Emmanuel Beffara

Quantitative testing semantics for non-interleaving

This paper presents a non-interleaving denotational semantics for the π-calculus. The basic idea is to define a notion of test where the outcome is not only whether a given process passes a given test, but also in how many different ways it can pass it. More abstractly, the set of possible outcomes for tests forms a semiring, and the set of process interpretations appears as a module over this semiring, in which basic syntactic constructs are affine operators. This notion of test leads to a trace semantics in which traces are partial orders, in the style of Mazurkiewicz traces, extended with readiness information. Our construction has standard may-and must-testing as special cases.

Introduction

The theory of concurrency has developed several very different models for processes, focusing on different aspects of computation. Process calculi are an appealing framework for describing and analyzing concurrent systems, because the formal language approach is well suited to modular reasoning, allowing to study sophisticated systems by means of abstract programming primitives for which powerful theoretical tools can be developed. However, the vast majority of the semantic studies on process calculi like the π-calculus have focused on the so-called interleaving operational semantics, which is the basic definition of the dynamic of a process: the interaction of a program with its environment is reduced to possible sequences of transitions, thus considering that parallel composition of program components is merely an abstraction that represents all possible ways of combining several sequential processes into one.

There is clearly something unsatisfactory in this state of things. Although sophisticated theories have been established for interleaving semantics, most of which are based on various forms of bisimulation, they fundamentally forget the crucial (and obvious) fact that concurrent processes are intended to model situations where some events may occur independently. Attempts at recovering this notion of independence in existing theories have been made, for instance in the form of subtle variations on bisimulation or by fully abstract encodings of non-interleaving 1 semantics into interleaving ones (in particular in Sangiorgi's work on locality and causality [START_REF] Sangiorgi | Locality and interleaving semantics in calculi for mobile processes[END_REF][START_REF] Boreale | A fully abstract semantics for causality in the πcalculus[END_REF]). More recently, the old idea of Winskel's interpretation of CCS in event structures [START_REF] Winskel | Event structure semantics for CCS and related languages[END_REF] has been revisited by Crafa, Varacca and Yoshida to provide an actually non-interleaving operational semantics for the π-calculus, using extensions of event structures [START_REF] Crafa | Compositional event structure semantics for the π-calculus[END_REF].

This paper presents an attempt at defining a semantics for the π-calculus that is both noninterleaving (sometimes called "truly concurrent") and denotational, in the sense that the internal dynamics of a process is hidden, and only the part that is observable by other processes is kept. These two requirements may seem contradictory: "denotational" as we mean it leads to the definition of testing semantics, which in turn leads to trace semantics, which is very interleaving in nature. Indeed, consider the prototypical case of a | b versus a.b + b.a: how is it possible to distinguish them when looking at their interactions? Both can do a then b or b then a, but in the first case the paths a.b and b.a are in fact one same run since a and b are independent, while in the second case they correspond to two actually different choices. We solve the contradiction by elaborating on this simple idea: instead of checking whether a given process passes a given test, we check in how many different ways it can pass it. The word "different" here refers to different choices being made in situations of non-determinism, and not simply different orderings of the same actions.

The approach presented here follows previous work by the author [START_REF] Beffara | An algebraic process calculus[END_REF] on the search for algebraically pleasant denotational semantics of process calculi. The first step was to introduce in the π-calculus an additive structure (a formal sum with zero) that represents pure nondeterminism, and this technique proved efficient enough to provide a readiness trace semantics (in the style of Olderog and Hoare [START_REF] Olderog | Specification-oriented semantics for communicating processes[END_REF]) with a complete axiomatization of equivalence for finite terms. The second step presented here further extends the space of processes with arbitrary linear combinations, giving a meaning to these combinations in terms of quantitative testing. This introduction of scalar coefficients was not possible in the interleaving case, because of the combinatorial explosion that arose even when simply composing independent traces; quotienting by homotopy is the proper solution to this problem. Growing the space of processes to get more algebraic structure is motivated by the idea that better structured semantics gives cleaner mathematical foundations for the object of study, in the hope that the obtained theory will be reusable for different purposes and that it will benefit from existing mathematical tools.

Outline. In section 2, we define the calculus on which our study is built: a finite form of the πI-calculus. An non-interleaving operational semantics is defined as follows: transitions are those of the standard calculus, decorated with the position of each action involved in a given transition, so that transitions are independent if they derive from actions at independent positions. Two execution paths are then considered homotopic if they differ only by permutation of independent actions. This technique is a variant of proved transitions introduced by Boudol and Castellani [START_REF] Boudol | A non-interleaving semantics for CCS based on proved transitions[END_REF] and notably studied by Degano and Priami [START_REF] Degano | Proved trees[END_REF][START_REF] Degano | Non-interleaving semantics for mobile processes[END_REF].

In section 3, the notion of test is defined. Outcomes are taken from a semiring K in which multiplication represents the parallel composition of independent results and addition represents the combination of outcomes from different (non homotopic) runs. Processes are equivalent if they yield the same outcome in all contexts. The space of process equivalence classes appears a K-module, on which the outcome is a linear form, and syntactic constructs are affine operators.

In section 4, we derive a first denotational semantics of processes as linear forms over this space, in a construction similar to that of the theory of distributions. This construction provides an abstract interpretation of recursive processes without having to include them in the initial construction of tests.

In section 5, we further describe the space of finite processes by showing that every finite process is a linear combination of traces. Our notion of trace is an asynchronous variant of the traces induced by standard semantics: they are partially ordered finite sets of actions, augmented with readiness information. This provides a second, more concrete denotational semantics that illustrates the expressiveness of our notion of test.

Finally, in section 6, we show that standard forms of test are particular cases of our construction, obtained by choosing an appropriate semiring for outcomes.

Future and related works. The present work is by no means a complete study of quantitative testing semantics and its possible applications, but rather a presentation of the basic ideas and their consequences. A first objective is to clarify the relationships between the two proposed semantics, possibly by establishing that traces form a basis of the space of processes (maybe by using a ring or field instead of a semiring for outcomes). Another challenging direction for future work is using the linear-algebraic interpretation for specification of processes, using tools like differential equations to specify behaviours; this should provide a reconstruction of the semantics on arbitrary vector spaces instead of the concrete space of processes, which could be a way to a new family of denotational semantics for process calculi.

Along with this long-term ideas, it is naturally interesting to extend our work with more features in the calculus. A more precise account of recursion is a desirable thing: surely infinite behaviours fit in our framework, but the present work does not study it in full detail for lack of space. External choice is a natural feature to add in the framework, but previous work [START_REF] Beffara | An algebraic process calculus[END_REF] suggests that it is painless. Unrestricted name passing, on the other hand, is a more delicate matter, and we believe that getting a satisfactory understanding of the more regular case of internal mobility first is necessary to handle it.

Several works by other authors are related to the present work. Crafa, Varacca and Yoshida's event structure semantics probably has very strong relationships with our trace semantics: it has to be expected that their event structures can be used as an intermediate between the process calculus and the traces, and that traces and outcomes can be deduced from configurations of the event structures. The operational semantics and its similarity to Mazurkiewicz traces also suggests that relations could be made with more abstract semantics, like Melliès and Mimram's asynchronous games [START_REF] Melliès | Asynchronous games 2: the true concurrency of innocence[END_REF][START_REF] Melliès | From asynchronous games to concurrent games[END_REF]. Previous work on the search for algebraic semantics of processes include Boreale and Gadducci's processes as formal series [START_REF] Boreale | Processes as formal power series: a coinductive approach to denotational semantics[END_REF], which has notable similarities with the present work, although their work is carried out in CSP. Finally, strong relationships are expected with differential interaction nets [START_REF] Ehrhard | Differential interaction nets[END_REF][START_REF] Ehrhard | Interpreting a finitary π-calculus in differential interaction nets[END_REF], which have linear algebraic semantics and are expressive enough to encode the π-calculus.

Parallel operational semantics

We consider the π-calculus with internal mobility, or πI-calculus, extended with a parallel composition without interaction and with outcomes from a commutative semiring K. We consider the monadic variant of the calculus for simplicity, but using the polyadic form would not pose any significant problem. The most important point is that we consider finite processes, without recursion, for the construction of our framework, and we handle potentially infinite behaviours in a second phase in section 4. Definition 1. We assume a countable set N of names. Polarities are elements of P = {↓, ↑}. The parallel composition without interaction allows us to write a term like a ā which can perform the dual actions a and ā independently but does not allow them to synchronize -this slightly extends the expressiveness of the calculus but not in a dramatic way, and it simplifies the theory.

α.P α:ε --→ P P a -→ P ′ P 1.a --→ P ′ P u ε (x):ι ----→ P ′ Q u ¬ε (y):κ -----→ Q ′ P | Q (1.ι,2.κ) -----→ (νx)(P ′ | Q ′ [x/y]) P a -→ P ′ x / ∈ a (νx)P a -→ (νx)P ′ P a -→ P ′ P | Q 1.a --→ P ′ | Q P a -→ P ′ Q | P 2.a --→ Q | P ′ P a -→ P ′ P Q 1.a --→ P ′ Q P a -→ P ′ Q P 2.a --→ Q P ′
The prefix represents an action that already occurred. It has no computational meaning but has the effect that the positions of actions in the terms are preserved when reducing, which will simplify definitions below.

We want to define an operational semantics in which commutation of independent transitions is allowed. In order to make this possible by only looking at transition labels, we have to enrich the labels so that different occurrences of a given action are distinguishable. We do this by simply introducing in each label the positions in the syntax tree of all actions involved (as a consequence, the operational semantics cannot be defined up to structural congruence). Definition 2. A position is a finite sequence of integers. The concatenation of ι and κ is written ι.κ, the empty position is written ε. The prefix order is written and two positions ι and κ are independent (written ι κ) if they are incomparable. Definition 3. Transition labels can be of one of two kinds:

a, b := u ε (x) : ι visible action (ι, κ) internal transition
For a label a and a position ι, ι.a denotes the label a where each position κ is replaced with ι.κ.

Transitions are derived by the rules of table 1.

An interaction is finite sequence of transition labels. A path is a finite sequence of internal transition labels. An interaction p = a 1 a 2 . . . a n is valid for P , written p ∈ P , if there are valid transitions

P a1 -→ P 1 a2 -→ • • • an --→ P n .
This technique can be seen as a version of Boudol and Castellani's proved transitions [START_REF] Boudol | A non-interleaving semantics for CCS based on proved transitions[END_REF][START_REF] Degano | Non-interleaving semantics for mobile processes[END_REF] simplified for our purpose. It is clear that for all term P and interaction p ∈ P , there is exactly one term P/p such that there is a transition sequence P p -→ P/p (up to renaming of revealed bound names). Remark that by removing all positions from labels (replacing (ι, κ) by τ) one gets the standard labeled transition system for the πI-calculus. Definition 4. Two labels a and b are independent (written a b) if all positions in a are independent of all positions in b. Homotopy is the smallest congruence ≈ over paths such that ab ≈ ba when a b.

Two execution paths of a given term are homotopic if it is possible to transform one into the other by exchanging consecutive transitions if they are independent. Prefixing generates local constraints which propagate to paths by this relation. A first remark is that transition labels contain enough information so that homotopy does not depend on the term in which paths are taken.

Proposition 1. For all term P and all interactions p, q such that p ≈ q, p ∈ P if and only if q ∈ P , and then P/p = P/q.

Proof. The basic case is p = ab and q = ba for some a and b with a b. We thus prove that for any pair of transitions

P a -→ Q b -→ R with a b, there is a term Q ′ such that P b -→ Q ′ a -→ R.
Proceed by induction on the derivation of P a -→ Q.

• The case of the action rule α.P α:ε --→ P cannot happen since no position is independent of ε but b is supposed to be independent of α : ε.

• In the case of the rule, we have P

1.a --→ Q 1.b
--→ R and we can proceed by induction on

P a -→ Q b -→ R.
• In the case of the interaction rule, we have a = (1.ι, 2.κ) for some positions ι and κ, and the second transition starts from (νx

)(P ′ | Q ′ [x/y]).
Reason by case analysis on the shape of this second transition. If all positions in b start with 1, then b = 1.b ′ for some b ′ and the second transition comes from P ′ b ′ -→ P ′′ , so we can apply the induction hypothesis on P

u ε (x):1.ι -----→ P ′ b ′ -→ P ′′ to get transitions P b ′ -→ R u ε (x):1.ι
-----→ P ′′ , from which we deduce

P | Q b -→ R | Q a -→ (νx)(P ′′ | Q ′).
If all positions in b start with 2, the same argument applies, the substitution of x for y is innocuous since it only affects actions prefixed by u ¬ε (y). If b = (1.ι ′ , 2.κ ′) for some ι ′ and κ ′ , then we have

P ′ v η (x ′)ι ′ -----→ P ′′ and Q ′ v ¬η (y ′)κ ′ ------→ Q ′′ ,
so we can apply the induction hypothesis on P and Q independently, from which we deduce

P | Q b -→ (νx ′)(P ′′′ | Q ′′′ [x ′ /y ′]) a -→ (νx ′)(νx)(P ′′ | Q ′′ [x ′ /y ′ , x/y]
), which concludes this case since the substitutions [x/y] and [x ′ /y ′] are independent and the order of restrictions is irrelevant.

• The (νx) context rule is obvious.

• In the right context rule for parallel composition, we have

a = 1.a ′ for some a ′ . If b = 2.b ′
for some b ′ , then a occurs in P and b occurs in Q, so they obviously commute. If b has the form α : 1.ι, then we proceed by induction in P . If b is a label (ι, κ) with one of ι, κ starting with 1, then we proceed by induction on the visible action at this position, in a similar way as for parallel composition.

• The other context rules for composition with and without interaction are similar.

The general case follows.

Definition 5. A pre-trace is a homotopy class of interactions. A run is a homotopy class of maximal paths. The sets of pre-traces and runs of a term P are written P(P) and R(P) respectively. The unique reduct of a term P by a pre-trace ρ is written P/ρ.

Runs are the intended operational semantics: they are complete executions of a given system, forgetting unimportant interleaving of actions and remembering only actual ordering constraints. A pre-trace can be seen as a Mazurkiewicz trace on the infinite language of transition labels, with the independence relation from definition 4, except that, because of our transition rules (and because of the use of the place-holder), each label occurs at most once in any interaction. A crucial fact is that pre-traces are uniquely defined by the set of their labels: Proposition 2. Let p and q be two interactions of a term P such that p and q are permutations of each other, then p ≈ q.

Proof. We first prove that for all interaction a 1 . . . a n b ∈ P such that b ∈ P we have a 1 . . . a n b ≈ ba 1 . . . a n , by induction on n. The case n = 0 is trivial. For the case n 1, remark that the hypothesis implies a 1 b: if some position in a 1 was less than a position in b then b could only occur after a 1 , which contradicts b ∈ P , and a 1 ∈ P also implies that no position in b is less than a position in a. Therefore we have ba 1 ∈ P and ba 1 ≈ a 1 b. Applying the induction hypothesis on P/a 1 yields ba 2 . . . a n ≈ a 2 . . . a n b from which we conclude. The case of arbitrary permutations follows by recurrence on the length of p and q. Definition 6. Let P be a term and ρ ∈ P(P). By proposition 2, ρ is identified with the set of its labels. The causal order in ρ is the partial order ρ on labels in ρ such that a ρ b if a = b or a occurs before b in all interactions in ρ.

This presentation is much simpler to handle than explicit sets of runs, so this is the one we will mainly use. Interactions that constitute a given pre-trace are simply the topological orderings of this partially ordered set of transitions. Traces are a further quotient of pre-traces, defined and studied in section 5.

Quantitative testing

We now define a form of observation based on interaction, in the style of testing equivalences, that takes homotopy into account. Standard testing naturally leads to interleaving semantics, so we have to refine our notion of test, and that is what outcomes are for. The set K is a semiring in order to represent two ways of combining results: the product is the parallel composition of independent results and the sum is the combination of results from distinct runs. Definition 7. The state s(P) ∈ K of a term P is the product of all outcomes in active position in P :

s(k) := k, s(α.P) := 1, s(P) := s((νx)P) := s(P), s(P | Q) := s(P Q) := s(P) s(Q).
The outcome of a term P is P = ρ∈R(P) s(P/ρ). Two terms P and Q are observationally equivalent, written

P ≃ Q, if P | R = Q | R for all R.
Classic forms of test intuitively correspond to the case where K is the set of booleans for the two outcomes success and failure, with operations defined appropriately. This particular case is detailed in section 6.

Basic properties

Theorem 1. Observational equivalence is a congruence.

Proof. Consider a pair of equivalent processes P ≃ Q. Let α be an arbitrary action, we first prove that α.P ≃ α.Q. Let R be an arbitrary process. The set R(α.P | R) can be split into two parts: the set R 0 of runs where the action α is not triggered and the set R 1 of runs in which it is. Then for each run ρ ∈ R 1 , there is a position ι such that (1, 2.ι) ∈ ρ. Let ρ 1 be the partial run { a | a ∈ ρ, a ρ (1, 2.ι) }, that is the minimal run that triggers α; we have

(α.P | R)/ρ 1 = (νx)(P | R ′) for some R ′ ; let ρ 2 = ρ \ ρ 1 , so that ρ 2 is a run of P | R ′ and (α.P | R)/ρ = (νx)(P | R ′)/ρ 2 . Let S be the set of triples (ρ 1 , R ′ , ρ 2) for all ρ ∈ R 1 . Obviously R(α.P | R) is in bijection with R 0 ⊎ S and α.P | R = 2.ρ∈R0 s(R/ρ) + (ρ1,R ′ ,ρ2)∈S s((P | R ′)/ρ 2) Now let L = { (ρ 1 , R ′) | ∃ρ 2 , (ρ 1 , R ′ , ρ 2) ∈ S }, and let (ρ 1 , R ′) ∈ L. Since R 1 contains all runs of α.P | R that trigger α, it contains all the runs of P | R ′ since P | R ′ can be reached from α.P | R, so we have { ρ 2 | (ρ 1 , R ′ , ρ 2) ∈ S } = R(P | R ′), hence (ρ1,R ′ ,ρ2)∈S s((P | R ′)/ρ 2) = (ρ1,R ′)∈L ρ2∈R(P |R ′) s((P | R ′)/ρ) = (ρ1,R ′)∈L P | R ′ By hypothesis, for all R ′ we have P | R ′ = Q | R ′ so α.P | R = rρ∈R0 s(R/ρ) + (ρ1,R ′)∈L Q | R ′ = α.Q | R
since the reasoning above equally applies to Q. Therefore we get α.P ≃ α.Q.

For parallel composition, let R and S be arbitrary terms, we want to prove

(P | R) | S = (Q | R) | S ,
| R) | S)/ρ) = s((P | (R | S))/ϕ(ρ)), so (P | R) | S = P | (R | S) . Similarly we get s((Q | R) | S) = Q | (R | S)
, and by hypothesis we have

P ≃ Q so P | (R | S) = Q | (R | S)
, from which we conclude.

For parallel composition without interaction, let R and S be arbitrary terms, we want to prove (P R) | S = (Q R) | S , in order to get P R ≃ Q R. The technique used for parallel composition with interaction does not apply here, because there is no simple form of associativity between the two parallel compositions. However, if the free names of P and R are disjoint, it is easily seen that P | R and P R are equivalent, and this is the fact we will use here.

Let A be a set of pairs (ι, κ) where ι is the position of an action in R and κ is the position of an action in S, such that these actions are on a free name and may interact with each other, and such that A is a partial injection (each position of R occurs at most once on the left, each position of S occurs at most once on the right). Call this kind of set a synchronization and let S be the set of all synchronizations. We say that a run ρ ∈ R((P R) | S) satisfies A, written ρ A, if the interactions between R and S in ρ are exactly those designated by A, that is if

{ (ι, κ) | (1.2.ι, 2.κ) ∈ ρ } = A. commutativity P | Q ≃ Q | P P Q ≃ Q P associativity (P | Q) | R ≃ P | (Q | R) (P Q) R ≃ P (Q R) neutrality P | 1 ≃ P P 1 ≃ P scope commutation (νx)(νy)P ≃ (νy)(νx)P scope extrusion (νx)(P | Q) ≃ P | (νx)Q with x / ∈ fn(P) scope neutrality (νx)k ≃ k non-interaction (P Q) | R ≃ (P | R) Q with fn(Q) ∩ fn(R) = ∅ place-holder P ≃ P inaction (νu)u ε (x).P ≃ 1 non-interference (νu)(u(x).P | ū(x).Q) ≃ (νux)(P | Q)
Table 2: Basic equivalences.

We will define R A and S A to be rewritings of R and S such that the pairs (ι, κ) are guaranteed to interact. For this purpose, for each (ι, κ) ∈ A, let a ι,κ and w ι,κ be fresh names: a ι,κ is a new name on which the pair will interact (in order to avoid conflicts with other names) and w ι,κ will act as a witness of (ι, κ), that will ensure that the pair actually interacts. Define R A as the term R in which each action a ε (x).T at a position ι such that there is an (ι, κ) ∈ A is replaced by a ε ι,κ (x).(T | w ι,κ .1), and define S A as the term S in which each action a ε (x).T at a position κ such that there is an (ι, κ) ∈ A is replaced by a ε ι,κ (x).T (without w ι,κ). Let W A be any parallel composition of w ι,κ .0 | wι,κ .1 for all ι, κ ∈ A.

If we now examine the runs of

(P | R A) | (S A | W A),
we observe that if a run ρ does not trigger the actions of a given pair (ι, κ) ∈ A, then it must contain the reduction of w 1,j .0 | wι,κ .1 into 0 | 1 (because runs are made of maximal paths), so the outcome of this run is 0. On the other hand, if all the interactions given by A occur in ρ, it is still possible that some of the w ι,κ .0 | wι,κ .1 reduce into 0 | 1, but there is one possibility that each wι,κ .1 interacts with the w ι,κ .1 in R A . From a run that satisfies this condition, we can deduce a unique run of (P R) | S that satisfies A, and reciprocally from a run of (P R) | S that satisfies A we can deduce a unique run of (P | R A) | (S A | W A) that does not reduce any w ι,κ .0. Moreover, this bijection between runs preserves outcomes, so

(P | R A) | (S A | W A)
is the sum of all s(((P R) | S)/ρ) for all runs ρ that satisfy A. From this we get the following decomposition:

(P R) | S = A∈S ρ A s(((P R) | S)/ρ) = A∈S (P | R A) | (S A | W A) = A∈S P | (R A | (S A | W A)) = A∈S Q | (R A | (S A | W A)) = (Q R) | S The equality (P | R A) | (S A | W A) = P | (R A | (S A | W A)
) is justified by the same argument as above for parallel composition, and the substitution of Q for P is the hypothesis P ≃ Q. The final equality is the same reasoning for Q as for P above.

The equality (νx)P | R = (νx)Q | R is justified by the fact that (νx)P | R and P | R are equal if the name x is fresh with respect to R.

Proposition 3. The equivalences of table 2 hold.

Proof. For commutativity of composition with interaction, consider three terms P, Q, R. We first establish a bijection between R((P |Q)|R) and R((Q|P)|R). Let ϕ be the function over positions that exchanges ll and 1.2 at the beginning of words, i.e. ϕ(1.1.ι) = 1.2.ι, ϕ(1.2.ι) = 1.1.ι and ϕ(2.ι) = 2.ι for all position ι. For all path p, define ϕ(p) as the path obtained by applying ϕ to all positions in p. Then clearly, for all path p of (

P | Q) | R, ϕ(p) is a path of (Q | P) | R.
Moreover, for all paths p and q, p ≈ q if and only if ϕ(p) ≈ ϕ(q). Therefore ϕ is a bijection between R((P |Q)|R) and R((

Q | P) | R). Besides, since K is commutative, we have (P | Q) | R/p = (Q | P) | R/ϕ(p)
for all P, Q, R and p, so we have

(P | Q) | R = (Q | P) | R .
For associativity, we use the same technique with relabeling function defined as ϕ(1.1.1.ι) = 1.1.ι, ϕ(1.1.2.ι) = 1.2.1.ι, ϕ(1.2.ι) = 1.2.2.ι for all ι and ϕ(κ) = κ for all other positions κ; the final argument is associativity of the product in K. For neutrality, we use ϕ(1.1.ι) = ϕ(1.ι) for all ι and ϕ(κ) = κ for all other positions κ, and conclude by the neutrality of 1 in K.

For parallel composition without interaction, the same arguments apply. For the noninteraction rule, a similar argument applies, using the fact that there can never be any interaction between Q and R if they do not share any free name (this property is specific of the πI calculus).

For the scoping rules, we simply remark that (νx

)P | Q = P | Q if
x is a fresh name, since names have no influence on outcomes.

For the place-holder rule, P | Q = P | Q is proved by applying the function ϕ such that ϕ(1.1.ι) = 1.ι for all ι and ϕ(κ) for all other κ. This establishes a bijection between R(P | Q) and R(P | Q) since the is never involved in any transition.

For the inaction rule, remark that in a term (νu)u ε (x).P | R, there can be no transition involving u ε (x), hence all runs are made of labels of the form (2.ι, 2.κ), so the runs of (νu)u ε (x).P | R are the runs of R with an extra 2 in front of each position, moreover the outcomes are the same since s((νu)u ε (x).P) = 1.

For the non-interference rule, remark that all runs of (νu)(u(x).P | ū(x).Q) | R contain the transition (1.1, 1.2), because of maximality and the fact that R cannot provide actions on u. The reduct by this transition is (νux)(P | Q) | R, and its runs are those of the original term without (1.1, 1.2), so it has the same outcome. We thus have (νu)(u(x).P | ū(x).Q) ≃ (νux)(P | Q), and the equivalence (νux)(P | Q) ≃ (νux)(P | Q) follows from the previous rules.

The non-interaction rule is formulated as it is for generality. Note that it implies the intuitive fact that the two compositions coincide for terms with disjoint free names: if fn(P)

∩ fn(Q) = ∅ then P | Q ≃ (1 P) | Q ≃ (1 | Q) P ≃ Q P ≃ P Q.
Thanks to these properties, when considering processes up to observational equivalence, we can consider the compositions to be associative and commutative. In this case we use the notation i∈I P i to denote the parallel composition without interaction of the P i in any order (assuming only that I is finite).

The space of processes

In order to study processes up to observational equivalence, we will now describe some of the structure of the space of equivalence classes. The first ingredient is to identify an additive structure that represents pure non-determinism. Proposition 4. Let Π K be the set of equivalence classes of processes over the semiring of outcomes K. For all terms P and Q and all outcome k, define Commutative monoid for ⊕, 0:

P ⊕ Q := (νu)((u.P | u.Q) | ū.1) where u is a fresh name, k • P := k | P Then (Π K , ⊕, 0, •) is a K-module,
P ⊕ Q ≃ Q ⊕ P (P ⊕ Q) ⊕ R ≃ P ⊕ (Q ⊕ R) P ⊕ 0 ≃ P
Action of the semi-ring K:

1 • P ≃ P k 1 k 2 • P ≃ k 1 • k 2 • P 0 • P ≃ 0 (k 1 + k 2) • P ≃ k 1 • P ⊕ k 2 • P k • (P ⊕ Q) ≃ k • P ⊕ k • Q
Bilinearity of compositions, linearity of hiding: Proof. We first show that, for all terms P , Q and R,

P | (Q ⊕ R) ≃ (P | Q) ⊕ (P | R) P | (k • Q) ≃ k • (P | Q) P (Q ⊕ R) ≃ (P Q) ⊕ (P R) P (k • Q) ≃ k • (P Q) (νx)(P ⊕ Q) ≃ (νx)P ⊕ (νx)Q (νx)(k • P) ≃ k • (νx)P
(P ⊕ Q) | R = P | R + Q | R . Consider R((P ⊕ Q) | R) = R((νu)((u.P | u.Q) | ū.1) | R).
It is clear that any run contains an interaction of ū.1 with either u.P or u.Q, since none of these may interact with anything else. We can thus write R((

P ⊕ Q) | R) = R 1 ⊎ R 2
where R 1 is the set of runs that contain (1.1.1, 1.2) and R 2 is the set of runs that contain (1.1.2, 1.2). The runs in R 1 are the runs of (νu)((u.P | 1) | ū) | R and each of these runs has the same outcome in both terms, so

ρ∈R1 s ((P ⊕ Q) | R)/ρ = (νu)((u.P | 1) | ū) | R = P | R
by the equivalences of table 2. By a similar argument, we get the same for R 2 and Q | R so we finally get

(P ⊕ Q) | R = P | R + Q | R .
This equality and the fact that (K, +, 0) is a commutative monoid implies that (Π K , ⊕, 0) is a commutative monoid (where 0 is the atomic term with outcome 0).

For any terms P and Q and any outcome k, it is clear that (k | P) | Q = k P | Q , since the term k has no transition and contributes k multiplicatively to all outcomes of the term. This directly implies that the operation k • P has all required properties.

For the bilinearity of compositions, consider arbitrary terms P, Q, R, S. By previous results, we have

(P | (Q ⊕ R)) | S = (Q ⊕ R) | (P | S) = Q | (P | S) + R | (P | S) = (P | Q) | S + (P | R) | S = ((P | Q) ⊕ (P | R)) | S
This proves that parallel composition distributes over ⊕, and the fact that 0 is absorbing is equivalent to the rule 0 • P ≃ 0. The same rules for parallel composition without interaction can be proved by similar arguments about the partition of R(P (Q ⊕ R)) into runs that choose Q and runs that choose R.

For hiding, consider arbitrary terms P, Q, R and let x be a name. Assume (without loss of generality) that x does not occur in R. Then we have

(νx)(P ⊕ Q) | S = (P ⊕ Q) | S = P | S + Q | S = (νx)P | S + (νx)Q | S = ((νx)P ⊕ (νx)Q) | S
The equivalence (νx)0 ≃ 0 is one of the rules of table 2. Remark that all syntactic constructions induce linear constructions on equivalence classes, except for the action prefix, which is not linear but actually affine. Indeed, for an action α, the term α.0 is not equivalent to 0: it will be neutral in executions that do not trigger α, and multiply the outcome by 0 (thus annihilating it) in runs that do. It can be understood as a statement "I could have performed α but I will not do it" so that any run that contradicts this statement has outcome 0. The purely linear part of actions is the opposite: the linear action α.P will act as α.P if its environment actually triggers the action, but will turn to 0 if it is never activated. This definition has the expected behaviour because of the maximality of runs. If α.P is in active position, then any run that does not trigger α must instead trigger w.0, hence any such run has outcome 0. A run in which the term α.P does not produce 0 must activate α, so that w.1 acts instead of w.0. Proposition 5. For all α and P , α.P ≃ α.P ⊕ α.0. The function P → α.P is linear and the equivalences of table 4 hold.

Proof. We first prove α.P ≃ α.P ⊕ α.0. Consider an arbitrary term Q call R 1 the set of runs of α.P |Q that contain a transition (1, ι), i.e. runs that trigger α, and let R 0 be the set of runs that do not. The runs of R 0 are also runs of α.0|Q, moreover for each run ρ ∈ R(α.0|Q)\R 0 the action α is triggered so 0 contributes to the outcome and s((α.0 | Q)/ρ) = 0, hence ρ∈R0 s((α.P | Q)/ρ) = α.0 | Q . Now consider a run ρ ∈ R 1 . By definition, there is a κ such that (1, κ) ∈ ρ. We deduce from ρ a run ρ ′ of α.P as follows: let ϕ be the function that maps each 1.1.ι to 1.1.1.1.ι and all other positions to themselves; set

ρ ′ := ϕ(ρ \ (1, κ)) ∪ {(1.1, κ), (1.1.1.2, 1.2.
| P ′) | Q = k • α.(1 | P ′) | Q and α.(k | P ′) ≃ k | α.(1 | P ′) ≃ k | α.P ′ . If P = P 1 ⊕ P 2
, the choice is eventually active in all relevant runs, so each of these runs triggers either P 1 or P 2 . We can thus establish a bijection between R(α.(P 1 ⊕ P 2) | Q) and the disjoint union of R(α.P 1 | Q) and R(α.P 2 | Q). Since outcomes are preserved by this bijection, we finally get α.(P

1 ⊕ P 2) | Q = α.P 1 | Q + α.P 2 | Q and (P 1 ⊕ P 2) | Q ≃ (P 1 | Q) ⊕ (P 2 | Q).
The equivalence (νu)u ε (x).P ≃ 0 can be deduced from previous equations: Any run that does not trigger α or that triggers both α and β has outcome 0, so the only relevant runs are those that trigger α but not β. Clearly these runs are in bijection with the runs of (β.0 | α.P) | Q that trigger α and not β, by a simple rewriting of the positions. Moreover, this bijection preserves outcomes, so the sums of the outcomes of these runs are the same. A similar argument proves α.(β.0 P) ≃ β.0 α.P .

For the composition of inactions, the relevant runs of a term (α.0 | α.0) | P or (α.0 α.0) | P are those that do not trigger any occurrence of α, so the number of such occurrences does not matter. Finally, we get α.O | ᾱ.0 ≃ 0 by the remark that all runs of (α.0 | ᾱ.0) | P must trigger one of the inactions: either α.0 interacts with P , or ᾱ.0 interacts with P , or none of these happen and α.0 and ᾱ.0 must interact together, by maximality of runs. Definition 9. A term is simple if it is generated by the grammar P, Q := 1, α.0, α.P, (P | Q), (P Q), (νx)P An pre-trace ρ ∈ P(P) is exhaustive if it triggers all linear actions and no inaction, and no sub-term of P/ρ has the form Q | R with Q containing some α.0 and R containing ᾱ.0. The set of such pre-traces is written P e (P).

Simple terms have the property that the outcome of any run is either 1 or 0. More precisely, it is easy to see that the outcome of a run is 1 if and only if it triggers all linear actions and no inaction. The notion of exhaustive pre-trace is the correct extension of this notion to pre-traces, indeed every run of a simple term P | Q with outcome 1 is made of an exhaustive pre-trace of P and an exhaustive pre-trace of Q. The condition on P/ρ simply rules out interactions of P that lead to a term P ′ where there are dual inactions that may interact, since that would imply P ′ ≃ 0, as a generalization of the equation α.0 | ᾱ.0 ≃ 0.

Remark that, by the decomposition of proposition 5 and the linearity of all constructions of simple terms, we immediately prove that every term is equivalent to a linear combination of simple terms. As a consequence, two terms P and Q are equivalent if and only if for all simple term R,

P | R = Q | R .

A linear algebraic semantics

The equivalence of finite processes is defined by the fact that they give the same outcome when tested against the same finite processes. The equivalence class of a term P is thus completely defined by the function Q → P | Q , which can be considered as a function from equivalence classes to outcomes. Moreover, by the properties of the space of processes, we know that this function is linear. Definition 10. A behaviour is a linear form over Π K . A partial behaviour is a linear form defined over a submodule of Π K . The behaviour of a term P is the form P such that, for all

Q ∈ Π K , P (Q) = P | Q .
Switching from a space to its dual makes the space of considered objects grow, as we will see below. In our context, it allows us to move from inductive objects (finite processes) to coinductive objects (intuitively, this includes infinite terms). This technique is in some sense analogous to the basic idea of the theory of distributions: consider a generalized function as a linear form over simple well-behaved objects (smooth test functions, as analogous of our finite terms).

We now describe a way of giving semantics to infinitary processes, showing that recursive process definitions have solutions as partial behaviours.

Definition 11. We assume we have a set I of process indeterminates of the form X x 1 . . . x n , which represent an unknown term with free names x 1 . . . x n . The set of partial terms is generated by the same grammar as finite processes (as of definition 1), augmented with indeterminates. The set of indeterminates of a partial term P is written ind(P).

The refinement preorder is the relation ⊑ over partial terms such that P ⊑ Q if Q is obtained from P by substituting each indeterminate by an arbitrary term with the same free names. The relation ⊑ f is its restriction to the case when the right-hand side is a finite term. Definition 12. Let P be a partial term. If there is a k ∈ K such that Q = k for all finite Q with P ⊑ f Q, then we set P = k, otherwise P is undefined. The interpretation P is the partial function Q → P | Q from Π K to K. Two partial terms are equivalent if the have the same interpretation. This is clearly an extension of the semantics of total terms, since the set of refinements of a total term P is {P }. One easily checks that this definition of the interpretation of partial terms enjoys the same properties as finite terms: Proposition 6. For all partial term P , P is a partial behaviour. The equations of tables 2 and 3 hold for partial terms. Interpretations are preserved by injective renaming of indeterminates. Equivalence is preserved by prefixing, hiding and composition with partial terms with distinct indeterminates.

Proof. First, remark that for all P ⊑ f P ′ , P ′ | 0 = 0, hence P | 0 so P is defined on 0. Now assume P is defined on Q and R, for all P ⊑ f P ′ we have

P ′ | (Q ⊕ R) = P ′ | Q + P ′ | R = P (Q) + P (R) so P is correctly defined on Q ⊕ R. The same argument applies for P (k • Q) = k • P (Q).
As a consequence, P is indeed a partial behaviour.

Let P, Q, R be partial terms. The relation

{ ((P ′ | Q ′) | R ′ , (Q ′ | P ′) | R ′) | P ⊑ f P ′ , Q ⊑ f Q ′ , R ⊑ f R ′ }
is obviously a bijection between total refinements of (P | Q) | R and total refinements of (Q | P) | R, and this bijection preserves outcomes because of the equation P | Q ≃ Q | P for total terms. As a consequence we have

(P | Q) | R = (Q | P) | R for all R, which implies P | Q = Q | P .
The same argument applies for all other equations. For scope extrusion and non-interaction, we use the fact that indeterminates have a fixed set of free names. For the equations in which a sub-term is duplicated (distribution of compositions over ⊕), we use the fact that all occurrences of a given indeterminate are replaced by the same term when refining.

If P is a partial term and Q is a refinement of P obtained by injectively renaming the indeterminates of P , then for all total R we clearly have P ⊑ R if and only if Q ⊑ R, so P ≃ Q.

Let P, P ′ , Q be partial terms such that P ≃ P ′ and ind(P) ∩ ind(Q) = ind(P ′) ∩ ind(Q) = ∅. Then the refinements of P | Q are the compositions of a refinement of P and a refinement of Q, chosen independently since ind(P) ∩ ind(Q) = ∅. Let R be an arbitrary total term. If (P | Q) | R is defined and has value k, then for all refinements P ⊑ f P ′′ and

Q ⊑ f Q ′′ we have (P ′′ | Q ′′) | R = k so (P | Q ′′) | R = k, therefore (P ′ | Q ′′) | R is defined and has value k, hence (P ′ | Q) | R = k and P ′ | Q ≃ P | Q. Analogous reasoning yields P ′ Q ≃ P Q.
Preservation of equivalence by other syntactic constructs is immediate. Definition 13. An ideal is a non-empty set A of partial terms that is downwards closed and such that for all P, Q ∈ A there is an R ∈ A such that P ⊑ R and Q ⊑ R. The interpretation of an ideal A is the upper limit of the interpretations of its elements, that is the partial function A such that for all P ,

A (P) = k if Q (P) = k for some Q ∈ A.
The definition of A is valid since interpretation of partial terms is clearly increasing, when ordering partial terms by refinements and partial functions by extension (or graph inclusion). Note that for all total term P , the set { Q | Q ⊑ f P } is an ideal that has the same interpretation as P .

The set of ideals, ordered by inclusion, is not well founded: if (x n) n∈N is an infinite family of names, then each set A n = { X x 1 , . . . , x i | i n } is an ideal and { A n | n ∈ N } is an infinite descending chain. However, if we restrict to a finite number of public names (which does not change expressiveness, since bound names are not restricted), then the set is well-founded, and the smallest ideal is the set Ω of all indeterminates with the set of all free names.

Every syntactic construction for total terms naturally induces a construction for ideals, for instance the parallel composition A | B is the downwards closure is { P | Q | P ∈ A, Q ∈ B } for P and Q chosen with disjoint indeterminates. All these constructions are increasing for inclusion. Moreover, the union of a directed set of ideals is an ideal, so every equation X = A(X) has a solution in ideals (the least fixed point of X → A(X), i.e. the union of the A n (Ω)). Consequently, all processes definable by recursion are interpreted by partial behaviours.

Asynchronous traces

Simple terms remove one source of ambiguity in the meaning of processes: the fact that each action may or may not be activated. By linearity, they also reduce the computation of outcomes to the computation of the number of non-zero outcomes. However, they do not form a basis of observable process behaviours, because they may contain internal transitions, which are not observable and can be a source of non-determinism.

A trace as defined below can be seen as a deterministic simple term, up to observational equivalence. It has visible actions, with a partial order imposed by some internal prefixing structure, and these actions may not interact with each other, only with the environment; it also contains inactions, representing the fact that the choice was made not to do some of the actions. For an action a ∈ |T |, s(a) is the subject of action a, that is the channel on which a happens: if s(a) ∈ N then it is a public channel, otherwise it is the private channel bound by the action s(a). The set N indicates which actions could have been performed (in parallel) after the trace has been consumed.

Traces as basic terms

Definition 15. Let P be a simple term and let ρ be an exhaustive pre-trace of P . The trace induced by ρ is the trace ρ * such that • |ρ * | is the set of visible transition labels in ρ,

• p maps labels to their polarity,

• s maps labels to their subject, either the name for public channels or the action that creates the name for private channels,

• is the causal order (as of definition 6) restricted to visible transition labels,

• N is the set of all (ε, u) such that u ε .0 occurs in active position in P/ρ.

Note that the condition that s(b) = a implies a < b is satisfied by ρ * , because in our language the action prefixes are synchronous: in an action u(x).P , the action u(x) that binds x is automatically a prefix of all actions on x. However, synchrony is not necessary for this property to hold:, the fact that the name is bound is the important point: even if internal transitions can occur on a bound name, visible transition are possible only after the name has been revealed by the action it is bound to.

The definition above identifies the trace that is the observable content of a pre-trace. With some coding, we can prove that any trace can be implemented in the calculus, in the sense that for every trace T there is a term {T } that has a unique exhaustive pre-trace ρ, the content of which is T . The intuition is the following: each action in T is translated by the linear action it describes, which provides the right set of visible actions. Inactions are translated straightforwardly. The ordering is imposed by communication on internal names: for each action a, the translation â ct(a) is prefixed by a blocking input x ba for each action b < a. Activating this action frees the signals x ac for all c > a, which guarantees that the order is respected. We cannot implement this system one set of names x ab , because the actions â ct(a) must be composed without interaction, in order to avoid internal transitions between actions that are supposed to implement visible transitions. We thus split each signal into two names, x ab and y ab , and put in parallel (with interaction) a set of forwarders y ab .x ab that performs the synchronization between signals. If the subject of an action a is the bound name of an action b, then act(a) is put in the continuation of action act(b), which imposes an order between this action; this is compatible with the constraint b < a from the definition of traces. Proposition 7. For all trace T , the term {T } is simple, has a unique exhaustive pre-trace ρ and ρ * = T .

Proof. The fact that {T } is simple is obvious by definition of {T }.

Let us first build an exhaustive pre-trace of {T }. Let (a i) 1 i n be a topological ordering of |T |. We deduce a sequence of terms (P i) 1 i n+1 such that for each i < n there is an interaction from P i to P i+1 made of a transition act(a i) : ι and internal transitions. Let P 1 = {T }. Let i be an integer such that 1 i n, assume P i is a reduct of {T } that contains the â ct(a j) for all j i and in active position all the xaja k such that j < i k and a j < a k . Then the term A T ai occurs in active position in P i and the prefix {x aj ai } aj <ai can be consumed, which puts â ct(a i) in active position. We can then apply a transition act(a i) : ι for some ι followed by an internal transition that consumes the w.1 contained in the linear action (as of definition 8). This puts in active position the ŷai+1aj for all a j > a i , and each of these can interact with the ŷaiaj . xaiaj , which puts in active position the xaiaj . By this interaction we reach a state P i+1 that satisfies the condition we assumed on P i . Applying this method until i = n gives a term P n+1 in which everything except the u ε .0 has been consumed, so this provides a exhaustive pre-trace ρ of {T }. Now, let ρ ′ be another exhaustive pre-trace of {T }. By definition, ρ and ρ ′ trigger the same actions in {T }. From this we can deduce that ρ and ρ ′ contain the same transition labels, indeed the actions â ct(a) are necessarily consumed by visible transitions since they are joined together by a composition without interaction and the only composition with interaction they are involved in is with the names x ab and y ab . On the other hand, all actions on these names are consumed by internal transitions, and for each such name there is exactly one linear input and one linear output so there is only one possible internal transition for each name. As a consequence the sets of actions of ρ and ρ ′ are the same so ρ = ρ ′ .

Let us now prove that ρ * = T . The only thing we have to check is that the causal order of ρ is the order of T . First consider two events a, b ∈ |T | with a < b. The action â ct(b) in {T } is prefixed by xab (and possibly other actions), and xab is prefixed by ŷab , which is itself prefixed by â ct(a), so the transition act(a) is before the transition act(b) in ρ. Then consider two incomparable events a and b. There is a topological ordering of |T | that places a before b and another that places b before a, so by the construction above we can construct an interaction in ρ for each case, which proves that the transitions act(a) and act(b) are incomparable in the causal order of ρ.

This result justifies that {T } is considered as an implementation of T . The proposition below proves that traces are actually the part of interactions that are observable by interaction. Proposition 8. For all simple term P , P ≃ ρ∈Pe(P) {ρ * }.

Proof. Let Q be a simple term. The term P | Q is simple, so the outcome of a run of this term is either 1 or 0. Let ρ be a run with outcome 1. This implies that no inaction of P | Q is triggered in ρ and that each linear action is triggered.

Call ρ 1 the projection of ρ on P . Formally, ρ 1 is obtained from ρ by replacing each transition 1.a with a, removing every transition 2.a and replacing each transition (1.ι, 2.κ) with the α : ι that is the left premise of the derivation of (1.ι, 2.κ). Note that the order on ρ 1 need not be the restriction to ρ 1 of the order on ρ, it is only a subset of this order. Call ρ 2 the analogous projection on Q.

Since the outcome of ρ is 1, the pre-traces ρ 1 and ρ 2 are exhaustive pre-traces of P and Q respectively. Let ρ ′ be the unique exhaustive pre-trace of (ρ 1) * . By construction, there is a bijection between the positions of the visible actions of ρ 1 and those of ρ ′ , which establishes a bijection between runs of P | Q with outcome 1 that project on P as ρ 1 :

ϑ ϑ ∈ R(P | Q), ϑ 1 = ρ 1 , s((P | Q)/ϑ) = 1
and runs of (ρ 1) * | Q with outcome 1:

ϑ ϑ ∈ R((ρ 1) * | Q), s(((ρ 1) * | Q)/ϑ) = 1 .
This bijection preserves outcomes, so we have

σ∈Re(P |Q) σ 1 =ρ 1 s((P | Q)/σ) = (ρ 1) * | Q
Summing for all potential values of ρ 1 , i.e. all exhaustive pre-traces of P , yields

P | Q = ρ 1 ∈Pe(P) σ∈Re(P |Q) σ 1 =ρ 1 s((P | Q)/σ) = ρ 1 ∈Pe(P) (ρ 1) * | Q from which we can conclude.
We can thus consider traces as terms of the language. Indeed, given a trace T , all simple terms that have a unique exhaustive pre-trace ρ with ρ * = T are equivalent to {T }. When precise syntactic information is needed, T used as a term is a short-hand for {T }.

Theorem 2. Every term is equivalent to a linear combination of traces.

Proof. By the decomposition of affine actions from proposition 5 we get that every term is equivalent to a linear combination of simple terms. By proposition 8, each simple term is in turn equivalent to a sum of trace implementations. The composition of these equivalences, with the module structure of Π K , yields a decomposition of every term as a linear combination of trace implementations.

Pure trace semantics

We can thus define a semantics of processes based on traces, as of definition 14, by reformulating the various constructions for combinations of traces. As an example we give a reformulation of testing for traces. In the definition below, for two traces T and U , if f is a function from then the action at ι a must occur before the action at ι b , so (ι a , κ a) (ι b , κ b); the same argument applies if σ(a) U σ(b), so the order ρ contains the orders T and U , which proves that the union of these orders is acyclic. Finally, if there were ε ∈ P and x ∈ N ⊎ |T | such that (ε, x) ∈ N T and (¬ε, σ(x)) ∈ N U , then the run ρ could be extended with an interaction between the inactions associated with them, and the outcome would be 0. Therefore σ ∈ S(T, U).

Reciprocally, let σ be a synchronization of T and U . The relation { (a, b) | a T b or σ(a) U σ(b) } is acyclic, so there is a non-decreasing enumeration |T | = {a 1 , . . . , a n } such that σ(a 1), . . . , σ(a n) is also non-decreasing. Then there is a path p ∈ {T } that reaches a 1 , . . . , a n in this order and a run q ∈ {U } that reaches σ(a 1), . . . , σ(a n) in this order. By combining p and q we get a path r ∈ P . Indeed, for each i we have p(σ(a i)) = ¬p(a i) and s(σ(a i)) = σ(s(a i)) so either a i and σ(a i) have the same public name as subject, or their subjects are two bound names z s(ai) and z s(σ(ai)) . Since s(a i) < a i by definition, there is j < i such that s(a i) = a j and then s(σ(a i)) = σ(a j), so the subjects of a i and σ(a i) are unified by the interaction between a j and σ(a j). In any case, the actions a i and σ(a i) can interact. The term P/r is the composition with interaction of {T } /p and {U } /q, and these terms are compositions without interaction of the inactions that correspond to N T and N U respectively. The condition that (¬ε, σ(x)) / ∈ N U for all (ε, x) ∈ N T guarantees that no further interaction can occur, therefore r is a maximal path of P and s(P/r) = 1.

These construction establish a bijection between S(T, U) and the runs of {T } and {U } with outcome 1, which proves the expected result.

We will not develop the trace semantics further here for lack of space, but the abstract reformulation of outcomes above gives an idea of the construction: a finite process is interpreted as a linear combination of traces and all basic operations are defined independently of the semiring K. The linear action prefix maps traces to traces, inactions are basic traces, composition without interaction is a disjoint union of traces, composition with interaction maps a pair of traces to a combination of traces with integer coefficients, hiding (νu) maps traces that contain an action on u to 0, and remove inactions on u from other traces.

Classic forms of test

By choosing appropriate structures for K, we can recover the standard may and must testing. In both cases we have K = {0, 1, ω}, where ω represents success. Table 5 show the rules for addition and multiplication for may and must. Using this definition it is clear that P and Q are equivalent for may or must testing if and only if, for all R, P | R = ω if and only if Q | R = ω.

 in order to get P | R ≃ Q | R. Let ϕ be the function over positions such that for all ι, ϕ(1.1.ι) = 1.ι, ϕ(1.2.ι) = 2.1.ι and ϕ(2.ι) = 2.ι, and for all path p, let ϕ(p) be the path obtained by applying ϕ on all positions in p. Then ϕ is a bijection between the paths of (P | R) | S and those of P | (R | S), and it preserves homotopy so it actually provides a bijection between R((P | R) | S) and R(P | (R | S)). Moreover, for all ρ ∈ R((P | R) | S), we have s(((P

Table 4 :

 4 P ⊕ Q) ≃ α.P ⊕ α.Q α.(k • P) ≃ k • α.P (νu)û ε (x).P ≃ 0Composition of inactions (the subject of β is not bound by α): α.(β.0 | P) ≃ β.0 | α.P α.0 | α.0 ≃ α.0 α.0 | ᾱ.0 ≃ 0 α.(β.0 P) ≃ β.0 α.P α.0 α.0 ≃ α.0 Laws of linear actions and inactions.

Definition 8 .

 8 For all action α and term P , the linear action of α on P isα.P := (νw)(α.(P | w.1) | (w.0 | w.1))where w is a fresh name.An interaction is said to trigger the linear action if it triggers the action w.1. Terms of the form α.0 are called an inactions.

 2)}. This literally means that ρ ′ is ρ where all positions in P are shifted to reflect their positions in(νw)(α.(P | w.1) | (w.0 | w.0)) | Q, (1, κ) is shifted to reflect the new position of α, and the interaction between w.1 and w.1 is added (which is valid since it is freed when α is triggered). Clearly ρ ′ is a run of α.P | Q and s((α.P | Q)/ρ ′) = s((α.P | Q)/ρ). The mapping ρ → ρ ′ is objective,and its image is the set of runs of α.P | Q that trigger w.1. By maximality, any other run of α.P | Q must trigger w.0, hence the outcome of all other runs is 0, which implies α.P | Q = ρ∈R1 s((α.P | Q)/ρ). We can finally deduce α.P | Q = α.0 | Q + α.P | Q and conclude. For linearity, we use the fact that α.P | Q is the sum of the s((α.P | Q)/ρ) for the runs ρ that actually trigger α (and the witness action w.1). If P = k | P ′ , these runs are the same in α.(k | P ′) | Q and α.(1 | P ′) | Q, but the outcomes are multiplied by k in the first case, so α.(k

(

 νu)u ε (x).P = (νuw)(u ε (x).(P | w.1) | (w.0 | w.1)) ≃ (νw)((νu)u ε (x).(P | w.1) | (w.0 | w.1)) ≃ (νw)(1 | (w.0 | w.1)) ≃ (νw)(w.0 | w.1) ≃ (νw)(0 | 1) ≃ 0 For the equivalence α.(β.0 | P) ≃ β.0 | α.P , assuming the subject of β is not the bound name of action α, let Q be an arbitrary term and consider R(α.(β.0 | P) | Q).

Definition 14 .

 14 A trace T is a tuple (|T | , p, s, , N) where • |T | is a finite set (the events, or action occurrences), • p is a function from |T | to P (the polarity), • s is a function from |T | to N ⊎ |T | (the subject), • is a partial order over |T | such that ∀a, b ∈ |T |, if s(b) = a then a < b, • N is a finite subset of P × (N ⊎ |T |) (the inactions).

Definition 16 .

 16 Let T be a trace. For all a and b in |T |, let x ab , y ab , z a be fresh names. For all a ∈ |T |, let act(a) = s(a) p(a) (z a) if s(a) ∈ N and act(a) = z p(a) s(a) (z a) if s(a) ∈ |T | and define A T a := {x ba } b<a . â ct(a). a<c ŷac s(c)=a A T c (ε,a)∈N z ε a .0 where {x ba } b<a represents a sequence of prefixes that contains all actions xba for all b < a, in any order. The implementation of T is the process {T } := (νx ab y ab) a,b∈|T | s(a)∈N A T a a<b ŷab . xab (ε,u)∈N, u∈N u ε .0

Proposition 9 .

 9 |T | to |U |, then f is implicitly extended to a function from |T | ⊎ N to |U | ⊎ N as the identity over names. Let T and U be two traces, T | U is the number of synchronizations of T and U , that is bijections σ from |T | to |U | such that • for all a ∈ |T |, p U (σ(a)) = ¬p T (a) and s U (σ(a)) = σ(s T (a)),• the relation { (a, b) | a T b or σ(a) U σ(b) } is acyclic, • for all (ε, x) ∈ N T , (¬ε, σ(x)) / ∈ N U .Proof. Let P = {T } | {U }. By proposition 8 we have P ≃ ρ∈Pe(P) {ρ * } hence P = ρ∈Pe(P) {ρ * } . Clearly, for all trace V , V is 1 if |V | = ∅ and 0 otherwise, so P is the number pre-traces ρ ∈ P e (P) such that |ρ * | is empty.Consider such a pre-trace ρ, by definition ρ triggers all linear actions in {T } and {U }, so ρ 1 and ρ 2 are the unique exhaustive pre-traces of {T } and {U } respectively. The relation { (ι, κ) | (1.ι, 2.κ) ∈ ρ } establishes a bijection between positions of actions in {T } and {U }, which implies a bijection σ : |T | → |U |. Clearly, for all a ∈ |T |, we have p U (σ(a)) = ¬p T (a) since an action can only interact with an action of the opposite polarity. It is also easy to prove that s U (σ(a)) = σ(s T (a)), since two actions that interact are either on the same public name or on private names that are unified by the interaction of previous actions. Consider two transitions (ι a , κ a) and (ι b , κ b) in ρ, that correspond to the pairs of actions (a, σ(a)) and (b, σ(b)): if a T b

Table 1 :

 1 Transition rules

	Terms are generated by the following grammar:
	actions	α := u ε (x) with u, x ∈ N and ε ∈ P
	processes P, Q := k	outcome, with k ∈ K
		α.P	action
		P	performed action
		P | Q parallel composition with interaction
		P Q parallel composition without interaction
		(νx)P hiding
	Terms are considered up to injective renaming of bound names and commutation of restrictions,
	i.e. (νx)(νy)P = (νy)(νx)P , with the standard convention that all bound names are distinct
	from all other names.	

 parallel compositions are bilinear operators and hiding is linear, i.e. the equivalences of table 3 hold.

Table 3 :

 3 K-module laws over processes.

may and must may testing must testing • 0 1 ω 0 0 0 0 1 0 1 ω ω 0 ω ω + 0 1 ω 0 0 1 ω 1 1 1 ω ω ω ω ω + 0 1 ω 0 0 1 ω 1 1 1 1 ω ω 1 ω Table 5: Observation semirings for may and must testing.

Taking for K the minimal semiring {0, 1} with 1 + 1 = 1 gives the framework studied by the author in a previous work [START_REF] Beffara | An algebraic process calculus[END_REF], which also leads to must testing semantics.

These semirings share an important property, namely that all elements are idempotent for addition. This is an important restriction, in particular it implies that summing outcomes cannot count the number of successes or failures. In other words, the "quantitative" part of our testing semantics disappears. We can remark that this constraint imposes to forget non-interleaving, since it allows us to decompose everything as totally ordered traces. Theorem 3. If ∀x, x + x = x, then Π K is generated by totally ordered traces.

Proof. We prove the equivalent fact that each trace is equivalent to the sum of all its total orderings. Let T and U be two traces. Call O the set of total orders over |T | that contain T and for each R ∈ O, call T R the trace obtained from T by replacing the order with R. Let T ′ = R∈O T R .

By proposition 9, T | U is the number of matchings between T and U . This means that if there are n matchings, then

there is at least one matching and 0 otherwise. By the same argument, for all R ∈ O we have Reciprocally, assume that T ′ | U = 1, then there is an R ∈ O such that T R | U = 1, then there is a matching σ between T R and U . Since the only difference between T R and T is the order and T is included in R, σ is also a matching between T and U , hence T | U = 1.