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SUMMARY

We propose a result of local existence and uniqueness oftesaiilition to the one-dimensional
Vlasov—Poisson system. We establish the result for amainitbndition lying in the space
Wwh1(R?), then we extend it to initial conditions lying in the spaBd/(R?), without any
assumption of continuity, boundedness or compact suppodpyright © 2009 John Wiley
& Sons, Ltd.
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1. Introduction

1.1. Position of the problem

In this paper we study the one-dimensional Vlasov—Poisgstes:

Y(t,xz,v) € [0,T] x R?, %(t, x,v) + v%(t, x,v) + E(t,x)%(t, z,v) =0, (1)
V(t,x) € [0,T] x R, g—f(t,x) = /Rf(t,a:,v) dv, 2
V(z,v) € R?, £(0,2,v) = fo(z,v). 3)

This system models the behaviour of a gas of protons in ifscealistent electrostatic
field when the collisions between particles are neglected6], Cooper and Klimas
show the existence and uniqueness of a global mild solutitiis system, i.e. a solution
defined by characteristics, for a continuous and boundédlisbndition which has its
first two moments i uniformly bounded inc. This was extended by Bostad) ffo the
initial-boundary value problem, with slightly more genldrmgpotheses on the initial and
boundary conditions, namely, that they are bounded butexgssarily continuous, and
have one moment ia uniformly bounded inz. In [10], Guo showed that there exists
a unique local weak solution td{3) in the space.>([0, T], BV (R?)) for initial and
boundary conditions with compact support and in the sgaeér?) N BV (R?).
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2 S. LABRUNIE, S. MARCHAL, J.R. ROCHE

In this article we extend the results of Guo to the initialieaproblem with intial data
in the spaceBV (R?), thus not necessarily compactly supported, bounded, dinzamus.
Our proof is based on the contraction mapping principle afd&#, and consists of two
steps: first we establish the local existence and uniquefessild solution for an initial
dataf, in Wh1(R?), then we extend the result g € BV (R?).

1.2. Notations and main results

We introduce the following notations (seH])]). GivenT > 0, we denote
Ur = (0,T) xR and Vy = (0,T) x R2.

Fors € [0,T], we denotdl, = {s} x R? the slicet = s of V7. Then we introduce the
following functional spaces:

L(T) = L>=(0,T; WHYHR?)),  X(T) = L>(0,T; WH*°(R)).

The spaceL(T) will be that of the solutionsf to the Vlasov equation with initial
dataf, € WH1(R?); we equip it with its natural norm. As foX (T), it is a space
of electrostatic fields= for which the characteristic curves are globally well define
and Lipschitz-continuous in all their variabled].[ This can be shown by adapting
the proof of the Cauchy-Lipschitz theorem: the only differe is that we integrate
L functions instead of° functions and so we get continuous solutions differengiabl
almost everywhere in the time variable and with boundedvdgvie. We equip it with
the following norm:

VE € X(T), ||Elxr) = max([|[E|lL~ s |0 Bl Lo wr))-
Morover, for anyE € X (T'), we set

O(E) = maX(HaIEHL”c(UT)v 1)a (4)
and we denote by the Vlasov differential operator:
0 0 0
Y = &4- E_FE(t I)Bv (5)

We recall the definition of the total variation of a functighe L!(R?) (see for
example 7, p. 39)):

vf e LYR?), TV[f] = TV, [f] + TV, ], (6)
where:
oo fla +eyv) — fla, )‘
TV,[f] = hinj}(l)p / / ‘ . dxdv @)
e fao + 6) [z, v)
TV,[f] = hinj}(l)p / / dzdv (8)

The space of functions of bounded variation is defined as:
BV(R?) = {f € L'(R?) : TV[f] < +o0}, 9)
and equipped with the noriyY || gy &2y = || fllL1 2y + TV[f].

Finally, we denote by."(T') the spacd.> (0, T; BV (R?)) equipped with its natural
norm. We shall establish the following two theorems:

2 ()|
—In{ ——— .
| folw1(r2)

Then there exists a unique mild solutiph £) € L(T") x X (T') to (1-3).

Theorem 1 (Local existence and uniquenesd’in')
Let fo € WH1(R?), and let

RZmaX(HfoHl,|f0|W1,1(R2),1) and T € [0,

=
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BV SOLUTIONS FOR VLASOV-POISSON 3

Moreover, we have a lower bound on the existence fityeof the maximal solution
to (1-3) with initial condition f,. SettingR, := max(1, || fo||1), there holds:

1 _ R,
TCX > - If | > Ry
~(e— 1) |f0|W1,1 | folwr1 > .
o= 3 | if L < Bo
=R [MTholwr | (e- 1)} | folwr < =

Theorem 2 (Local existence and uniquenesB i)
Let fo € BV(R?), and let

R > max(||fo1. TV[fo],1) and T € [O%MGV}?&]H‘

Then there exists a unique mild solutigh E) € L*(T) x X (T to (1-3). The existence
time of the maximal solution is bounded as in tHé"! case, with|fo|y1.: replaced
with TV fo].

The proof is organised as follows. §2, we recall the definitions of weak and mild
solutions to the linear Vlasov equation (i.&) &énd @) with E a known function of¢, x))
and to the Vlasov—Poisson systef+§). Then, in§3, we estimate the mild solutions
to the linear Vlasov equation with initial data ! (R?), and use these results to
construct a contraction mapping on a suitable set, whose fist gives a mild solution
to the Vlasov—Poisson system. Finally, we extend thesdtsdstinitial conditions lying
in BV (R?) in §4.

2. Weak and mild solutions

2.1. Definition of a weak solution

We recall the definition of a weak solution tb-3) by using the spaces of test functions
and the functionals introduced by Guo B].[We define two spaces of test functions, one
for the Vlasov equation and the other for the Poisson eqguatio

V=C2([0,T)xR?), M=C([0,T) x R).

We define for(E, f, fo) € L (Ur) x Lis(Vr) x Lig(R?) anda € V (still like in [9])
the following functional:

T
A(f,E, fo,a) = /R2 folx,v) a(0, z,v) dedv —|—/0 /Rz[(YEa) f1(t, z,v) dedo dt.

We define for(E, f) € LS. (Ur) x LL.((0,T) x Ry; LY(R,)) andy € M the following
functional:

C(f,E,z/J)zAT[RE(t,x)amw(t,$)dxdt +/OT/Rw(t,x)/Rf(t,:v,v)dvd:vdt.

These functionals are well-defined.

A weak solution to the linear Vlasov equation associatefl o Lyx.(Ur) with initial
condition fy € L} (R?) is a functionf € L (V) which satisfies:

VOZEV, A(f,E,fo,Oé):O.

A weak solution to the one-dimensional Vlasov—Poissonesysivith intial condition
fo € Lig(R*) isapair(E, f) € L (Ur) x LL.((0,T) x Ry; L*(R,)) which verifies:

loc

V() e Vx M, A(f,E, fo,a)=0 and C(f,E,¢)=0.

Convriaht@ 2000 1ohn Wilev & Sons | td Math Meth Appl S<c2009:00'1—6



4 S. LABRUNIE, S. MARCHAL, J.R. ROCHE

2.2. Characteristic curves associatedioc X (T')

We recall the following results on the characteristic csreéa transport equation, see
for example §] or [11]. GivenFE € X (T') and(t, z,v) € Vi, we consider the differential
system :

dX

B =v),
9 (5) = Bls, X(5),
(X0, V(8) = (&) (10

As remarked above, this system admits a unique solutiorlfét,a, v) € V7, which we
denotel'(s; ¢, x,v) = (X(s;t,2,v),V(s;t,x,v)) and is called theharacteristic curve
passing by(¢, x, v).

As E is bounded on0,7] x R, every characteristic curve is defined from=
0 to s = T; moreover, the characteristic curves form a partition Vef. Thus
for every characteristi@(s; ¢, x,v), we can define an origin ofly: I'(0;¢, z,v) =
(X(0;t,2,v),V(0;t,2,v)).

Let (¢, s) € [0, T]. We denote by, ; thecharacteristic flowof E, namely the function:

gbt_,s:RQ — R?
(x,v) +— T(s;t,z,0). (11)

¢¢ s transports a pointt, z, v) of the sliceIl; to a point(s,z’,v") of the slicell; by
following the characteristic curve passing by, v). It is well-known that¢, , is a
bijection (one-to-one and onto mapping)R¥, which admits bounded partial derivatives
and whose Jacobian is identically equal to

2.3. Definition of a mild solution

Let £ € X(T) and(X, V) be the associated characteristic curves. A mild solutidghéo
linear Vlasov equation associatedHowith initial condition fy € L, (R?) is a function
[ € Li:(Vr) which satisfies:

f(t,z,v) = fo(X(0;t,2,v),V(0;t,2,v)) fora.e.(t,z,v) € Vr.

We recall the following result (see for examp®&)f

Proposition 3

Let E € X(T) andf, € L'(R?). Thenf € L'(Vy) is a weak solution to the linear
Vlasov equation associated #© with initial condition f, if and only if it is a mild
solution.

This can be shown by using the characteristic change of hlaga(¢,x,v) +—
(t,x0,v0) = (t, ¢r0(x,v)), as e.g. in Guoll0]. We deduce the existence and uniqueness
of a solutionf € L!(V7) to the linear Vlasov equation associated to a figld X (7'):

Corollary 4

Let E € X(T) and f, € L'(R?). The linear Vlasov equation associatedHowith
initial condition f, admits a unique weak solution ib!' (V) defined as¥(t,z,v) €
Vr, f(t,z,0) = fo(X(0;t,2,0), V(0;t, x,v)).

Finally, a mild solution to the Vlasov—Poisson system witlial condition f, €
L'(R?) is defined as a weak solutiqi, f), which belongs taX (7') x L!(Vr), and
such thatf coincides a.e. with the mild solution to the linear Vlasouaiipn associated
to £ with initial condition f;.

Convriaht@© 2000 1ohn Wilev & Sons | td Math Meth Appl <c2009:00'1—6



BV SOLUTIONS FOR VLASOV-POISSON 5

3. Proof of Theoreni

3.1. A priori estimates

The proof of Theoren. relies on the following two theorems whose version for a half
space is given by Guo irL[)].

Theorem 5

Let F € X(T) andp € [1,+oc0). We suppose that € L?(Vy) andYgu € LP(Vp).
Then:

. There existsug € L (1)) ~ LL.(R?), called the trace of. on II,, such that
Va € C([0, T[xR?),

/ (Yeua +uYga)(t,z,v) dedv dt = — / uo(x,v) a(0,z,v) dzdv.
Vr R?

. Ifug € LP(R?), thenVs € [0, 7], u(s) € LP(R?) and

[u(s)|? dedv = / |uo|P dxdv +p/ / (sgnu |u|P~! Ygu) () dedv dr.
R2 R2 0 R2
Theorem 6
Let E € X(T), and¢, s be its characteristic flow. We suppose that L!'(Vr) and
Yeu € LY(Vr). Letug be the trace of, onTI, defined in Theorerb. If K is a measurable
set ofR? with non-vanishing Lebesgue measure, then:

/ lu(s)| dedv = / |ug| dxdv —|—/ / (sgnuYgu)(r) dedv dr.
$0,s (K) K 0 0, (K)

The proofs rely on the characteristic change of variabléssae entirely similar to those
of [10].

With these results, we can prove the fundamental estimateemsolutions to the linear
Vlasov equation. We introduce the semi-narnty;-1,: defined by

Ve WHR?), |flwia = [10af 1l + 100 f]1-

Theorem 7

Let E € X(T) andf, € WH(R?). Let f be the unique mild solution in! (V) of the
linear Vlasov equation associatedEavith initial condition fo. ThenVs € [0, T, f(s) €
Wh1(R?) and

£ ()1 w2y = Il foll L1 ®2) ; (12)
[f(8)[wiimey < |folwr1re) exp(C(E)s). (13)

Thus, integrating fronf to 7":

(C(E)T) - 1

T
exp
/0 |f(T)lwra ey dT < | folwige) ) (14)

Proof
Equation (2) is an immediate consequence of point 2 of Theofifwith p = 1),
or of Theoren®b (with K = R?), given thatYz f = 0.

We now establish the estimatéd3] on derivatives. The set of the indefinitely
differentiable functions with compact support &1 is dense inW ! (Ily) [1, p. 54].
Thus there exists a sequen¢g¢r), of elements of C>°(R?), such that| fy —
fOHWl’l(R% — 0 whenn — +oo0.

Convriaht@© 2000 1ohn Wilev & Sons | td Math Meth Appl <c2009:00'1—6



6 S. LABRUNIE, S. MARCHAL, J.R. ROCHE

Similarly, we regularisegz € L>°(0,T;, W1>°(R)) in the following way. We define
forallt € [0,T), E,(t,.) = E(t,.)*pn, Where(p,) € C(R,) is a mollifying sequence.
The sequencgE,), satisfies:E, € L>(0,7;W">* N C'(Ry)); |Enllre@w,) <

| EllLowry 102Enllre@w,)y < 0:E||L~wy,), @d||E — Ey| @,y — 0 when
n — +oo. We denote by(X", V") and ¢, the characteristic curves and flow
associated t@,,.

Let f,, be the solution to the linear problem associate,fawvith initial condition f';
we recall that this solution is given for a.ét,z,v) € Vr by f.(t,z,v) =
JEX™(0; ¢, 2,v), V™(0;¢,2,v)). As fi is compactly supported, so i§,, asSuppf,
is contained in the image of the compalet 7] x Suppff by the continuous
mapping(s, zo, vo) — (s, X (s;0,zo,v0), V(s;0,20,v9)). Moreover, the characteristics
associated tdz,, are Lipschitz-continuous in all their variabl¢s, ¢, z, v), therefore
fn € WEo (V7).

All together, we havé), f,, andd, f,, € L= (Vr), thusd, f,, andd, f,, lie in L1(Vr).
MoreoverYg, 0. fn = —0.E, O,f, in D'(Vr), thusYg, 0. f, lie in L*(Vr). By an
integration by parts, it can be shown that the tracé,of, onII, is 0, fi. If K is a
measurable subset Bf of non-vanishing Lebesgue measure, we get by The@rem

/. |3fn()|—/|3fo|—// (58002 f1) Do B Do) (7) d

b5 o (K)

for the sake of brevity we have omitted the kinetic integnailementizdv. Thus:

L sl < [ 01+ 10 Bulim o | / 00l dr,
5.5 () 0.+ (K)

AMmWE K/WMM”WWwwﬂ// W% )dr. (15)

In the same way, we hawg f,, € L, (Vy) andYgd, f, = —0. fn € D'(Vr), thusYg0, f,
lie in L' (V7); and one shows that the trace®ff,, on1l, is 9, fi'. Reasoning as above,

we obtain:
/ 19, fis |</ |8f0|+// 00 fu(7) dr. (16)
#5. s (K) 0 (K)

We add (5) and (L6):
/ {Iazfn(s)l+|8ufn(s)l}§/{I8vf€|+|3mf€|}
b5, (K)
fmas(0uBliewns) [ A0
Then we utilize the Gronwall lemma, and we get:
[ 10l + s} < op@E)) [ 0551+ 0751 @)
8,5 (K) K
Therefore:

/ / 19165 ds < SR ~ 1 — [ vl (18)

Now we utilize the Dunford—Pettis weak compactness catein L', that can be found
for example in b, p. 76] or B, p. 167]:

Convriaht@© 2000 1ohn Wilev & Sons | td Math Meth Appl <c2009:00'1—6



BV SOLUTIONS FOR VLASOV-POISSON 7

Theorem 8 (Dunford—Pettis)
Let (f.)» be a bounded sequenceldf(2). The sequence is weakly compact if and only
if {f»}nen IS equiintegrable, that is to say:

n

Ve > 0, 3K, compactC Q s.t. Sup/ |fn] dQ <€, and:
O\K.

Ve >0, In > 0, VA C Q measurablepeas(A4) <n = Sup/ |fn| d2 < e.
n JA

Lete > 0. The sequence®.. ), and(d, f'), converge inL'(R?), thus are weakly
compactinL!(R?). By the Dunford—Pettis criterion, these sequences arérgggiable.
Thus, there exists a compa&f of R?, andn > 0 such that:

SUP/ {0uf3 | +10uf3} < e CET ¢, and:

n Rk

VA C R?* measurablepeas(A) < n = sup/ {10 f3] + |00 f2} < e CET ¢,
nJa

Let A be a subset ofR? such thatmeas(A) < 7. We have for alln € N,
meas (¢} o (A)) = meas(A) < n, and we can apply the inequality7) to get

sgp/A [V fn(s)] <e (29)

Thus we see that the sequen¢@sf,,(s)). and(9, f.(s)). verify the second part of the
Dunford—Pettis criterion. For the first part of this critarj we construct a compaéi,
such that all theyy ,(K?) C K. Let (X1 (7;0,z0,v0), Vo(7;0,20,v0)) and¢f, be the
characteristic curves and flow associated to free trarsgamt(E = 0). Of course, we
have :VL(t; 0, 20, v0) = vo and Xy (t; 0, 20, v0) = xo + vo t. We denotel. = ¢ ,(K?);
this set is a compact as the continuous image of a compaat, Tisiang the estimate on
the divergence of characteristics frof) Lemma 1] or §§, Lemma 4.8], we obtain:

vt € [07 T]7 |Vn(t7 07 IOv’UO) - VL(t7 07 Zo, 1}0)| <t HEnHLOO(Up) ; (20)
|Xn(t;0,$0,’l}0) — XL(t;O,SCQ,’UQ)| S t2 HEnHLx(Ut) (21)
Thus we can take fokK, the compact:
K= {(z,v) € R?: 3(x1,v1) € L, |x — 1| < T || E|l o)
andlv — v1| < T2 || Bl L~ (wy)}-

We have¥n € N, ¢g (K?) C K.. Thus,

sup / IV f(s)] < sup / V() (22)
neNJR2\K. neN Jr2\gp (K9)

< sup/ {102 fa] + |00 fir 1} eCEIT < e (23)
R2\ KO

n

Therefore, (0, fn(s))» and (9, fn(s)), verify the Dunford-Pettis criterion and thus
converge weakly (after extracting a subsequence)'ifR?) toward some functiong
andh of L1(R?).

On the other hand, we haVg (f,, — f) = (E — E,,) Oy fn, thusf, — f andYg(f,, — f)
are inL!(Vr). Applying point 2 of Theoren® and then the bound.g), we find:

Liro-sel < [ -1+ [ [ 1860~ B0l dr

n GXp(C(E)T) -1 n
Vo= 1+ 18 = Bullimwny “REEI= [ 931

IN

IN
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8 S. LABRUNIE, S. MARCHAL, J.R. ROCHE

Thus, f,.(s) converges toward (s) in L(R?). As a consequencé,. f,,(s) andd, f,.(s)
converge toward, f(s) andd, f(s) in D'(R?); thereforeg = 0, f(s) andh = 9, f(s),
i.e.d,f(s) andd, f(s) lie in L'(R?). In other words,f(s) appears as the weak limit in
WL1(R?) of the sequencéf,.(s)),. By passing to the limit in17), we get:

LIV < timint [ 19£,09] < exp(CUE)S) [Vl s
which is (L3), and yields {4) by integrating fronD to 7. O

3.2. Construction of a contraction mapping

We now study the non-linear Vlasov—Poisson problem. We ségp<c W1 (R?), and
we construct a contraction mapping from a closed subset @ir@aéh space to itself. To
this end, we define the following mappings:
e ¢ : X(T)— L>(0,T; L' (R?)) mapsE € X (T) to the unique mild solutiorf to
the linear Vlasov equation associated?@nd with initial conditionfy;
o ¢ : L°°(0,T; LY (R?)) — L*>(Ur) mapsf € L>(0,T;L*(R?)) to the unique
solution& to the Poisson equatio)(satisfyingvt € [0, 7], wimoos(t,x) =0,

namely:
—+o0
E(t,x) / / ft,y,v)dvdy.

We have in particulay(¢, z) € [0, T] x R, E(t,x) >
The following lemma will be crucial in our proof.

Lemma 9

For R > 0, let B}, be the closed ball of centérand radiusR of the Banach space
(X(T), I - lIx(1))- Then,B% is a closed subset of the Banach spak® (Ur), || - || ),
hence it is complete for this norm.

Proof
Let (E,), be a sequence of elements Bf, which converges inL>°(Ur) toward
E € L>(Uy). Of course, there hold§E|| - < R.

Then, (0, E,). is a sequence of elements of the closed ball of centerd radiusk
of L>°(Ur). Thus, by the Banach—Alaoglu theorefd, E,,),, converges for the weak-
topology (after extracting a subsequence).6f(Ur) toward some € L (Ur) with
llg]lco < R. In particular,(9, E,,),, converges tg in D’'(Ur); but as(E,,),, converges to
E € D'(Uy), (0. E,), converges t@, F in D' (Ur). Thusd, E = g, i.e.]|0,F||« < R.
This provest € B,. O

3.2.1. Stability and Lipschitz continuity ¢ o ¢; Let E € X(T). Theorem? gives
f=¢1(E) € L(T); moreover we have:

[o1(E)llLir) < folls + |folwrr ey exp(C(E)T).

Let f € L(T). By the definition of¢p,, we have:0,¢a(f)(t, z) = fffj ft,z,v) do.

But, asf(t) € WH1(R?) for a.e.t € [0,T], we deduce by Fubini’s theorem that, for
e.(t,v) € [0,T] x R, the mappingr — f(t,z,v) is in WH1(R), hence it satisfies
lim, ., f(t,z,v) = 0. We have thus:

+o00 +oo  rw
m@mw@a/ NJMM:[ [_mm%w@m;

—+oo xT
@@W@MS/ / 100 (£, 0)| dy do < 1|0 £ (£)]|12x2) -
10202 (f) Loe (jo,71xR) < 102 f 1 Lo ([0, 77,11 (R2))-

Convriaht@© 2000 1ohn Wilev & Sons | td Math Meth Appl S<c2009:00'1—6



BV SOLUTIONS FOR VLASOV-POISSON 9

On the other handga (f)(t)|| Lo ®) = [|f(t) L1 (r2); hence:
P2 2= (o,myxr) = [[f 0,750 @2y @nd | g2(N)llxr) < [ flleery-  (24)
So, we finally have:
VE € X(T), |l¢20¢1(E)x(ry < max(||foll, |folwri ey 7). (25)

Now we show thab o ¢, is a Lipschitz-continuous mapping in the normlof (Ur).
Let E1,Ey; € X(T); we denotef;, = ¢1(F1) and fo = ¢1(E2). There holds:
Vi, (fi = f2) = (Yo, — YE,)(f2) = (B2 — E1) 9, fo. Thus,(f1 — f2) € L'(Vr) and
Y&, (f1 — f2) € L*(Vr); we apply Theorens and find:

L@ =-nei< [ [ B©-B@l6 A0

Thus [[fi — fellLemriwe)y < [E1 — Eallpews)l0ufallrvy); applying the
bound (L4), we obtain:

l91(E1) — ¢1(E2)ll Lo 0,1501 (r2)) <
exp(C(£2)T) — 1
C(E2)

| By — EzHch(UT) |fO|W1’1(R2) (26)

Now let f1, fo € L(T). The linearity of the Poisson equation and the bout#) &llow
one to write:

lp2(f1) — d2(f2)lloe sy < If1 = fallLoo (0,510 (r2))-
Finally we arrive at:
[p2 0 ¢1(E1) — d2 0 ¢1(E2)| poo () <

exp(C(E:)T) — 1
C(E») '

| E1 — Eal| Lo Uy | folwr r2) (27)

3.2.2. Local existence and uniquenedd/e now give conditions on the parameters
R and T in order to have: (i) the closed baB}, stable by¢, o ¢, and (ii) ¢2 o

¢1 a contraction mapping otB%. The stability estimate2b) implies (i) provided:

| folw11(r2) exp(max(R,1)T) < R and||fol[; < R. Thus we choose:

R

In .
w1 ol )

R > max(|f0|W1,1(R2), HfO”l) and T <

As for the point (i), the Lipschitz estimat@7) yields the sufficient conditiof > 1
and| fo|w1.1(r2) (exp(RT) — 1)/R < 1. We take for example:

1
R > max(1, |fO|W1’1(R2)) and T< —=In <1 + L) .
R | folw11 (r2)

Considering the two conditions, we obtain that given

1 R
fo S Wl"l(RQ), R Z Inax(l, |f0|W1~1(R2)a ||f0H1), T S - 111(7 y
R |f0|W1!1(]R2)

the mapping, o $; goes fromB, into B, and is a contraction for the norin || < .-
By Lemma9, B, is a complete space for this norm. Utilizing the contractioepping
principle, the mapping, o ¢; admits a unique fixed poinE € Bj. If we denote
f=0¢1(F), thepair(E, f) € X(T) x L(T) is a mild solution to {-3).
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3.2.3. Estimation of the existence timeet f, € WU1(R?) be fixed; we define
Ry = max(1, || fol|1). The functionz — In(az)/z admits a unigue maximum at the
pointz = e/a, and its value is/e. Thus, the greatest value of expressiom (—2—)

[folw1.1
is attained af? = e | fo|y1.: and equal tde | folyr) L.

There are two possibilities. [ffo|y1.1 > Ro/e, we can takeR = Ry := e|folwi

andT = Ty := (e|folw.1) "t in §3.2.2 The estimatel(3d) then showsf(71)|w1.1 =
el folwi1. S0,§3.2.2proves the existence and uniqueness of the solution to dsoV4-
Poisson problem with initial dat#(77) during the timeT, := (e|f(T1)|w11)"t =
(e?|folw.1) L. Thus, the solution generated by the initial dgt@xists duringl’ + Ts.
By induction, we obtain an existence time at least equal to:

1 <1 S S > 7 1

|folwrr \e = e? e (e —1) [folwra
Now, if |foli: < Ro/e, the existence time given §8.2.2is maximal forkR = Ry
and equal to is equal 6 := 7~ ln(‘fo‘R—““). Applying (13), we obtain| f(Ty)|yw1.1 =
wl,

eftoo | folyii = Ry > Rp/e. Thus we can use the previous argument to show that the
solution to the Vlasov—Poisson problem with initial dgi{&@y) exists for a time at least
equal to((e — 1) Ry)~*. Finally, the total existence time is no less than

Rio (1“ (|foﬁ31,l> * <ei1>) |

4. Proof of Theoren?

4.1. Preliminary results

Here we collect some well-known results on the function$iof!(R?) and BV (R?).
The following proposition can be found, for example, & pp. 3—4]:

Proposition 10

WL R?) ¢ BV(R?) andvf € WHL(R?), | flwia = TV[f].

The following two theorems are taken froi,[p. 7 and p. 14:

Theorem 11
Let f € L'(R?) and(f,), be a sequence iBV (R?) which converges t¢ in L'(R?).
Then:

TV[f] < liminf TV[f,].

n—s-4oo

Theorem 12
Let f € BV (R?). There exists a sequentg,),, in C*°(R?) N BV (R?) such that:

dim | fa— flle =0 and lim  TV[f,] = TVf]

—+ n—--+00

4.2. A priori estimates

Theorem 13
Let f € L'(Vy) be the unique mild solution to the linear Vlasov equatiomeisged to
E € X(T) with initial condition f, € BV (R?). Then,Vs € [0, T, f(s) € BV(R?) and

TV[f(s)] < TV[fo] exp(C(E)s).
Thus, integrating fronf to 7":

exp(C(E)T) -1
C(E)

Remark that the estimat&3) is still valid, as it only uses thé' character off, and .

/0 TVIf(F)]dr < TV[fo]
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Proof
Let E, fy, andf be as in the statement of the theorem. Theot@mields the existence
of a sequencéfy), in C>°(R?) N BV (R?) such that:

L m 1fo = follLr g2y =0 and niniooTV[fél] =TV[fo]-

In particular, we have?n € N, fi* € WH1(R?).

Let f,, be the unique mild solution to the linear Vlasov equatiomasted toF with
initial condition f¢*. Using TheorenY, we get that/s € [0, 7], f.(s) € W11(R?), and
|fn($)lwr ) < [fo'lwr ey exp(C(E)s),

thus, by Propositiod0:
TV([fa(s)] < TV[fg'] exp(C(E)s).
We haveYg (f, — f) = Ye(f.) — Ye(f) = 0, so we can use Theoreérand obtain:

[t =161 = [ 155 = fol.

Therefore,lim f,,(s) = f(s) in L'(R?), for almost everys < [0,7]. Applying
Theoreml1then yields:

TVIf(s)] < liminf TV[fa(s)] < liminf TV(fg] exp(C(E)s)
=TV[fo] exp(C(E)s),
which impliesf(s) € BV (R?). O

4.3. Construction of a contraction mapping

We now get down to the non-linear Vlasov—Poisson problemdéfae the mappings
¢1 and ¢, as in§3.2, and we find sufficient conditions faf, o ¢, to be a contraction
mapping fromBY;, to itself.

Let fo € BV(R?), E € X(T) andf = ¢1(E). By Theoreml3, f € L*(T) and
161(E) | oy < Nfolls + TVIfo] “BT.

Let us examine the mapping.. As in §3.2.1, we find: |[¢2(f)| (0, rxr) =

Il fllzo(0,7:L1 (r2)) @NA O p2(f)(t, ) = ff;j f(t,z,v) dv. Then we state and prove the
following lemma:

Lemma 14
Let f € BV(R?). We denote byp[f] the function of L}(R) defined byvz €

R, plf](w) = [ f(x,v) dv. Then,p[f] € L=(R) and|p[f]] o < TVI/].

Proof

According to Theoreni2, there exists a sequencg, ), of functions inC>(R?) N
BV(R?*) c WU1(R?) such that||f, — f|1 — 0 andTV|[f,] — TV][f] when
n — +oQ.

From §3.2.1, we know thatp[f,](z) < ||0:fnlli < TV][f.]. But p[f,] converges
to p[f] in LY(R), thus there exists a subsequengg, )] which converges almost
everywhere te|f]. We havep|f, ] (z) < TV|f,] and passing to the limit we get for
a.e.x € R, p[f](x) < TV[f]. Thereforep[f] € L>°(R) and||p[f]llcc < TV[f]. O
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Lemmal4gives:||2(f)|lx )y < ||l oo (). Thus we have:

VE € X(T), ||¢20¢1(E)|xry < max(||foll1, TV[fo] eCEITY,

Now we establish that the mapping o ¢, is Lipschitz continuous in the norm
of L>([0,T] x R). Let By, E; € X(T'); we denotef; = ¢1(E1) and fo = ¢1(E»).
Moreover, as we did in the proof of Theorel3, we approximatef, by a sequence
(fo")n whose terms lie ilV1:1(R?), and such that

lim |~ follpes =0 and lim TV =TVIf].

The solutions to the linear Vlasov equation with fiekdl (resp. E2) and initial
condition f7* will be denotedf{* (resp. f3'). Applying theW ! estimate 26) to these
functions yields:

exp(C(Ex)T) 1

C(E2) (28)

11 = fllLe o1 ®2)) < 1B — B2l wy) TVIfG]
As seen in the proof of Theorefr8, we have

1fi*(s) = fil)lr w2y = 1fg" = follr ey, forae.s €[0,7], andi =1, 2.
Thus, f* converges toward; in L>°([0,T]; L*(R?)). Passing to the limit inZ8), we
obtain:
exp(C(E)T) — 1

C(E2) '

11 = follLe=(o,m;e1®2)) < [[B1 — B2l £ r) TV [ fo]
Then, the linearity ofs, and the bound24) imply:

|2 0 ¢1(E1) — ¢2 0 ¢1(E2)| Lo () <

C(Ey)T) -1
13 = Eallimom TV 1) S,

(29)

Reasoning like ir§3.2.2 we infer thatp, o ¢; admits a unique fixed point iB’, for
suitable values o andT (using the contraction mapping principle of Banach), then
we deduce the local existence and uniqueness of a mild goligi(l-3). The existence
time is estimated as i§8.2.3

5. Concluding remarks

We have established a result of local existence and unigsesfea mild solution to the
one-dimensional Vlasov—Poisson system. The hypotheséseodata of this problem
were improved: the initial data is not assumed to have a cotrgugoport, as in]0], or

an integrable majorizing function, as A, [6], but only to be of bounded variation. As
appeared in the course of the proof, the hypothgsis BV (R?) is close to the minimal
assumption guaranteeing tiaando,. E are uniformly bounded, and thus the possibility
of the existence of a mild solution.

The drawback is that we were not able to establish globalende. From the stability
and continuity estimates ¢§3 and4, we see that the crucial point would be to establish
that p[f] = 9. E remains bounded ofiy for an arbitraryT'. This is where the more
restrictive assumptions made in the literature come in.

Finally, we notice that the arguments presented in this pepe be extended with
slight modifications to many-species Vlasov—Poisson syster models featuring a
neutralising background and/or a confining potential, andrs
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