 3 and we will give explicit
bounds for their polynomial parametrizations.

Example 2.19 (Generalized stevedore knots). The generalized stevedore knot Sk is

defined by Sk = S(2k + 2 +
1

2k
). We have

(MP )k =
[

1 0
2k 1

]
, (PM)k =

[
1 2k
0 1

]

so 2k+2+
1

2k
= (PM)k+1(MP )k(∞). This shows that the stevedore knots have a Chebyshev

diagram C(3, 6k + 4). It is not minimal and we see, using Remark 2.16, that the stevedore
knot Sk also has a minimal Chebyshev diagram C(3, 6k + 2). Moreover, using Proposition
2.13, we get

(k + 1)2

(k + 1)2 − 2k
= P 2(MP )k(PM)k−1P 2(∞).

2.3 Continued fractions [±1,±2, . . . ,±1,±2]

Let us consider the homographies A(x) = [1, 2, x] =
3x+ 1

2x+ 1
, B(x) = [1,−2,−x] =

x+ 1

2x+ 1
,

S(x) = −x. We shall also use the classical matrix notation for these homographies

A =
[
3 1
2 1

]
, B =

[
1 1
2 1

]
, S =

[
1 0
0 −1

]
.

Lemma 2.20. The monoid Γ = 〈(AS)kA, (AS)k+1B,B(SA)k, B(SA)k+1SB, k ≥ 0〉 is
free. Let Γ∗ be the subset of elements of Γ that are not of the form M · (AS)k+1B, or
M · B(SA)k+1SB. There is an injection h : Γ∗ → Q>0 such that h(G) = G(∞).

Proof. Let us denote E = R∗
+

⋃
{∞} =]0,∞]. We will describe G(E) for any generator G

of Γ. Let C = AS =
[
3 −1
2 −1

]
. We get C2 = 2C + Id, and then Ck+2A = 2Ck+1A+ CkA.

From CA = ASA =
[
7 2
4 1

]
we deduce by induction that (AS)kA(E) ⊂]1,∞[. Similarly,

we get (AS)k+1B(E) ⊂]1,∞], B(SA)k(E) ⊂ [0, 1[, and B(SA)k+1SB(E) ⊂]0, 1[.

Now, we shall prove that if G and G′ are distinct generators of Γ, the relation G·M = G′ ·M ′

is impossible. This is clear in cases where G(E) and G′(E) are disjoint. Suppose that

(AS)kAM = (AS)k
′

BM ′. If k < k′, we would get M = S
(
(AS)k

′′

BM ′
)

= SM ′′, which is

impossible because SM ′′ has some negative coefficients. If k ≥ k′, we get (AS)k
′′

AM =
BM ′, which is also impossible because B(E) and (AS)k

′′

A(E) are disjoint. The proof of
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the impossibility of B(SA)kM = B(SA)k
′+1SBM ′ is analogous to the preceding one. This

completes the proof that Γ is free.

Now, let us prove that M 6= M ′, M,M ′ ∈ Γ∗ implies M(∞) 6= M ′(∞). There are two cases
that are not obvious.

If (AS)kAM(∞) = (AS)k
′

BM ′(∞), M,M ′ ∈ Γ∗. If k < k′, we get M(∞) = S(M ′′(∞)),
which is impossible since M(∞) ∈]0,∞[, and SM ′′(∞) ∈] −∞, 0[.
If k ≥ k′, we get BM ′(∞) = (AS)k

′′

AM(∞), which is also impossible because BM ′(∞) < 1
and (AS)k

′′

AM(∞) > 1.

The proof of the impossibility of B(SA)kM(∞) = B(SA)k
′+1SBM ′(∞) is analogous to

the preceding one. This completes the proof of the injectivity of h. 2

Theorem 2.21. Let r =
α

β
> 0 be a rational number. Then r has a continued fraction

expansion
α

β
= [1, 2e2, . . . , e2n−1, 2e2n], ei = ±1, if and only if β is even. Furthermore, we

can suppose that there are no three consecutive sign changes. In this case the continued
fraction is unique, and α > β if and only if e1 = e2 = 1.

Proof. Let us suppose that
α

β
= [1,±2, . . . ,±1,±2]. It means that

[α
β

]
= G

[
1
0

]
where

G ∈ 〈A,B, S〉. But we have A ≡ B ≡
[
1 1
0 1

]
(mod 2), S ≡ Id (mod 2). Consequently,

[α
β

]
≡

[
1 1
0 1

]k [
1
0

]
≡

[
1
0

]
(mod 2) and β is even.

Let us suppose that β is even. We shall use induction on the height h(
α

β
) = max(|α| , |β|).

• If h(
α

β
) = 2, then α = 1 and β = 2 and we have r = [1,−2] = B(∞).

• We have two cases to consider

– If α > β > 0 then we write
α

β
= [1, 2,−1, 2,

α− 2β

β
] = ASB

(
α− 2β

β

)
. We

have h(
α− 2β

β
) < h(

α

β
) and we conclude by induction.

– If β > α > 0 we write
α

β
= [1,−2,

α− β

2α− β
] = B

(
β − α

2α− β

)
. From |2β − α| ≤ β

we have h(
α− β

2α − β
) < h(

α

β
) and we conclude by induction.

The existence of a continued fraction [1,±2, . . . ,±1,±2] is proved.

Using the identities BSBS(x) = [1,−2, 1,−2, x] = x and [2,−1, 2,−1, x] = x, we can delete
all subsequences with three consecutive sign changes in our sequence. We deduce also that[α
β

]
= G

[
1
0

]
where G ∈ 〈A,S,B〉. Furthermore, from BSB(x) = [1,−2, 1,−2,−x] we see

that G contains no BSB. We also see from ASBSA(x) = [1, 2,−1, 2,−1,−2,−x] that G
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contains no SBS. Consequently G is an element of Γ∗ and, by Lemma 2.20, the continued

fraction
α

β
= [1,±2, . . . ,±1,±2] is unique. 2

Example 2.22 (Torus knots).

Since BSA =
[
1 0
4 1

]
, we get by induction

A(BSA)k =

[
4k + 3 1
4k + 2 1

]
, A(BSA)kB =

[
4k + 5 4k + 4
4k + 4 4k + 3

]
.

We deduce the following continued fractions

4k + 3

4k + 2
= [1, 2, 1,−2, 1, 2, . . . , 1,−2, 1, 2],

4k + 5

4k + 4
= [1, 2, 1,−2, 1, 2, . . . , 1,−2, 1, 2, 1,−2]

of length 4k + 2 and 4k + 4. Since the knot with Schubert fraction
N

N − 1
is the torus knot

T (2, N), we see that this knot admits a Chebyshev diagram x = T4(t), y = TN (t).

Example 2.23 (Twist knots).

The twist knot is the knot Tm = S(
2m+ 1

2
) = S(

2m+ 1

m+ 1
) = S(

2m+ 1

m
). We have the

continued fractions

8k + 1

4k
= (ASB)(BSA)k(∞),

8k + 5

4k + 2
= (ASB)(BSA)kB(∞).

We deduce that T2n has a Chebyshev diagram x = T4(t), y = T2n+5(t). We get similarly

8k + 7

4k + 4
= ASA(BSA)k(∞),

8k + 3

4k + 2
= ASA(BSA)k−1B(∞),

and we deduce that T2n+1 has a Chebyshev diagram x = T4(t), y = T2n+3(t).

Example 2.24 (Generalized stevedore knots).

The generalized stevedore knot Sm is defined by Sm = S(2m + 2 +
1

2m
), m ≥ 1. The

stevedore knot is S1 = 61. We have Sm = S
((2m+ 1)2

2m+ 2

)
and the continued fractions

(4k + 1)2

4k + 2
= (ASB)2k(BSA)kB(∞),

(4k − 1)2

4k
= (ASB)2k−1(BSA)k(∞).

Consequently, the stevedore knot Sm has a Chebyshev diagram C(4, 6m + 3).

These examples show that our continued fractions are not necessarily regular. In fact, the
subsequences ±(2,−1, 2) of the continued fraction correspond bijectively to factors (ASB).
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There is a formula to compute the crossing number of such knots.

Proposition 2.25. Let
α

β
= [e1, 2e2, . . . , e2n−1, 2e2n], ei = ±1, where there are no three

consecutive sign changes and e1 = e2. We say that i is an islet in [a1, a2, . . . , an] when

|ai| = 1, ai−1 = ai+1 = −2ai.

We denote by σ the number of islets. We have

cn (
α

β
) =

n∑

k=1

|ai| − ♯{i, aiai+1 < 0} − 2σ. (3)

Proof. By induction on the number of double sign changes k = ♯{i, ei−1ei < 0, eiei+1 < 0}.
If k = 0, the sequence is biregular and Formula (3) is true by Proposition 2.5. Suppose

k ≥ 1. First, we have a1a2 > 0. Then
α

β
= ±[x, a, b,−c, d, e, y] where [x, a, b] is a biregular

sequence and a, b, c, d, e > 0. We have [x, a, b,−c, d, e, y] = [x, a, b− 1, 1, c− 1,−d,−e,−y].

• If c = 2 (there is no islet at c), then we have b = d = 1 and [x, a, b,−c, d, e, y] =
[x, a+1, c− 1,−d,−e,−y]. The sum of the absolute values has decreased by 1, as has
the number of sign changes, σ is unchanged.

• If c = 1 (there is an islet at c) then [x, a, b,−c, d, e, y] = [x, a, b− 1,−(d− 1),−e,−y].
The sum of absolute values has decreased by 3, the number of sign changes by 1, σ
by 1.

In both cases,
∑n

k=1 |ai| − ♯{i, aiai+1 < 0} − 2♯{i, e2ie2i+1 < 0, e2i+1e2i+2 < 0} remains
unchanged while k has decreased by 1. 2

We shall need a specific result for biregular fractions [±1,±2, . . . ,±1,±2].

Proposition 2.26. Let r =
α

β
be a rational number given by a biregular continued fraction

of the form r = [e1, 2e2, e3, 2e4, . . . e2m−1, 2e2m], e1 = 1, ei = ±1. If the sequence of sign
changes is palindromic, i.e. if ekek+1 = e2m−ke2m−k+1, we have β2 ≡ ±2 (modα).

Proof. From Theorem 2.21, and because
α

β
= [1, 2e2, e3, 2e4, . . . e2m−1, 2e2m] is regular, we

have
α

β
= G(∞) where G ∈ 〈B, (AS)kA, k ≥ 0〉 ⊂ Γ.

We shall consider the mapping (analogous to matrix transposition)

ϕ :
[
a b
c d

]
7→

[
a

c

2
2b d

]
.

We have ϕ(XY ) = ϕ(Y )ϕ(X), ϕ(A) = A, ϕ(B) = B and ϕ((AS)kA) = (AS)kA.

Let us show that G is a palindromic product of terms Ak = (AS)kA and B.
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By induction on s = ♯{i, eiei+1 < 0}. If s = 0 then G = Am. Let k = min{i, ei = −ei+1}.
If k = 2p then G = ApG′ and G′ ∈ S ·Γ. We have e1 = . . . = e2p and e2(m−p)+1 = . . . = e2m

that is G = ApSG′SAp. The subsequence (−e2p+1, . . . ,−e2m−2p) is still palindromic and
corresponds to G′(∞). By regularity e2p+1 = e2p+2, and we conclude by induction. If
k = 2p + 1 we have G = ApBG′BAp and we conclude also by induction.

Hence ϕ(G) = G, and since G
[
1
0

]
=

[α
β

]
, we see that G has the form G =

[α γ
β λ

]
, with

β = 2γ. Using the fact that det(G) = ±1, we get β2 ≡ ±2 (modα). 2

3 The harmonic knots H(a,b, c)

In this paragraph we shall study Chebyshev knots with ϕ = 0. Comstock (1897) found the
number of crossing points of the harmonic curve parametrized by x = Ta(t), y = Tb(t), z =
Tc(t). In particular, he proved that this curve is non-singular if and only if a, b, c are pairwise
coprime integers ([Com]). Such curves will be named harmonic knots H(a, b, c).

We shall need the following result proved in [JP, KP3]

Proposition 3.1. Let a and b be coprime integers. The 1
2(a − 1)(b − 1) double points of

the Chebyshev curve x = Ta(t), y = Tb(t) are obtained for the parameter pairs

t = cos
(k
a

+
h

b

)
π, s = cos

(k
a
−
h

b

)
π,

where h, k are positive integers such that
k

a
+
h

b
< 1.

Using the symmetries of Chebyshev polynomials, we see that this set of parameters is
symmetrical about the origin. We will write x ∼ y when sign

(
x
)

= sign
(
y
)
. We shall need

the following result proved in [KP3].

Lemma 3.2. Let H(a, b, c) be the harmonic knot: x = Ta(t), y = Tb(t), z = Tc(t). A

crossing point of parameter t = cos

(
k

a
+
h

b

)
π, is a right twist if and only if

D =
(
z(t) − z(s)

)
x′(t)y′(t) > 0

where

z(t) − z(s) = Tc(t) − Tc(s) = −2 sin
(ch
b
π
)

sin
(ck
a
π
)
.

and

x′(t)y′(t) ∼ (−1)h+k sin
(ah
b
π
)

sin
(bk
a
π
)
.
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From this lemma we immediately deduce

Corollary 3.3. Let a, b, c be coprime integers. Suppose that the integer c′ verifies c′ ≡
c (mod 2a) and c′ ≡ −c (mod 2b). Then the knot H(a, b, c′) is the mirror image of H(a, b, c).

Proof. At each crossing point we have Tc′(t) − Tc′(s) = −
(
Tc(t) − Tc(s)

)
. 2

Corollary 3.4. Let a, b, c be coprime integers. Suppose that the integer c is of the form
c = λa+ µb with λ, µ > 0. Then there exists c′ < c such that H(a, b, c) = H(a, b, c′)

Proof. Let c′ = |λa− µb| . The result follows immediately from corollary 3.3 2

In a recent paper, G. and J. Freudenburg have proved the following stronger result. There
is a polynomial automorphism Φ of R3 such that Φ(H(a, b, c)) = H(a, b, c′). They also
conjectured that the knots H(a, b, c), a < b < c, c 6= λa + µb, λ, µ > 0 are different
knots ([FF], Conjecture 6.2).

3.1 The harmonic knots H(3,b, c)

The following result is the main step in the classification of the harmonic knots H(3, b, c).

Theorem 3.5. Let b = 3n + 1, c = 2b − 3λ, (λ, b) = 1. The Schubert fraction of the knot
H(3, b, c) is

α

β
= [e1, e2, . . . , e3n], where ek = sign

(
sin kθ

)
and θ =

λ

b
π.

If 0 < λ <
b

2
, its crossing number is N = b− λ =

b+ c

3
, and we have β2 ≡ ±1 (modα).

Proof. Will be given in section 5, p. 31.

Corollary 3.6. The knots H(3, b, c) where
c

2
< b < 2c, b ≡ 1 (mod 3), c ≡ 2 (mod 3) are

different knots (even up to mirroring). Their crossing number is given by b+ c = 3N.

Proof. Let K = H(3, b, c) and
α

β
> 1 be its biregular Schubert fraction given by Theorem

3.5. From Prop 2.15, min(b, c) is the minimum length of any Chebyshev diagram of K and
max(b, c) = 3N − min(b, c). The pair (b, c) is uniquely determined. 2

The following result gives the classification of harmonic knots H(3, b, c).

Theorem 3.7.

Let K = H(3, b, c). There exists a unique pair (b′, c′) such that (up to mirror symmetry)

K = H(3, b′, c′), b′ < c′ < 2b′, b′ + c′ ≡ 0 (mod 3).
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The crossing number of K is 1
3(b′ + c′), its fractions

α

β
are such that β2 ≡ ±1 (modα).

Furthermore, there is an algorithm to find the pair (b′, c′).

Proof. Let K = H(a, b, c) We will show that if the pair (b, c) does not satisfy the condition
of the theorem, then it is possible to reduce it.

If c < b we consider H(3, c, b) = H(3, b, c).
If b ≡ c (mod 3), we have c = b+3µ, µ > 0. Let c′ = |b− 3µ|. We have c′ ≡ ±c (mod 2b)

and c′ ≡ ∓c (mod 6). By Lemma 3.3, we see that K = H(3, b, c′) and we get a smaller pair.
If b 6≡ c (mod 3) and c > 2b, we have c = 2b + 3µ, µ > 0. Let c′ = |2b− 3µ|. Similarly,

we get K = H(3, b, c′). This completes the proof of existence. This uniqueness is a direct
consequence of Corollary 3.6. 2

Remark 3.8. Our theorem gives a positive answer to the Freudenburg conjecture for a = 3.

Examples

As applications of Proposition 2.5, let us deduce the following results (already in [KP3])

Corollary 3.9. The harmonic knot H(3, 3n + 2, 3n + 1) is the torus knot T (2, 2n + 1).

Proof. The harmonic knotK = H(3, 3n+1, 3n+2) is obtained for b = 3n+1, c = 2b−3λ, λ =

n, θ =
n

3n+ 1
π. If j = 1, 2, or 3, and k = 0, . . . , n − 1 we have (3k + j)θ = kπ +

jk − n

3n+ 1
,

hence sign
(
sin(3k + j)θ

)
= (−1)k, so that the Schubert fraction of K is

[1, 1, 1,−1,−1,−1, . . . , (−1)n+1, (−1)n+1, (−1)n+1] =
2n+ 1

2n
≈ −(2n+ 1).

We see that K is the mirror image of T (2, 2n + 1), which completes the proof. 2

It is possible to parameterize the knot T (2, 2n+1) by polynomials of the same degrees and a
diagram with only 2n+ 1 crossings ([KP2]). However, our Chebyshev parametrizations are
easier to visualize. We conjecture that these degrees are minimal (see also [RS, FF, KP1]).

Corollary 3.10. The harmonic knot H(3, b, 2b − 3) (b 6≡ 0 (mod 3)) is alternate and has
crossing number b− 1.

Proof. For this knot we have λ = 1, θ =
π

b
. The Schubert fraction is given by the continued

fraction of length b − 1: [1,1, . . . ,1] =
Fb

Fb−1
where Fn are the Fibonacci numbers (F0 =

0, F1 = 1, . . .). J. C. Turner named these knots Fibonacci knots ([Tu]). 2

The two previous examples describe infinite families of harmonic knots. They have a Schu-

bert fraction
α

β
with β2 ≡ 1 (modα) (torus knots) or with β2 ≡ −1 (modα) (Fibonacci knots
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with odd b). There is also an infinite number of two-bridge knots with β2 = ±1 (modα)
that are not harmonic.

Proposition 3.11. The knots (or links) Kn = S(
5Fn+1

Fn+1 + Fn−1
), n > 1 are not har-

monic knots H(3, b, c). Their crossing number is n + 4 and we have (Fn+1 + Fn−1)
2 ≡

(−1)n+1 (mod 5Fn+1).

Proof. Using the fact that Pn =

[
Fn+1 Fn

Fn Fn−1

]
we deduce that

PMPnMP =

[
5Fn+1 Fn+1 + Fn−1

Fn+1 + Fn−1 Fn−1

]
.

Taking determinants, we get (Fn+1 + Fn−1)
2 ≡ (−1)n+1 (mod 5Fn+1). We also have

5Fn+1

Fn+1 + Fn−1
= PMPnMP (∞) = [1, 1,−1, . . . ,−1︸ ︷︷ ︸

n+2

, 1, 1].

Since n+ 2 ≥ 4, it cannot be of the form [sign
(
sin θ

)
, sign

(
sin 2θ

)
, . . . , sign

(
sin kθ

)
].

If n ≡ 2 (mod 3), Kn is a two-component link.

If n ≡ 1 (mod 6) or n ≡ 3 (mod 6), the Schubert fraction
α

β
satisfies β2 ≡ 1 (modα).

If n ≡ 0 (mod 6) or n ≡ 4 (mod 6), Kn is amphicheiral. 2

3.2 The harmonic knots H(4,b, c).

The following result will allow us to classify the harmonic knots of the form H(4, b, c).

Theorem 3.12. Let b, c be odd integers such that b 6≡ c (mod 4). The Schubert fraction of
the knot K = H(4, b, c) is given by the continued fraction

α

β
= [e1, 2e2, e3, 2e4, . . . , eb−2, 2eb−1], ej = −sign

(
sin(b− j)θ

)
, θ =

3b− c

4b
π.

If b < c < 3b, this fraction is biregular, the crossing number of K is N =
3b+ c− 2

4
, and

β2 ≡ ±2 (mod 3).

Proof. Will be given in section 5, p. 34. 2

We are now able to classify the harmonic knots of the form H(4, b, c).

Theorem 3.13.
Let K = H(4, b, c). There is a unique pair (b′, c′) such that (up to mirroring)

K = H(4, b′, c′), b′ < c′ < 3b′, b′ 6≡ c′ (mod 4).
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The crossing number of K is 1
4(3b′ + c′ − 2). K has a Schubert fraction

α

β
such that

β2 ≡ ±2 (modα). Furthermore, there is an algorithm to find (b′, c′).

Proof. Let us first prove the uniqueness of this pair. Let K = H(4, b, c) with b < c < 3b, c 6≡

b (mod 4). By theorem 3.12, K has a Schubert fraction
α

β
= ±[1,±2, . . . ,±1,±2] of length

b− 1 with β even, −α < β < α, and β2 ≡ ±2 (modα). The other fraction of K is
α

β′
, where

β′ is even and |β′| < α and ββ′ ≡ 1 (modα).

If α > 3, we cannot have β′2 ≡ ±2 (modα). We deduce that b is uniquely determined

by K: b = ℓ(
α

β
) + 1 where

α

β
is a Schubert fraction of K such that β2 ≡ ±2 (modα). Since

we also have 3b+ c− 2 = 4cn (K), we conclude that (b, c) is uniquely determined by K.

Now, let us prove the existence of the pair (b′, c′). Let K = H(4, b, c), b < c. We have
only to show that if the pair (b, c) does not satisfy the condition of the theorem, then it is
possible to reduce it.

If c ≡ b (mod 4), then c = b + 4µ, µ > 0. Let c′ = |b− 4µ|. Then K = H(4, b, c′), and the
pair (b, c′) is smaller than (b, c).

If c 6≡ b (mod 4) and c > 3b, we have c = 3b + 4µ, µ > 0. Let c′ = |3b− 4µ|. We have,
K = H(4, b, c′) with (b, c′) smaller than (b, c). This completes the proof. 2

Remark 3.14. Our theorem gives a positive answer to the Freudenburg conjecture for
a = 4.

We also see that the only knot belonging to the two families of knots H(3, b, c) and H(4, b, c)
is the trefoil H(3, 4, 5) = H(4, 3, 5).

Example 3.15 (H(4,2k − 1,2k + 1)).
From Theorem 3.12, we know that H(4, 2k − 1, 2k + 1) has crossing number 2k − 1. Using
this theorem, the Conway sequence of this knot is [e1, 2e2, . . . , e2k−3, 2e2k−2], where

ej = −sign
(
sin((2k − 1 − j)

(k − 1)π

2k − 1
)
)

= (−1)k+1sign
(
sin(

j(k − 1)π

2k − 1
)
)

= (−1)k+⌊
j+1
2 ⌋.

We deduce that the Schubert fraction of H(4, 2k − 1, 2k + 1) is

αk

βk

= (−1)k+1[1, 2,−1,−2, 1, 2, . . . , (−1)k, 2(−1)k] = (−1)k+1(AS)k−2A(∞).

Using recurrence formula in Lemma 2.20, we deduce that

α2 = 3, α3 = 7, αk+2 = 2αk+1 + αk

β2 = −2, β3 = 4, |βk+2| = 2 |βk+1| + |βk| .
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Let us consider the homography G(x) = [2, x], and its matrix G =
[
2 1
1 0

]
. Let the sequence

uk be defined by

Gk =
[uk+1 uk

uk uk−1

]
.

The sequence uk verifies the same recurrence formula uk+2 = 2uk+1 + uk. We deduce
αk = uk + uk−1, |βk| = 2uk−1. We also have

P 2Gk−2P (∞) =
[
2 1
1 1

] [uk−1 uk−2

uk−2 uk−3

] [
1
1

]
=

[uk + uk−1

2uk

]
=

αk

|βk|
.

Finally, we get rk = (−1)k+1[1, 1, 2, . . . 2︸ ︷︷ ︸
k−2

, 1].

Example 3.16 (The twist knots). The knots Tn are not harmonic knots H(4, b, c) for
n > 3.

Proof. The Schubert fractions of Tn = S(n +
1

2
) with an even denominator are

2n+ 1

2
,

and
2n + 1

−n
or

2n+ 1

n+ 1
according to the parity of n. The only such fractions verifying β2 ≡

±2 (modα) are
3

2
,

7

4
,

9

4
. The first two are the Schubert fractions of the trefoil and the 52

knot, which are harmonic for a = 4. We have only to study the case of 61 = S(
9

4
). We have

9

4
= [1, 2,−1, 2, 1,−2, 1, 2]. Since this fraction is not biregular, we see that 61 is not of the

form H(4, b, c). 2

But there also exist infinitely many rational knots whose Schubert fractions
α

β
satisfy β2 ≡

−2 (modα) that are not harmonic for a = 4.

Proposition 3.17. The knots S(n+
1

2n
) are not harmonic knots H(4, b, c) for n > 1. Their

crossing number is 3n and their Schubert fractions
α

β
=

2n2 + 1

2n
satisfy β2 ≡ −2 (modα).

Proof. If n = 2k, we deduce from (ASB)k(x) = 2k + x and (BSA)k(∞) =
1

4k
, that

n+
1

2n
= (ASB)k(BSA)k(∞).

If n = 2k + 1, we use (see the torus knots, example 2.22)
2n + 1

2n
= A(BSA)k(∞), so

n+
1

2n
= n− 1 +

2n+ 1

2n
= (ASB)kA(BSA)k(∞).

For n > 1 these continued fractions are not biregular, and since β2 ≡ −2 (modα), they do
not correspond to harmonic knots H(4, b, c). 2
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4 Chebyshev diagrams of rational knots

Definition 4.1. We say that a knot in R3 ⊂ S3 has a Chebyshev diagram C(a, b), if a and
b are coprime and the Chebyshev curve

C(a, b) : x = Ta(t); y = Tb(t)

is the projection of some knot which is isotopic to K.

4.1 Chebyshev diagrams with a = 3

Using the previous results of our paper (Proposition 2.15) we have

Theorem 4.2. Let K be a two-bridge knot with crossing number N . There is an algorithm

to determine the smallest b such that K has a Chebyshev diagram C(3, b) with N < b <
3

2
N .

Proof. Let
α

β
> 1 and

α

α− β
> 1 be Schubert fractions of K and K. By Proposition 2.15,

b = min
(
ℓ(
α

β
), ℓ(

α

α− β
)
)

+ 1 has the required property. 2

Definition 4.3. Let D(K) be a diagram of a knot having crossing points corresponding
to the parameters t1, . . . , t2m. The Gauss sequence of D(K) is defined by gk = 1 if tk
corresponds to an overpass, and gk = −1 if tk corresponds to an underpass.

Theorem 4.4. Let K be a two-bridge knot of crossing number N. Let x = T3(t), y = Tb(t)
be the minimal Chebyshev diagram of K. Let c denote the number of sign changes in the
corresponding Gauss sequence. Then we have

b+ c = 3N.

Proof. Let s be the number of sign changes in the Conway normal form of K. By Proposition
2.5 we have N = b − 1 − s. From this we deduce that our condition is equivalent to
3s+ c = 2b− 3. Let us prove this assertion by induction on s. If s = 0 then the diagram of
K is alternate, and we deduce c = 2(b− 1) − 1 = 2b− 3.

Let C(e1, e2, . . . , eb−1) be the Conway normal form of K. We may suppose e1 = 1. We
shall denote by M1, . . . ,Mb−1 the crossing points of the diagram, and by x1 < x2 < · · · <
xb−1 their abscissae. Let ek be the first negative coefficient in this form. By the regularity
of the sequence we get ek+1 < 0, and 3 ≤ k ≤ b− 1.

Let us consider the knot K ′ defined by its Conway normal form

K ′ = C(e1, e2, . . . , ek−1,−ek,−ek+1, . . . ,−eb−1).

We see that the number of sign changes in the Conway sequence of K ′ is s′ = s − 1. By
induction, we get for the knot K ′: 3s′ + c′ = 2b− 3.
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Γ1

Γ2

Γ3

Mk−1

Mk

Mk+1

Γ1

Γ2
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Mk−1

Mk

Mk+1

K K ′

Figure 7: The modification of Gauss sequences

The plane curve x = T3(t), y = Tb(t) is the union of three arcs where x(t) is monotonic.
Let Γ be one of these arcs. Γ contains (at least) one point Mk or Mk+1. Let j be the first
integer in {k, k + 1} such that Mj is on Γ, and let j− < j be the greatest integer such that
Mj− ∈ Γ. In figure 7, we have for Γ1: j = k, j− = k − 1, for Γ2: j = k, j− = k − 2, for Γ3:
j = k + 1, j− = k − 1.

On each arc Γ, there is a sign change in the Gauss sequence iff the corresponding Conway
signs are equal. Then, since the Conway signs s(Mj−) and s(Mj) are different, we see that
the corresponding Gauss signs are equal. Now, consider the modifications in the Gauss
sequences when we transform K into K ′. Since the the Conway signs s(Mh), h ≥ k are
changed, we see that we get one more sign change on every arc Γ. Thus the number of sign
changes in the Gauss sequence of K ′ is c′ = c + 3. We get 3s + c = 3(s′ + 1) + c′ − 3 =
3s′ + c′ = 2b− 3, which completes our induction proof. 2

Corollary 4.5. Let K be a two-bridge knot with crossing number N . Then there exist b, c,
b+c = 3N , and an polynomial C of degree c such that the knot x = T3(t), y = Tb(t), z = C(t)
is isotopic to K.

If K is amphicheiral, then b is odd, and the polynomial C(t) can be chosen odd.

Proof. Let b = n + 1 be the smallest integer such that K has a Chebyshev diagram
x = T3(t), y = Tb(t). By our theorem 4.4, the Gauss sequence (g(t1), . . . , g(t2n)) of this
diagram has c = 3N − b sign changes. We choose C such that C(ti)g(ti) > 0 and we can
realize it by choosing the roots of C to be 1

2(ti + ti+1) where g(ti)g(ti+1) < 0.

If K is amphicheiral, then b is odd and the Conway form is palindromic by Proposition
2.14. Then our Chebyshev diagram is symmetrical about the origin. We see that the Gauss
sequence is odd: g(th) = −g(−th). This implies that the polynomial C(t) is odd. 2

Remark 4.6. This corollary gives a simple proof of a famous theorem of Hartley and
Kawauchi: every amphicheiral rational knot is strongly negative amphicheiral ([HK, Kaw]).

Example 4.7 (The knot 61).

The knot 61 = S(
9

2
) is not harmonic with a = 4. It is not even harmonic with a = 3 because

22 6≡ ±1 (mod 9). Its crossing number is 6. In the example 2.8, we get ℓ(
9

2
) = 9, ℓ(

9

7
) = 7.
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b = 8 is the minimal value for which x = T3(t), y = T8(t) is a Chebyshev diagram for
61. The Gauss sequence associated to the Conway form 61 = C(−1,−1,−1, 1, 1, 1, 1) has
exactly 10 sign changes. It is precisely

[1,−1,−1, 1,−1, 1,−1,−1, 1,−1, 1, 1,−1, 1].

We can check that

x = T3(t), y = T8(t), z = (8 t+ 7) (5 t− 4)
(
15 t2 − 14

) (
2 t2 − 1

) (
3 t2 − 1

) (
15 t2 − 1

)

is a parametrization of 61 of degree (3, 8, 10). In [KP3] we gave the Chebyshev parametriza-
tion 61 = C(3, 8, 10, 1

100 ). We will give another parametrization in example 4.11.

Figure 8: The knot 61

4.2 Chebyshev diagrams with a = 4

It is also possible to get Chebyshev diagrams of the form C(4, b). The following result is
analogous to the Theorem 4.4.

Theorem 4.8. Let K be a two-bridge knot of crossing number N and Schubert fraction
α

β
,

β even. Let
α

β
= ±[1,±2, . . . ,±1,±2] be a continued fraction expansion of minimal length

b−1, and σ be the number of islets (subsequences of the form ±(2,−1, 2)) in this expansion.
Let x = T4(t), y = Tb(t) be the corresponding Chebyshev diagram of K and c be the number
of sign changes in the corresponding Gauss sequence of K. Then we have

3b+ c− 2 = 4N + 12σ.

Proof. Let s be the number of sign changes in the given continued fraction. Since N =
3
2(b− 1)− s− 2σ the formula is equivalent to 3b+ c− 2 = 6(b− 1)− 4s− 8σ + 12σ, that is

4s+ c− 4σ = 3b− 4.

We shall prove this formula by induction on s.
If s = 0, the knot is alternate. We have c = 3b− 4, σ = 0, and the formula is true.
We shall need precise notations. Let M1,M2, N2,M3,M4, N4, . . . ,Mb−1, Nb−1 be the

crossing points where x(Mk) = xk, x(N2k) = x2k, and x1 < x2 < · · · < xb−1.
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The plane curve x = T4(t), y = Tb(t) is the union of four arcs where x(t) is monotonic
(see the following figures). On each arc there is a sign change in the Gauss sequences iff
the corresponding Conway signs are equal. Let C(e1, 2e2, . . . , eb−2, 2eb−1), ei = ±1 be the
Conway form of K. Let k be the first integer such that ek−1ek < 0. We have three cases to
consider.

k is odd, and ekek+1 < 0.
In this case, (2ek−1, ek, 2ek+1) = ±(2,−1, 2) is an islet. Let us consider the knot K ′ obtained
by changing only the sign of ek. The number of sign changes in the Conway sequence of K ′

is s′ = s − 2. By induction we get for K ′ : 4s′ + c′ − 4σ′ = 3b − 4. The number of islets of
K ′ is σ′ = σ− 1. Let us look the modification of Gauss sequences. There are only two arcs
containing Mk. On each of these arcs there is no sign change in the Gauss sequence of K,
and then there are two sign changes in the Gauss sequence of K ′. Consequently, c′ = c+ 4.
Finally, we get 4s+ c− 4σ = 4(s′ + 2) + (c′ − 4)− 4(σ′ + 1) = 4s′ + c′ − 4σ′ = 3b− 4, which

Γ1

Γ2

Γ3

Γ4

Mk−1

Nk−1

Mk

Mk+1

Nk+1

Γ1

Γ2

Γ3

Γ4

Mk−1

Nk−1

Mk

Mk+1

Nk+1

K K ′

completes the proof in this case.

k is even, and ekek+1 < 0.
In this case there are two crossing points Mk and Nk with x(Mk) = x(Nk) = xk. Each arc
contains one of these points. Let us consider the knot K ′ obtained by changing only the sign
of ek. The number of sign changes in the Conway sequence of K ′ is s′ = s− 2. By induction
the formula is true for K ′. On each arc the Gauss sequence gains two sign changes, so that

Γ1

Γ2

Γ3

Γ4

Mk−1

Mk

Nk

Mk+1

Γ1

Γ2

Γ3

Γ4

Mk−1

Mk

Nk

Mk+1

K K ′

c′ = c+ 8. Since we have σ′ = σ, we get 4s+ c− 4σ = 4(s′ + 2) + (c′ − 8) − 4σ′ = 3b− 4.

The case ekek+1 > 0.
In this case we consider the knot K ′ obtained by changing the signs of ej, j ≥ k. For K ′
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Γ1

Γ2

Γ3

Γ4

Mk−1

Mk

Nk

Mk+1

Γ1

Γ2

Γ3

Γ4

Mk−1

Mk

Nk

Mk+1

K K ′

we have s′ = s− 1, and by induction 4s′ + c′ − 4σ′ = 3b− 4.
On each of the four arcs the Gauss sequence gains one sign change, and then c′ = c + 4.
Since σ′ = σ, we conclude

4s + c− 4σ = 4(s′ + 1) + (c′ − 4) − 4σ′ = 4s′ + c′ − 4σ′ = 3b− 4.

This completes the proof of the last case. 2

Corollary 4.9. Let K be a two-bridge knot of crossing number N and Schubert fraction
α

β
,

β even. Let
α

β
= ±[1,±2, . . . ,±1,±2] be a continued fraction expansion of minimal length

b−1 and σ be the number of islets (subsequences of the form ±(2,−1, 2)) in this expansion.
There exists an odd polynomial C(t) of degree c such that 3b+ c− 2 = 4N + 12σ and such
that the knot defined by x = T4(t), y = Tb(t), z = C(t) is isotopic to K.

Proof. This proof is similar to the proof of Corollary 4.5. We must bear in mind that in
this case, the Gauss sequence is odd: g(ti) = −g(−ti) and t3(b−1)+1−i = −ti. 2

Corollary 4.9 gives an algorithm to represent any rational knot as a polynomial knot which
is rotationally symmetric around the y-axis. This gives a strong evidence for the following
classical result.

Corollary 4.10. Every rational knot is strongly invertible.

Example 4.11 (The stevedore knot 61). The stevedore knot 61 is S(
9

2
) = S(−

9

4
). We

get
9

4
= (ASB)(BSA)(∞) = [1, 2,−1, 2, 1,−2, 1, 2]. We deduce that it can be parametrized

by x = T4(t), y = T9(t), z = C(t) where degC = 11. We find

C(t) = t
(
34 t2 − 33

) (
2 t2 − 1

) (
3 t2 − 1

) (
4 t2 − 1

) (
6 t2 − 1

)
.

On the other hand, we find S(
9

14
) = [1,−2,−1,−2,−1, 2] = BASB(∞). We find that 61

can also be represented by polynomials of degrees (4, 7, 9):

x = T4(t), y = T7(t), z = t
(
10 t2 − 9

) (
4 t2 − 3

) (
4 t2 − 1

) (
6 t2 − 1

)
.
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61 = S(
9

14
)

4.3 Examples

In this section, we give several examples of polynomial parametrizations of rational knots
with Chebyshev diagrams C(3, b) and C(4, b′).

Parametrizations of the torus knots

The torus knot T (2, N), N = 2n+ 1 is the harmonic knot H(3, 3n + 1, 3n + 2).
The torus knot T (2, N) can be parametrized by x = T4(t), y = TN (t), z = C(t), where

C(t) is an odd polynomial of degree deg(C) = N + 2 = 2n + 3.

Proof. We have already seen (example 2.22) that T (2, N) has a Chebyshev diagram x =
T4(t), y = TN (t). Since there is no islet in the corresponding continued fractions, we see
that the number of sign changes in the Gauss sequence is c = N + 2. By symmetry of the
diagram, we can find an odd polynomial of degree c giving this diagram. 2

In both cases, the diagrams have the same number of crossing points : 3
2(N − 1) = 3n.

As an example, we obtain for T (2, 5):

x = T4(t), y = T5(t), z = t
(
2 t2 − 1

) (
3 t2 − 1

) (
5 t2 − 4

)
.

In this case the Chebyshev diagram has exactly 6 crossing points as it is for H(3, 7, 8). Note

that we also obtain T (2, 5) = S(
5

6
):

x = T4(t), y = T7(t), z = t
(
21 t2 − 20

) (
4 t2 − 1

)
.

We therefore obtain parametrizations of degrees (4, 5, 7) or (4, 7, 5).

Parametrizations of the twist knots

The twist knot Tm = S(m+
1

2
) has crossing number m+ 2. We have seen (example 3.16)

that the only twist knots that are harmonic for a = 4 are the trefoil and the 52 knot. The
knot Tm is not harmonic for a = 3 because 22 6≡ ±1 (mod 2m+ 1) except when m = 2 (the
figure-eight knot) or m = 1 (trefoil). From example 2.18, we know that:
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H(3, 7, 8) S(
5

4
) S(

5

6
)

Figure 9: Diagrams of the torus knot T (2, 5) and its mirror image

• T2k+1 can be parametrized by x = T3(t), y = T3k+4, z = C(t) where deg(C) = 3k+ 5.

• T2k can be parametrized by x = T3(t), y = T3k+2, z = C(t) where deg(C) = 3k + 4.

Using results of 2.23, we deduce other parametrizations

• T2k+1 can be represented by x = T4(t), y = T2k+3(t), z = C(t) where C(t) is an odd
polynomial of degree 2k + 5.

• T2k can be represented by x = T4(t), y = T2k+5(t), z = C(t) where C(t) is an odd
polynomial of degree 2k + 7.

Proof. The proof is very similar to the preceding one, except that there is an islet in the
continued fractions for 2k even. 2

Note that Chebyshev diagrams we obtain (a = 3 or a = 4) for T2k+1 have the same number
of crossing points: 3k + 3.

Example 4.12 (The figure-eight knot). T2 is the figure-eight knot. Note that we obtain

H(3, 5, 7) S(
5

2
) S(−

5

8
)

Figure 10: The figure-eight knot

the figure-eight knot as the harmonic knot H(3, 5, 7) or as a Chebyshev knot

x = T4(t), y = T7(t), z = t
(
10 t2 − 9

) (
4 t2 − 3

) (
3 t2 − 2

) (
2 t2 − 1

)
.

But, considering S(−5/8), we obtain a better parametrization

x = T4(t), y = T5(t), z = t
(
11 t2 − 10

) (
5 t2 − 4

) (
5 t2 − 1

)
.
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Example 4.13 (The 3-twist knot). T3 is the 3-twist knot 52. It is the harmonic knot
H(4, 5, 7). It can also be parametrized by

x = T3(t), y = T7(t), z = t (4 t+ 3) (3 t+ 1) (6 t− 5)
(
12 t2 − 11

) (
2 t2 − 1

)

S(
7

2
) S(

7

4
)

Figure 11: Diagrams of the 3-twist knot 52

Parametrizations of the generalized stevedore knots

The stevedore knot Sm = S(2m + 2 +
1

2m
) can be represented by x = T3(t), y =

T6m+2(t), z = C(t) where C(t) is a polynomial of degree 6m+ 4.

The stevedore knot Sm = S(2m + 2 +
1

2m
) can be represented by x = T4(t), y =

T6m+3(t), z = C(t) where C(t) is an odd polynomial of degree c = 10m+ 1.

Proof. The case a = 3 is deduced from 2.19 and Corollary 4.5. The case a = 4 is a
consequence of Theorem 4.8. In this case b = 6m+3, and the crossing number is N = 4m+2.

Form = 2k−1 the number of islets in
(4k − 1)2

4k
= (ASB)2k−1(BSA)k(∞) is σ = 2k−1 = m.

For m = 2k, we also find σ = m. Consequently we get 3(6m+3)+ c−2 = 4(4m+2)+12m,
that is, c = 10m+ 1. The rest of the proof is analogous to the preceding ones. 2

Remark 4.14. There is an algorithm to determine minimal Chebyshev diagrams for a = 3
(Remark 2.16 and Prop. 2.15). When a = 4, we can determine Chebyshev diagrams using

Theorem 2.21 but we do not know yet if they are minimal (consider for example S(
9

14
) and

S(−
5

8
)).

5 Proofs of theorems 3.5 and 3.12

Proof of Theorem 3.5

We study here the diagram of H(3, b, c) where b = 3n + 1 and c = 2b − 3λ. The crossing
points of the plane projection of H(3, b, c) are obtained for pairs of values (t, s) where
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t = cos
(m
3b
π
)
, s = cos

(m′

3b
π
)
. For k = 0, . . . , n − 1, let us consider

• Ak obtained for m = 3k + 1, m′ = 2b−m.

• Bk obtained for m = 3k + 2, m′ = 2b+m.

• Ck obtained for m = 2b− 3k − 3, m′ = 4b−m.

Then we have

• x(Ak) = cos
(3k + 1

b
π
)
, y(Ak) = 1

2(−1)k.

• x(Bk) = cos
(3k + 2

b
π
)
, y(Bk) = 1

2(−1)k+1.

• x(Ck) = cos
(3k + 3

b
π
)
, y(Ck) = 1

2 (−1)k.

A0

B0

C0

A1An−1

Bn−1

Cn−1

Figure 12: H(3, 3n + 1, c), n even

Hence our 3n points satisfy

x(Ak−1) > x(Bk−1) > x(Ck−1) > x(Ak) > x(Bk) > x(Ck), k = 1, . . . , n− 1.

Using the identity T ′
a(cos τ) = a

sin aτ

sin τ
, we get x′(t)y′(t) ∼ sin

(m
b
π
)
sin

(m
3
π
)
. We obtain

for Ak: x′(t)y′(t) ∼ sin(
3k + 1

b
π) sin(

3k + 1

3
π) ∼ (−1)k.

for Bk: x′(t)y′(t) ∼ sin
(3k + 2

b
π
)
sin

(3k + 2

3
π
)
∼ (−1)k.

for Ck: x′(t)y′(t) ∼ sin(
2b− 3k − 3

b
π) sin(

2b− 3k − 3

3
π)

∼ −sin(
3k + 3

b
π) sin(−

3k + 1

3
π) ∼ (−1)k.

The following identity will be useful in computing the sign of z(t) − z(s).

Tc(t) − Tc(s) = 2 sin
( c

6b
(m′ −m)π

)
sin

( c

6b
(m+m′)π

)
.

We have, with c = 2b− 3λ, θ =
λ

b
π, (and b = 3n+ 1 ),
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for Ak: z(t) − z(s) = −2 sin c
π

3
sin

(
c
m− b

3b
π
)
. But

sin c
π

3
= sin

(6n+ 2 − 3λ

3
π
)

= (−1)λ sin
2π

3
, (4)

and

sin
(
c
b−m

3b
π
)

= sin
(
(2 −

3λ

b
)
b−m

3
π
)

= sin
(λ
b
(m− b)π

)
= (−1)λ sin(3k + 1)θ.

We deduce that z(t) − z(s) ∼ sin(3k + 1)θ. Finally, we obtain

sign
(
D(Ak)

)
= (−1)ksign

(
sin(3k + 1)θ

)
.

• for Bk: z(t) − z(s) = 2 sin c
π

3
sin

(c
b
.
b+m

3
π
)
. We have

sin
(c
b
·
b+m

3
π
)

= sin
(
(2 −

3λ

b
)
b+m

3
π
)

= − sin
(λ
b
(b+m)π

)
= (−1)λ+1 sin(3k + 2)θ.

Then, using Equation 4, we get z(t) − z(s) ∼ − sin(3k + 2)θ, and finally

sign
(
D(Bk)

)
= (−1)k+1sign

(
sin(3k + 2)θ

)
.

• for Ck: z(t) − z(s) ∼ sin
2c

3
π sin

(c
b
(k + 1)π

)

∼ sin
4π

3
sin

(
(2 −

3λ

b
)(k + 1)π

)
∼ sin(3k + 3)θ.

We obtain
sign

(
D(Ck)

)
= (−1)ksign

(
sin(3k + 3)θ

)
.

These results give the Conway normal form. If n is odd, the Conway’s signs of our points
are

s(Ak) ∼ (−1)kD(Ak) ∼ sin(3k + 1)θ,
s(Bk) ∼ (−1)k+1D(Bk) ∼ sin(3k + 2)θ,
s(Ck) ∼ (−1)kD(Ck) ∼ sin(3k + 3)θ.

In this case our result follows, since the fractions [e1, e2, . . . , a3n] and (−1)3n+1[a3n, . . . , a1]
define the same knot. If n is even, the Conway’s signs are the opposite signs, and we also
get the Schubert fraction of our knot.

Since 0 < θ <
π

2
, we see that there are not two consecutive sign changes in our sequence.

We also see that the first two terms are of the same sign, and so are the last two terms. The
Conway normal form is biregular and the total number of sign changes in this sequence is
λ−1: the crossing number of our knot is then b−λ. Finally, we get β2 ≡ ±1 by Proposition
2.14. 2
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Proof of Theorem 3.12

The crossing points of the plane projection of H = H(4, b, c) are obtained for parameter pairs

(t, s) where t = cos
(m
4b
π
)
, s = cos

(m′

4b
π
)
. We shall denote λ =

3b− c

4
, ( or c = 3b − 4λ)

and θ =
λ

b
π. We will consider the two following cases.

The case b = 4n + 1.

For k = 0, . . . , n− 1, let us consider the following crossing points

• Ak corresponding to m = 4k + 1, m′ = 2b−m,

• Bk corresponding to m = 4k + 2, m′ = 4b−m,

• Ck corresponding to m = 4k + 3, m′ = 2b+m,

• Dk corresponding to m = 2b− 4(k + 1), m′ = 4b−m.

Then we have

• x(Ak) = cos
(4k + 1

b
π
)
, y(Ak) = (−1)k cos

π

4
6= 0,

• x(Bk) = cos
(4k + 2

b
π
)
, y(Bk) = 0,

• x(Ck) = cos
(4k + 3

b
π
)
, y(Ck) = (−1)k cos

3π

4
6= 0,

• x(Dk) = cos
(4k + 4

b
π
)
, y(Dk) = 0.

A′

0

B0

C0

D0

An−1

Bn−1

C′

n−1

Dn−1

A0C′

0
A′

n−1
Cn−1

Figure 13: H(4, 4n + 1, c), n even

Hence our 4n points satisfy

x(Ak−1) > x(Bk−1) > x(Ck−1) > x(Dk−1) >

x(Ak) > x(Bk) > x(Ck) > x(Dk), k = 1, . . . , n − 1.

We remark that these points together with the symmetric points A′
k (resp. C ′

k) of Ak (resp.
Ck) with respect to the y−axis form the totality of the crossing points.

The Conway sign of a crossing point M is s(M) = sign
(
D(M)

)
if y(M) = 0, and

s(M) = −sign
(
D(M)

)
if y(M) 6= 0.
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By symmetry, we have s(A′
k) = s(Ak) and s(C ′

k) = s(Ck) because symmetric points
correspond to opposite parameters. The Conway form of H is then (see paragraph 2) :

C
(
s(Dn−1), 2s(Cn−1), s(Bn−1), 2s(An−1), . . . , s(B0), 2s(A0)

)
.

Using the identity T ′
a(cos τ) = a

sin aτ

sin τ
, we get x′(t)y′(t) ∼ sin

(m
b
π
)
sin

(m
4
π
)
. Consequently,

• For Ak we have x′(t)y′(t) ∼ sin
(4k + 1

b
π
)
sin

(4k + 1

4
π
)
∼ (−1)k.

• Similarly, for Bk and Ck we get x′(t)y′(t) ∼ (−1)k.

• For Dk we get x′(t)y′(t) ∼ sin
(2b− 4k − 4

b
π
)
sin

(2b− 4k − 4

4
π
)
∼ (−1)k+1.

On the other hand, at the crossing points we have

z(t) − z(s) = 2 sin
( c

8b
(m′ −m)π

)
sin

( c

8b
(m+m′)π

)
.

We obtain the signs of our crossing points, with c = 3b− 4λ, θ =
λ

b
, t.

• For Ak we get: z(t) − z(s) = 2 sin
c

b
(n− k)π sin c

π

4
.

We have sin c
π

4
= sin

12n + 3 − 4λ

4
π = (−1)n+λ sin

3π

4
∼ (−1)n+λ

and also sin
(c
b
(n − k)π

)
= sin

((
3 −

4λ

b

)(
n− k)π

)

= (−1)n+k sin
(4k − 4n

b
λπ

)
= (−1)n+k+λ sin(4k + 1)θ

.

Consequently, the sign of Ak is

s(Ak) = −sign
(
sin(4k + 1)θ

)
.

• For Bk, we have: z(t) − z(s) = 2 sin
(c
b
(2n − k)π

)
sin c

π

2
= −2 sin

(c
b
(2n − k)π

)
.

But sin
(c
b
(2n− k)π

)
= sin

((
3 −

4λ

b

)(
2n − k

)
π
)

= (−1)k sin
(λ
b
(4k − 8n)π

)
= (−1)k sin(4k + 2)θ.

.

Therefore the sign of Bk is

s(Bk) = −sign
(
sin(4k + 2)θ

)
.

• For Ck: z(t) − z(s) = 2 sin
( c
4
π
)
sin

(c
b
(n+ k + 1)π

)
.

We know that sin
cπ

4
∼ (−1)n+λ. Let us compute the second factor

sin
((

3 −
4λ

b

)(
n+ k + 1

)
π
)

= (−1)n+k sin
(λ
b

(
4n+ 4k + 4

)
π
)

= (−1)n+k sin
(λ
b
(b+ 4k + 3)π

)

= (−1)n+k+λ sin(4k + 3)θ.
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Hence

s(Ck) = −sign
(
sin(4k + 3)θ

)
.

• For Dk: z(t) − z(s) = 2 sin
(c
b
(k + 1)π

)
sin

(
c
π

2

)

= 2 sin
((

3 −
4λ

b

)(
k + 1

)
π
)

= (−1)k sin(4k + 4)θ.

.

We conclude

s(Dk) = −sign
(
sin(4k + 1)θ

)
.

This completes the computation of our Conway normal form of H in this first case.

The case b = 4n + 3.
Here, the diagram is different. Let us consider the following 4n + 2 crossing points.

For k = 0, . . . , n

• Ak corresponding to m = 4k + 1, m′ = 2b+m,

• Bk corresponding to m = 4k + 2, m′ = 4b−m.

For k = 0, . . . , n− 1

• Ck corresponding to m = 4k + 3, m′ = 2b−m,

• Dk corresponding to m = 2b+ 4(k + 1), m′ = 4b−m.

These points are chosen so that

x(A0) > x(B0) > x(C0) > x(D0) > · · · > x(Dn−1) > x(An) > x(Bn),

and we have sign
(
x′(t)y′(t)

)
= (−1)k.

• For Ak we get

z(t) − z(s) = 2 sin
(
c
π

4

)
sin

(c
b
(n+ k + 1)π

)
.

We easily get sign
(
sin c

π

4

)
= (−1)n+λ. We also get

sin
(c
b
(n+ k + 1)π

)
= sin

((
3 −

4λ

b

)(
n+ k + 1

)
π
)

= (−1)n+k sin
(λ
b
(b+ 4k + 1)π

)
= (−1)n+k+λ sin(4k + 1)θ.

Hence the sign of Ak is

s(Ak) = −sign
(
sin(4k + 1)θ

)
.

• For Bk we get

z(t) − z(s) = 2 sin
(c
b
(2n+ 1 − k)π

)
sin c

π

2
.
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We have sin
(
c
π

2

)
= 1 > 0, and

sin
(c
b
(2n + 1 − k)π

)
= sin

((
3 −

4λ

b

)(
2n + 1 − k

)
π
)

= (−1)k+1 sin
(λ
b
(4k − 8n− 4)π

)
= (−1)k+1 sin(4k + 2)θ.

Then, the sign of Bk is

s(Bk) = −sign
(
sin(4k + 2)θ

)
.

• For Ck we have

z(t) − z(s) = 2 sin
(c
b
(n− k)π

)
sin c

π

4
.

We get

sin
(c
b
(n − k)π

)
= sin

((
3 −

4λ

b

)(
n− k

)
π
)

= (−1)n+k sin
(4k − 4n

b
λπ

)
= (−1)n+k+λ sin(4k + 3)θ.

The sign of Ck is then

s(Ck) = −sign
(
sin(4k + 3)θ

)
.

• For Dk we get

z(t) − z(s) = 2 sin
(
−
c

b
(k + 1)π

)
sin c

π

2
.

We have sin c
π

2
> 0. We also have

sin
(
−
c

b
(k + 1)π) = sin

((4λ

b
− 3

)(
k + 1

)
π
)
(−1)k+1 sin(4k + 4)θ.

Consequently, the sign of Dk is

s(Dk) = −sign
(
sin(4k + 4)θ

)
.

This concludes the computation of the Conway normal form of H(4, b, c).

If b < c < 3b, we get λ <
b

2
, and then θ <

π

2
. Consequently, our sequence is biregular.

Furthermore, the total number of sign changes is λ − 1. We conclude that the crossing

number is N =
3(b− 1)

2
− (λ − 1) =

3b+ c− 2

4
. The fact that β2 ≡ ±2 (modα) is a

consequence of Proposition 2.26. 2
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[P1] D. Pecker, Simple constructions of algebraic curves with nodes, Compositio Math.
87 (1993), no. 1, 1–4.

[P2] D. Pecker, Sur le genre arithmétique des courbes rationnelles. (French) [On the
arithmetic genus of rational curves], Ann. Inst. Fourier (Grenoble) 46 (1996), no. 2,
293–306.

[RS] A. Ranjan and R. Shukla, On polynomial representation of torus knots, Journal of
knot theory and its ramifications, Vol. 5 (2) (1996) 279-294.

[Ro] D. Rolfsen, Knots and Links, Math. Lecture Series 7, Publish or Perish, 1976.

[Sh] A.R. Shastri, Polynomial representation of knots, Tôhoku Math. J. 44 (1992),
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