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SUMMARY

We propose a result of local existence and uniqueness of a mild solution to the one-dimensional
Vlasov–Poisson system. We establish the result for an initial condition lying in the space
W

1,1(R2), then we extend it to initial conditions lying in the spaceBV (R2), without any
assumption of continuity, boundedness or compact support.Copyright c© 2009 John Wiley
& Sons, Ltd.
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1. Introduction

1.1. Position of the problem

In this paper we study the one-dimensional Vlasov–Poisson system:

∀(t, x, v) ∈ [0, T ]× R
2,

∂f

∂t
(t, x, v) + v

∂f

∂x
(t, x, v) + E(t, x)

∂f

∂v
(t, x, v) = 0, (1)

∀(t, x) ∈ [0, T ]× R,
∂E

∂x
(t, x) =

∫

R

f(t, x, v) dv, (2)

∀(x, v) ∈ R
2, f(0, x, v) = f0(x, v). (3)

This system models the behaviour of a gas of protons in its self-consistent electrostatic
field when the collisions between particles are neglected. In [6], Cooper and Klimas
show the existence and uniqueness of a global mild solution to this system, i.e. a solution
defined by characteristics, for a continuous and bounded initial condition which has its
first two moments inv uniformly bounded inx. This was extended by Bostan [4] to the
initial-boundary value problem, with slightly more general hypotheses on the initial and
boundary conditions, namely, that they are bounded but not necessarily continuous, and
have one moment inv uniformly bounded inx. In [10], Guo showed that there exists
a unique local weak solution to (1–3) in the spaceL∞([0, T ], BV (R2)) for initial and
boundary conditions with compact support and in the spaceL∞(R2) ∩BV (R2).
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2 S. LABRUNIE, S. MARCHAL, J.R. ROCHE

In this article we extend the results of Guo to the initial value problem with intial data
in the spaceBV (R2), thus not necessarily compactly supported, bounded, or continuous.
Our proof is based on the contraction mapping principle of Banach, and consists of two
steps: first we establish the local existence and uniquenessof a mild solution for an initial
dataf0 in W 1,1(R2), then we extend the result tof0 ∈ BV (R2).

1.2. Notations and main results

We introduce the following notations (see [10]). GivenT > 0, we denote

UT = (0, T ) × R and VT = (0, T ) × R
2.

For s ∈ [0, T ], we denoteΠs = {s} × R
2 the slicet = s of VT . Then we introduce the

following functional spaces:

L(T ) = L∞(0, T ;W 1,1(R2)), X(T ) = L∞(0, T ;W 1,∞(R)).

The spaceL(T ) will be that of the solutionsf to the Vlasov equation with initial
dataf0 ∈ W 1,1(R2); we equip it with its natural norm. As forX(T ), it is a space
of electrostatic fieldsE for which the characteristic curves are globally well defined
and Lipschitz-continuous in all their variables [4]. This can be shown by adapting
the proof of the Cauchy–Lipschitz theorem: the only difference is that we integrate
L∞ functions instead ofC0 functions and so we get continuous solutions differentiable
almost everywhere in the time variable and with bounded derivative. We equip it with
the following norm:

∀E ∈ X(T ), ‖E‖X(T ) = max(‖E‖L∞(UT ), ‖∂xE‖L∞(UT )).

Morover, for anyE ∈ X(T ), we set

C(E) = max(‖∂xE‖L∞(UT ), 1), (4)

and we denote byYE the Vlasov differential operator:

YE =
∂

∂t
+ v

∂

∂t
+ E(t, x)

∂

∂v
. (5)

We recall the definition of the total variation of a functionf ∈ L1(R2) (see for
example [7, p. 39]):

∀f ∈ L1(R2), TV [f ] = TVx[f ] + TVv[f ], (6)

where:

TVx[f ] = lim sup
ǫ−→0

∫ +∞

−∞

∫ +∞

−∞

∣

∣

∣

∣

f(x+ ǫ, v) − f(x, v)

ǫ

∣

∣

∣

∣

dxdv (7)

TVv[f ] = lim sup
ǫ−→0

∫ +∞

−∞

∫ +∞

−∞

∣

∣

∣

∣

f(x, v + ǫ) − f(x, v)

ǫ

∣

∣

∣

∣

dxdv (8)

The space of functions of bounded variation is defined as:

BV (R2) = {f ∈ L1(R2) : TV [f ] < +∞}, (9)

and equipped with the norm‖f‖BV (R2) = ‖f‖L1(R2) + TV [f ].

Finally, we denote byLbv(T ) the spaceL∞(0, T ;BV (R2)) equipped with its natural
norm. We shall establish the following two theorems:

Theorem 1 (Local existence and uniqueness inW 1,1)
Let f0 ∈W 1,1(R2), and let

R ≥ max(‖f0‖1, |f0|W 1,1(R2), 1) and T ∈

[

0,
1

R
ln

(

R

|f0|W 1,1(R2)

)]

.

Then there exists a unique mild solution(f,E) ∈ L(T ) ×X(T ) to (1–3).

Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci.2009;00:1–6



BV SOLUTIONS FOR VLASOV–POISSON 3

Moreover, we have a lower bound on the existence timeTex of the maximal solution
to (1–3) with initial conditionf0. SettingR0 := max(1, ‖f0‖1), there holds:

Tex ≥
1

(e − 1) |f0|W 1,1

if |f0|W 1,1 ≥
R0

e
,

Tex ≥
1

R0

[

ln
R0

|f0|W 1,1

+
1

(e − 1)

]

if |f0|W 1,1 ≤
R0

e
.

Theorem 2 (Local existence and uniqueness inBV )
Let f0 ∈ BV (R2), and let

R ≥ max(‖f0‖1, TV [f0], 1) and T ∈

[

0,
1

R
ln

(

R

TV [f0]

)]

.

Then there exists a unique mild solution(f,E) ∈ Lbv(T )×X(T ) to (1–3). The existence
time of the maximal solution is bounded as in theW 1,1 case, with|f0|W 1,1 replaced
with TV [f0].

The proof is organised as follows. In§2, we recall the definitions of weak and mild
solutions to the linear Vlasov equation (i.e. (1) and (3) withE a known function of(t, x))
and to the Vlasov–Poisson system (1–3). Then, in§3, we estimate the mild solutions
to the linear Vlasov equation with initial data inW 1,1(R2), and use these results to
construct a contraction mapping on a suitable set, whose fixed point gives a mild solution
to the Vlasov–Poisson system. Finally, we extend these results to initial conditions lying
in BV (R2) in §4.

2. Weak and mild solutions

2.1. Definition of a weak solution

We recall the definition of a weak solution to (1–3) by using the spaces of test functions
and the functionals introduced by Guo in [9]. We define two spaces of test functions, one
for the Vlasov equation and the other for the Poisson equation:

V = C∞
c ([0, T ) × R

2), M = C∞
c ([0, T )× R).

We define for(E, f, f0) ∈ L∞
loc(UT ) × L1

loc(VT ) × L1
loc(R

2) andα ∈ V (still like in [9])
the following functional:

A(f,E, f0, α) =

∫

R2

f0(x, v)α(0, x, v) dxdv +

∫ T

0

∫

R2

[(YEα) f ](t, x, v) dxdv dt.

We define for(E, f) ∈ L∞
loc(UT )×L1

loc((0, T )×Rx;L1(Rv)) andψ ∈ M the following
functional:

C(f,E, ψ) =

∫ T

0

∫

R

E(t, x) ∂xψ(t, x)dx dt +

∫ T

0

∫

R

ψ(t, x)

∫

R

f(t, x, v) dv dx dt.

These functionals are well-defined.

A weak solution to the linear Vlasov equation associated toE ∈ L∞
loc(UT ) with initial

conditionf0 ∈ L1
loc(R

2) is a functionf ∈ L1
loc(VT ) which satisfies:

∀α ∈ V , A(f,E, f0, α) = 0.

A weak solution to the one-dimensional Vlasov–Poisson system with intial condition
f0 ∈ L1

loc(R
2) is a pair(E, f) ∈ L∞

loc(UT ) × L1
loc((0, T ) × Rx;L1(Rv)) which verifies:

∀(α, ψ) ∈ V ×M, A(f,E, f0, α) = 0 and C(f,E, ψ) = 0.

Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci.2009;00:1–6



4 S. LABRUNIE, S. MARCHAL, J.R. ROCHE

2.2. Characteristic curves associated toE ∈ X(T )

We recall the following results on the characteristic curves of a transport equation, see
for example [6] or [11]. GivenE ∈ X(T ) and(t, x, v) ∈ VT , we consider the differential
system :

dX

ds
(s) = V (s),

dV

ds
(s) = E(s,X(s)),

(X(t), V (t)) = (x, v). (10)

As remarked above, this system admits a unique solution for all (t, x, v) ∈ VT , which we
denoteΓ(s; t, x, v) = (X(s; t, x, v), V (s; t, x, v)) and is called thecharacteristic curve
passing by(t, x, v).

As E is bounded on[0, T ] × R, every characteristic curve is defined froms =
0 to s = T ; moreover, the characteristic curves form a partition ofVT . Thus
for every characteristicΓ(s; t, x, v), we can define an origin onΠ0: Γ(0; t, x, v) =
(X(0; t, x, v), V (0; t, x, v)).

Let (t, s) ∈ [0, T ]. We denote byφt,s thecharacteristic flowofE, namely the function:

φt,s : R
2 −→ R

2

(x, v) 7−→ Γ(s; t, x, v). (11)

φt,s transports a point(t, x, v) of the sliceΠt to a point(s, x′, v′) of the sliceΠs by
following the characteristic curve passing by(t, x, v). It is well-known thatφt,s is a
bijection (one-to-one and onto mapping) ofR

2, which admits bounded partial derivatives
and whose Jacobian is identically equal to1.

2.3. Definition of a mild solution

LetE ∈ X(T ) and(X,V ) be the associated characteristic curves. A mild solution tothe
linear Vlasov equation associated toE with initial conditionf0 ∈ L1

loc(R
2) is a function

f ∈ L1
loc(VT ) which satisfies:

f(t, x, v) = f0(X(0; t, x, v), V (0; t, x, v)) for a.e.(t, x, v) ∈ VT .

We recall the following result (see for example [2]):

Proposition 3
Let E ∈ X(T ) andf0 ∈ L1(R2). Thenf ∈ L1(VT ) is a weak solution to the linear
Vlasov equation associated toE with initial condition f0 if and only if it is a mild
solution.

This can be shown by using the characteristic change of variables: (t, x, v) 7→
(t, x0, v0) = (t, φt,0(x, v)), as e.g. in Guo [10]. We deduce the existence and uniqueness
of a solutionf ∈ L1(VT ) to the linear Vlasov equation associated to a fieldE ∈ X(T ):

Corollary 4
Let E ∈ X(T ) and f0 ∈ L1(R2). The linear Vlasov equation associated toE with
initial condition f0 admits a unique weak solution inL1(VT ) defined as:∀(t, x, v) ∈
VT , f(t, x, v) = f0(X(0; t, x, v), V (0; t, x, v)).

Finally, a mild solution to the Vlasov–Poisson system with intial conditionf0 ∈
L1(R2) is defined as a weak solution(E, f), which belongs toX(T ) × L1(VT ), and
such thatf coincides a.e. with the mild solution to the linear Vlasov equation associated
toE with initial conditionf0.

Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci.2009;00:1–6
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3. Proof of Theorem1

3.1. A priori estimates

The proof of Theorem1 relies on the following two theorems whose version for a half
space is given by Guo in [10].

Theorem 5
Let E ∈ X(T ) andp ∈ [1,+∞). We suppose thatu ∈ Lp(VT ) andYEu ∈ Lp(VT ).
Then:

1. There existsu0 ∈ L1
loc(Π0) ≃ L1

loc(R
2), called the trace ofu on Π0, such that

∀α ∈ C∞
c ([0, T [×R

2),
∫

VT

(YEuα+ u YEα)(t, x, v) dxdv dt = −

∫

R2

u0(x, v)α(0, x, v) dxdv.

2. If u0 ∈ Lp(R2), then∀s ∈ [0, T ], u(s) ∈ Lp(R2) and
∫

R2

|u(s)|p dxdv =

∫

R2

|u0|
p dxdv + p

∫ s

0

∫

R2

(sgnu |u|p−1 YEu)(τ) dxdv dτ.

Theorem 6
Let E ∈ X(T ), andφt,s be its characteristic flow. We suppose thatu ∈ L1(VT ) and
YEu ∈ L1(VT ). Letu0 be the trace ofu onΠ0 defined in Theorem5. If K is a measurable
set ofR2 with non-vanishing Lebesgue measure, then:

∫

φ0,s(K)

|u(s)| dxdv =

∫

K

|u0| dxdv +

∫ s

0

∫

φ0,τ (K)

(sgnu YEu)(τ) dxdv dτ.

The proofs rely on the characteristic change of variables and are entirely similar to those
of [10].

With these results, we can prove the fundamental estimate onthe solutions to the linear
Vlasov equation. We introduce the semi-norm| · |W 1,1 defined by

∀f ∈W 1,1(R2), |f |W 1,1 = ‖∂xf‖1 + ‖∂vf‖1.

Theorem 7
LetE ∈ X(T ) andf0 ∈ W 1,1(R2). Let f be the unique mild solution inL1(VT ) of the
linear Vlasov equation associated toE with initial conditionf0. Then∀s ∈ [0, T ], f(s) ∈
W 1,1(R2) and

‖f(s)‖L1(R2) = ‖f0‖L1(R2) ; (12)

|f(s)|W 1,1(R2) ≤ |f0|W 1,1(R2) exp(C(E)s). (13)

Thus, integrating from0 to T :
∫ T

0

|f(τ)|W 1,1(R2) dτ ≤ |f0|W 1,1(R2)
exp(C(E)T ) − 1

C(E)
. (14)

Proof
Equation (12) is an immediate consequence of point 2 of Theorem5 (with p = 1),
or of Theorem6 (with K = R

2), given thatYEf = 0.

We now establish the estimate (13) on derivatives. The set of the indefinitely
differentiable functions with compact support onR

2 is dense inW 1,1(Π0) [1, p. 54].
Thus there exists a sequence(fn

0 )n of elements ofC∞
c (R2), such that‖fn

0 −
f0‖W 1,1(R2) −→ 0 whenn −→ +∞.

Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci.2009;00:1–6
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Similarly, we regulariseE ∈ L∞(0, T ; ,W 1,∞(R)) in the following way. We define
for all t ∈ [0, T ],En(t, .) = E(t, .)∗ρn, where(ρn) ∈ C∞

c (Rx) is a mollifying sequence.
The sequence(En)n satisfies:En ∈ L∞(0, T ;W 1,∞ ∩ C1(Rx)); ‖En‖L∞(UT ) ≤
‖E‖L∞(UT ), ‖∂xEn‖L∞(UT ) ≤ ‖∂xE‖L∞(UT ), and ‖E − En‖L∞(UT ) −→ 0 when
n −→ +∞. We denote by(Xn, V n) and φn

t,s the characteristic curves and flow
associated toEn.

Let fn be the solution to the linear problem associated toEn with initial conditionfn
0 ;

we recall that this solution is given for a.e.(t, x, v) ∈ VT by fn(t, x, v) =
fn
0 (Xn(0; t, x, v), V n(0; t, x, v)). As fn

0 is compactly supported, so isfn, asSuppfn

is contained in the image of the compact[0, T ] × Suppfn
0 by the continuous

mapping(s, x0, v0) 7→ (s,X(s; 0, x0, v0), V (s; 0, x0, v0)). Moreover, the characteristics
associated toEn are Lipschitz-continuous in all their variables(s, t, x, v), therefore
fn ∈ W 1,∞(VT ).

All together, we have∂xfn and∂vfn ∈ L∞
c (VT ), thus∂xfn and∂vfn lie in L1(VT ).

MoreoverYEn
∂xfn = −∂xEn ∂vfn in D′(VT ), thusYEn

∂xfn lie in L1(VT ). By an
integration by parts, it can be shown that the trace of∂xfn on Π0 is ∂xf

n
0 . If K is a

measurable subset ofR
2 of non-vanishing Lebesgue measure, we get by Theorem6:

∫

φn
0,s(K)

|∂xfn(s)| =

∫

K

|∂xf
n
0 | −

∫ s

0

∫

φn
0,τ (K)

(sgn(∂xfn) ∂xEn ∂vfn)(τ) dτ ;

for the sake of brevity we have omitted the kinetic integration elementdxdv. Thus:
∫

φn
0,s

(K)

|∂xfn(s)| ≤

∫

K

|∂xf
n
0 | + ‖∂xEn‖L∞([0,s]×R)

∫ s

0

∫

φn
0,τ

(K)

|∂vfn(τ)| dτ,

∫

φn
0,s(K)

|∂xfn(s)| ≤

∫

K

|∂xf
n
0 | + ‖∂xE‖L∞(UT )

∫ s

0

∫

φn
0,τ (K)

|∂vfn(τ)| dτ. (15)

In the same way, we have∂vfn ∈ L1(VT ) andYE∂vfn = −∂xfn ∈ D′(VT ), thusYE∂vfn

lie in L1(VT ); and one shows that the trace of∂vfn onΠ0 is ∂vf
n
0 . Reasoning as above,

we obtain:
∫

φn
0,s(K)

|∂vfn(s)| ≤

∫

K

|∂vf
n
0 | +

∫ s

0

∫

φn
0,τ (K)

|∂xfn(τ)| dτ. (16)

We add (15) and (16):
∫

φn
0,s(K)

{|∂xfn(s)| + |∂vfn(s)|} ≤

∫

K

{|∂vf
n
0 | + |∂xf

n
0 |}

+ max(‖∂xE‖L∞(UT ), 1)

∫ s

0

∫

φn
0,τ

(K)

{|∂xfn(τ)| + |∂vfn(τ)|} dτ.

Then we utilize the Grönwall lemma, and we get:
∫

φn
0,s(K)

{|∂xfn(s)| + |∂vfn(s)|} ≤ exp(C(E)s)

∫

K

{|∂vf
n
0 | + |∂xf

n
0 |} (17)

Therefore:
∫ T

0

∫

φn
0,s

(K)

|∇fn(s)| ds ≤
exp(C(E)T ) − 1

C(E)

∫

K

|∇fn
0 |. (18)

Now we utilize the Dunford–Pettis weak compactness criterion inL1, that can be found
for example in [5, p. 76] or [3, p. 167]:

Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci.2009;00:1–6
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Theorem 8 (Dunford–Pettis)
Let (fn)n be a bounded sequence ofL1(Ω). The sequence is weakly compact if and only
if {fn}n∈N is equiintegrable, that is to say:

∀ǫ > 0, ∃Kǫ compact⊂ Ω s.t. sup
n

∫

Ω\Kǫ

|fn| dΩ < ǫ, and:

∀ǫ > 0, ∃η > 0, ∀A ⊂ Ω measurable,meas(A) < η =⇒ sup
n

∫

A

|fn| dΩ < ǫ.

Let ǫ > 0. The sequences(∂xf
n
0 )n and(∂vf

n
0 )n converge inL1(R2), thus are weakly

compact inL1(R2). By the Dunford–Pettis criterion, these sequences are equiintegrable.
Thus, there exists a compactK0

ǫ of R
2, andη > 0 such that:

sup
n

∫

R2\K0
ǫ

{|∂xf
n
0 | + |∂vf

n
0 |} < e−C(E)T ǫ, and:

∀A ⊂ R
2 measurable,meas(A) < η =⇒ sup

n

∫

A

{|∂xf
n
0 | + |∂vf

n
0 |} < e−C(E)T ǫ.

Let A be a subset ofR2 such thatmeas(A) ≤ η. We have for alln ∈ N,
meas(φn

s,0(A)) = meas(A) ≤ η, and we can apply the inequality (17) to get

sup
n

∫

A

|∇fn(s)| ≤ ǫ (19)

Thus we see that the sequences(∂xfn(s))n and(∂vfn(s))n verify the second part of the
Dunford–Pettis criterion. For the first part of this criterion, we construct a compactKǫ

such that all theφn
0,s(K

0
ǫ ) ⊂ Kǫ. Let (XL(τ ; 0, x0, v0), VL(τ ; 0, x0, v0)) andφL

t,s be the
characteristic curves and flow associated to free transportation (E = 0). Of course, we
have :VL(t; 0, x0, v0) = v0 andXL(t; 0, x0, v0) = x0 + v0 t. We denoteLǫ = φL

0,s(K
0
ǫ );

this set is a compact as the continuous image of a compact. Then, using the estimate on
the divergence of characteristics from [6, Lemma 1] or [4, Lemma 4.8], we obtain:

∀t ∈ [0, T ], |V n(t; 0, x0, v0) − VL(t; 0, x0, v0)| ≤ t ‖En‖L∞(Ut) ; (20)

|Xn(t; 0, x0, v0) −XL(t; 0, x0, v0)| ≤ t2 ‖En‖L∞(Ut). (21)

Thus we can take forKǫ the compact:

Kǫ = {(x, v) ∈ R
2 : ∃(x1, v1) ∈ Lǫ, |x− x1| ≤ T ‖E‖L∞(UT )

and|v − v1| ≤ T 2 ‖E‖L∞(UT )}.

We have:∀n ∈ N, φn
0,s(K

0
ǫ ) ⊂ Kǫ. Thus,

sup
n∈N

∫

R2\Kǫ

|∇fn(s)| ≤ sup
n∈N

∫

R2\φn
0,s(K0

ǫ )

|∇fn(s)| (22)

≤ sup
n

∫

R2\K0
ǫ

{|∂xf
n
0 | + |∂vf

n
0 |} eC(E)T ≤ ǫ. (23)

Therefore,(∂xfn(s))n and (∂vfn(s))n verify the Dunford-Pettis criterion and thus
converge weakly (after extracting a subsequence) inL1(R2) toward some functionsg
andh of L1(R2).

On the other hand, we haveYE(fn−f) = (E−En) ∂vfn, thusfn−f andYE(fn−f)
are inL1(VT ). Applying point 2 of Theorem5 and then the bound (18), we find:
∫

R2

|f(s) − fn(s)| ≤

∫

R2

|f0 − fn
0 | +

∫ s

0

∫

R2

|E(τ) − En(τ)| |∂vfn(τ)| dτ

≤

∫

R2

|f0 − fn
0 | + ‖E − En‖L∞(UT )

exp(C(E)T ) − 1

C(E)

∫

R2

|∇fn
0 |.

Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci.2009;00:1–6
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Thus,fn(s) converges towardf(s) in L1(R2). As a consequence,∂xfn(s) and∂vfn(s)
converge toward∂xf(s) and∂vf(s) in D′(R2); thereforeg = ∂xf(s) andh = ∂vf(s),
i.e. ∂xf(s) and∂vf(s) lie in L1(R2). In other words,f(s) appears as the weak limit in
W 1,1(R2) of the sequence(fn(s))n. By passing to the limit in (17), we get:

∫

R2

|∇f(s)| ≤ lim inf
n→+∞

∫

R2

|∇fn(s)| ≤ exp(C(E)s) ‖∇f0‖L1(R2),

which is (13), and yields (14) by integrating from0 to T . 2

3.2. Construction of a contraction mapping

We now study the non-linear Vlasov–Poisson problem. We choosef0 ∈ W 1,1(R2), and
we construct a contraction mapping from a closed subset of a Banach space to itself. To
this end, we define the following mappings:

• φ1 : X(T ) → L∞(0, T ;L1(R2)) mapsE ∈ X(T ) to the unique mild solutionf to
the linear Vlasov equation associated toE and with initial conditionf0;

• φ2 : L∞(0, T ;L1(R2)) → L∞(UT ) mapsf ∈ L∞(0, T ;L1(R2)) to the unique
solutionE to the Poisson equation (2) satisfying∀t ∈ [0, T ], lim

x−→−∞
E(t, x) = 0,

namely:

E(t, x) =

∫ x

−∞

∫ +∞

−∞

f(t, y, v) dv dy.

We have in particular∀(t, x) ∈ [0, T ]× R, E(t, x) ≥ 0.

The following lemma will be crucial in our proof.

Lemma 9
For R ≥ 0, let B′

R be the closed ball of center0 and radiusR of the Banach space
(X(T ), ‖ · ‖X(T )). Then,B′

R is a closed subset of the Banach space(L∞(UT ), ‖ · ‖∞),
hence it is complete for this norm.

Proof
Let (En)n be a sequence of elements ofB′

R which converges inL∞(UT ) toward
E ∈ L∞(UT ). Of course, there holds:‖E‖∞ ≤ R.

Then,(∂xEn)n is a sequence of elements of the closed ball of center0 and radiusR
of L∞(UT ). Thus, by the Banach–Alaoglu theorem,(∂xEn)n converges for the weak-∗
topology (after extracting a subsequence) ofL∞(UT ) toward someg ∈ L∞(UT ) with
‖g‖∞ ≤ R. In particular,(∂xEn)n converges tog in D′(UT ); but as(En)n converges to
E ∈ D′(UT ), (∂xEn)n converges to∂xE in D′(UT ). Thus∂xE = g, i.e.‖∂xE‖∞ ≤ R.
This provesE ∈ B′

R. 2

3.2.1. Stability and Lipschitz continuity ofφ2 ◦ φ1 Let E ∈ X(T ). Theorem7 gives
f = φ1(E) ∈ L(T ); moreover we have:

‖φ1(E)‖L(T ) ≤ ‖f0‖1 + |f0|W 1,1(R2) exp(C(E)T ).

Let f ∈ L(T ). By the definition ofφ2, we have:∂xφ2(f)(t, x) =
∫ +∞

−∞
f(t, x, v) dv.

But, asf(t) ∈ W 1,1(R2) for a.e.t ∈ [0, T ], we deduce by Fubini’s theorem that, for
a.e.(t, v) ∈ [0, T ] × R, the mappingx 7→ f(t, x, v) is in W 1,1(R), hence it satisfies
limx−→−∞ f(t, x, v) = 0. We have thus:

∂xφ2(f)(t, x) =

∫ +∞

−∞

f(t, x, v) dv =

∫ +∞

−∞

∫ x

−∞

∂xf(t, y, v) dy dv ;

|∂xφ2(f)(t, x)| ≤

∫ +∞

−∞

∫ x

−∞

|∂xf(t, y, v)| dy dv ≤ ‖∂xf(t)‖L1(R2) ;

‖∂xφ2(f)‖L∞([0,T ]×R) ≤ ‖∂xf‖L∞([0,T ],L1(R2)).

Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci.2009;00:1–6
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On the other hand:‖φ2(f)(t)‖L∞(R) = ‖f(t)‖L1(R2); hence:

‖φ2(f)‖L∞([0,T ]×R) = ‖f‖L∞(0,T ;L1(R2)) and ‖φ2(f)‖X(T ) ≤ ‖f‖L(T ). (24)

So, we finally have:

∀E ∈ X(T ), ‖φ2 ◦ φ1(E)‖X(T ) ≤ max(‖f0‖1, |f0|W 1,1(R2) eC(E)T ). (25)

Now we show thatφ2 ◦φ1 is a Lipschitz-continuous mapping in the norm ofL∞(UT ).
Let E1, E2 ∈ X(T ); we denotef1 = φ1(E1) and f2 = φ1(E2). There holds:
YE1

(f1 − f2) = (YE2
− YE1

)(f2) = (E2 − E1) ∂vf2. Thus,(f1 − f2) ∈ L1(VT ) and
YE1

(f1 − f2) ∈ L1(VT ); we apply Theorem5 and find:
∫

R2

|f1(s) − f2(s)| ≤

∫ s

0

∫

R2

|E1(τ) − E2(τ)| |∂vf2(τ)| dτ.

Thus ‖f1 − f2‖L∞(0,T ;L1(R2)) ≤ ‖E1 − E2‖L∞(UT )‖∂vf2‖L1(VT ); applying the
bound (14), we obtain:

‖φ1(E1) − φ1(E2)‖L∞(0,T ;L1(R2)) ≤

‖E1 − E2‖L∞(UT ) |f0|W 1,1(R2)
exp(C(E2)T ) − 1

C(E2)
. (26)

Now let f1, f2 ∈ L(T ). The linearity of the Poisson equation and the bound (24) allow
one to write:

‖φ2(f1) − φ2(f2)‖L∞(UT ) ≤ ‖f1 − f2‖L∞(0,T ;L1(R2)).

Finally we arrive at:

‖φ2 ◦ φ1(E1) − φ2 ◦ φ1(E2)‖L∞(UT ) ≤

‖E1 − E2‖L∞(UT ) |f0|W 1,1(R2)
exp(C(E2)T ) − 1

C(E2)
. (27)

3.2.2. Local existence and uniquenessWe now give conditions on the parameters
R and T in order to have: (i) the closed ballB′

R stable byφ2 ◦ φ1, and (ii) φ2 ◦
φ1 a contraction mapping onB′

R. The stability estimate (25) implies (i) provided:
|f0|W 1,1(R2) exp(max(R, 1)T ) ≤ R and‖f0‖1 ≤ R. Thus we choose:

R ≥ max(|f0|W 1,1(R2), ‖f0‖1) and T ≤
1

max(R, 1)
ln(

R

|f0|W 1,1(R2)
).

As for the point (ii), the Lipschitz estimate (27) yields the sufficient conditionR ≥ 1
and|f0|W 1,1(R2) (exp(RT )− 1)/R < 1. We take for example:

R ≥ max(1, |f0|W 1,1(R2)) and T <
1

R
ln

(

1 +
R

|f0|W 1,1(R2)

)

.

Considering the two conditions, we obtain that given

f0 ∈W 1,1(R2), R ≥ max(1, |f0|W 1,1(R2), ‖f0‖1), T ≤
1

R
ln(

R

|f0|W 1,1(R2)
),

the mappingφ2◦φ1 goes fromB′
R intoB′

R and is a contraction for the norm‖ · ‖L∞(UT ).
By Lemma9, B′

R is a complete space for this norm. Utilizing the contractionmapping
principle, the mappingφ2 ◦ φ1 admits a unique fixed pointE ∈ B′

R. If we denote
f = φ1(E), the pair(E, f) ∈ X(T ) × L(T ) is a mild solution to (1–3).

Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci.2009;00:1–6
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3.2.3. Estimation of the existence timeLet f0 ∈ W 1,1(R2) be fixed; we define
R0 = max(1, ‖f0‖1). The functionx 7→ ln(ax)/x admits a unique maximum at the
pointx = e/a, and its value isa/e. Thus, the greatest value of expression1

R
ln( R

|f0|W1,1
)

is attained atR = e |f0|W 1,1 and equal to(e |f0|W 1,1)−1.

There are two possibilities. If|f0|W 1,1 ≥ R0/e, we can takeR = R1 := e |f0|W 1,1

andT = T1 := (e |f0|W 1,1)−1 in §3.2.2. The estimate (13) then shows|f(T1)|W 1,1 =
e |f0|W 1,1 . So,§3.2.2proves the existence and uniqueness of the solution to the Vlasov–
Poisson problem with initial dataf(T1) during the timeT2 := (e |f(T1)|W 1,1 )−1 =
(e2 |f0|W 1,1 )−1. Thus, the solution generated by the initial dataf0 exists duringT1 +T2.
By induction, we obtain an existence time at least equal to:

1

|f0|W 1,1

(

1

e
+

1

e2
+ · · · +

1

en
+ · · ·

)

=
1

(e − 1) |f0|W 1,1

.

Now, if |f0|W 1,1 ≤ R0/e, the existence time given by§3.2.2 is maximal forR = R0

and equal to is equal toT0 := 1
R0

ln( R0

|f0|W1,1
). Applying (13), we obtain|f(T0)|W 1,1 =

eR0T0 |f0|W 1,1 = R0 > R0/e. Thus we can use the previous argument to show that the
solution to the Vlasov–Poisson problem with initial dataf(T0) exists for a time at least
equal to((e − 1)R0)

−1. Finally, the total existence time is no less than

1

R0

(

ln

(

R0

|f0|W 1,1

)

+
1

(e − 1)

)

.

4. Proof of Theorem2

4.1. Preliminary results

Here we collect some well-known results on the functions ofW 1,1(R2) andBV (R2).
The following proposition can be found, for example, in [8, pp. 3–4]:

Proposition 10
W 1,1(R2) ⊂ BV (R2) and∀f ∈ W 1,1(R2), |f |W 1,1 = TV [f ].

The following two theorems are taken from [8], p. 7 and p. 14:

Theorem 11
Let f ∈ L1(R2) and(fn)n be a sequence inBV (R2) which converges tof in L1(R2).
Then:

TV [f ] ≤ lim inf
n−→+∞

TV [fn].

Theorem 12
Let f ∈ BV (R2). There exists a sequence(fn)n in C∞(R2) ∩BV (R2) such that:

lim
n−→+∞

‖fn − f‖L1(R2) = 0 and lim
n−→+∞

TV [fn] = TV [f ].

4.2. A priori estimates

Theorem 13
Let f ∈ L1(VT ) be the unique mild solution to the linear Vlasov equation associated to
E ∈ X(T ) with initial conditionf0 ∈ BV (R2). Then,∀s ∈ [0, T ], f(s) ∈ BV (R2) and

TV [f(s)] ≤ TV [f0] exp(C(E)s).

Thus, integrating from0 to T :
∫ T

0

TV [f(τ)] dτ ≤ TV [f0]
exp(C(E)T ) − 1

C(E)
.

Remark that the estimate (12) is still valid, as it only uses theL1 character off0 andf .
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Proof
LetE, f0, andf be as in the statement of the theorem. Theorem12 yields the existence
of a sequence(fn

0 )n in C∞(R2) ∩BV (R2) such that:

lim
n−→+∞

‖fn
0 − f0‖L1(R2) = 0 and lim

n−→+∞
TV [fn

0 ] = TV [f0].

In particular, we have:∀n ∈ N, fn
0 ∈W 1,1(R2).

Let fn be the unique mild solution to the linear Vlasov equation associated toE with
initial conditionfn

0 . Using Theorem7, we get that∀s ∈ [0, T ], fn(s) ∈W 1,1(R2), and

|fn(s)|W 1,1(R2) ≤ |fn
0 |W 1,1(R2) exp(C(E)s),

thus, by Proposition10:

TV [fn(s)] ≤ TV [fn
0 ] exp(C(E)s).

We haveYE(fn − f) = YE(fn) − YE(f) = 0, so we can use Theorem6 and obtain:
∫

R2

|fn(s) − f(s)| =

∫

R2

|fn
0 − f0|.

Therefore, lim fn(s) = f(s) in L1(R2), for almost everys ∈ [0, T ]. Applying
Theorem11 then yields:

TV [f(s)] ≤ lim inf
n−→+∞

TV [fn(s)] ≤ lim inf
n−→+∞

TV [fn
0 ] exp(C(E)s)

= TV [f0] exp(C(E)s),

which impliesf(s) ∈ BV (R2). 2

4.3. Construction of a contraction mapping

We now get down to the non-linear Vlasov–Poisson problem. Wedefine the mappings
φ1 andφ2 as in§3.2, and we find sufficient conditions forφ2 ◦ φ1 to be a contraction
mapping fromB′

R to itself.

Let f0 ∈ BV (R2), E ∈ X(T ) andf = φ1(E). By Theorem13, f ∈ Lbv(T ) and

‖φ1(E)‖Lbv(T ) ≤ ‖f0‖1 + TV [f0] e
C(E)T .

Let us examine the mappingφ2. As in §3.2.1, we find: ‖φ2(f)‖L∞([0,T ]×R) =

‖f‖L∞(0,T ;L1(R2)) and∂xφ2(f)(t, x) =
∫ +∞

−∞
f(t, x, v) dv. Then we state and prove the

following lemma:

Lemma 14
Let f ∈ BV (R2). We denote byρ[f ] the function ofL1(R) defined by∀x ∈

R, ρ[f ](x) =
∫ +∞

−∞ f(x, v) dv. Then,ρ[f ] ∈ L∞(R) and‖ρ[f ]‖∞ ≤ TV [f ].

Proof
According to Theorem12, there exists a sequence(fn)n of functions inC∞(R2) ∩
BV (R2) ⊂ W 1,1(R2) such that‖fn − f‖1 −→ 0 and TV [fn] −→ TV [f ] when
n −→ +∞.

From §3.2.1, we know thatρ[fn](x) ≤ ‖∂xfn‖1 ≤ TV [fn]. But ρ[fn] converges
to ρ[f ] in L1(R), thus there exists a subsequenceρ[fσ(n)] which converges almost
everywhere toρ[f ]. We haveρ[fσ(n)](x) ≤ TV [fσ(n)] and passing to the limit we get for
a.e.x ∈ R, ρ[f ](x) ≤ TV [f ]. Therefore,ρ[f ] ∈ L∞(R) and‖ρ[f ]‖∞ ≤ TV [f ]. 2
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Lemma14gives:‖φ2(f)‖X(T ) ≤ ‖f‖Lbv(T ). Thus we have:

∀E ∈ X(T ), ‖φ2 ◦ φ1(E)‖X(T ) ≤ max(‖f0‖1, TV [f0] e
C(E)T ).

Now we establish that the mappingφ2 ◦ φ1 is Lipschitz continuous in the norm
of L∞([0, T ] × R). Let E1, E2 ∈ X(T ); we denotef1 = φ1(E1) andf2 = φ1(E2).
Moreover, as we did in the proof of Theorem13, we approximatef0 by a sequence
(fn

0 )n whose terms lie inW 1,1(R2), and such that

lim
n−→+∞

‖fn
0 − f0‖L1(R2) = 0 and lim

n−→+∞
TV [fn

0 ] = TV [f0].

The solutions to the linear Vlasov equation with fieldE1 (resp. E2) and initial
conditionfn

0 will be denotedfn
1 (resp.fn

2 ). Applying theW 1,1 estimate (26) to these
functions yields:

‖fn
1 − fn

2 ‖L∞(0,T ;L1(R2)) ≤ ‖E1 − E2‖L∞(UT ) TV [fn
0 ]

exp(C(E2)T ) − 1

C(E2)
. (28)

As seen in the proof of Theorem13, we have

‖fn
i (s) − fi(s)‖L1(R2) = ‖fn

0 − f0‖L1(R2), for a.e.s ∈ [0, T ], andi = 1, 2.

Thus,fn
i converges towardfi in L∞([0, T ];L1(R2)). Passing to the limit in (28), we

obtain:

‖f1 − f2‖L∞(0,T ;L1(R2)) ≤ ‖E1 − E2‖L∞(UT ) TV [f0]
exp(C(E2)T ) − 1

C(E2)
.

Then, the linearity ofφ2 and the bound (24) imply:

‖φ2 ◦ φ1(E1) − φ2 ◦ φ1(E2)‖L∞(UT ) ≤

‖E1 − E2‖L∞(UT ) TV [f0]
exp(C(E2)T ) − 1

C(E2)
. (29)

Reasoning like in§3.2.2, we infer thatφ2 ◦ φ1 admits a unique fixed point inB′
R for

suitable values ofR andT (using the contraction mapping principle of Banach), then
we deduce the local existence and uniqueness of a mild solution to (1–3). The existence
time is estimated as in§3.2.3.

5. Concluding remarks

We have established a result of local existence and uniqueness of a mild solution to the
one-dimensional Vlasov–Poisson system. The hypotheses onthe data of this problem
were improved: the initial data is not assumed to have a compact support, as in [10], or
an integrable majorizing function, as in [4, 6], but only to be of bounded variation. As
appeared in the course of the proof, the hypothesisf0 ∈ BV (R2) is close to the minimal
assumption guaranteeing thatE and∂xE are uniformly bounded, and thus the possibility
of the existence of a mild solution.

The drawback is that we were not able to establish global existence. From the stability
and continuity estimates of§§3 and4, we see that the crucial point would be to establish
that ρ[f ] = ∂xE remains bounded onUT for an arbitraryT . This is where the more
restrictive assumptions made in the literature come in.

Finally, we notice that the arguments presented in this paper can be extended with
slight modifications to many-species Vlasov–Poisson systems, or models featuring a
neutralising background and/or a confining potential, and so on.
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7. Filbet F.Contribution à l’analyse et à la simulation numérique del’équation de Vlasov. Thèse de
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Birkhäuser, 1984.
9. Guo Y. Global weak solutions of the Vlasov–Maxwell systemwith boundary conditions.Commun.

Math. Phys.1993;174:245–263.
10. Guo Y. Singular Solutions of the Vlasov–Maxwell System on a Half Line.Arch. Rational Mech. Anal.

1995;131:241–304.
11. Ukai S, Okabe T. On classical solutions in the large in time of two-dimensional Vlasov’s equation.

Osaka J. Math.1978;15:245–261.

Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci.2009;00:1–6


	1 Introduction
	1.1 Position of the problem
	1.2 Notations and main results

	2 Weak and mild solutions
	2.1 Definition of a weak solution
	2.2 Characteristic curves associated to E X(T)
	2.3 Definition of a mild solution

	3 Proof of Theorem 1
	3.1 A priori estimates
	3.2 Construction of a contraction mapping
	3.2.1 Stability and Lipschitz continuity of 2 1
	3.2.2 Local existence and uniqueness
	3.2.3 Estimation of the existence time


	4 Proof of Theorem 2
	4.1 Preliminary results
	4.2 A priori estimates
	4.3 Construction of a contraction mapping

	5 Concluding remarks

