
HAL Id: hal-00397465
https://hal.science/hal-00397465v1

Submitted on 22 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fifty-Five Solvers in Vancouver: The SAT 2004
Competition

Daniel Le Berre, L. Simon

To cite this version:
Daniel Le Berre, L. Simon. Fifty-Five Solvers in Vancouver: The SAT 2004 Competition. Seventh In-
ternational Conference on Theory and Applications of Satisfiability Testing(SAT’04), 2004, Vancouver,
Canada. pp.321-344. �hal-00397465�

https://hal.science/hal-00397465v1
https://hal.archives-ouvertes.fr


Fifty-Five Solvers in Vancouver:
The SAT 2004 Competition

Daniel Le Berre1 and Laurent Simon2

1 CRIL-CNRS FRE 2499, Université d’Artois,
Rue Jean Souvraz SP 18 – F 62307 Lens Cedex, France

leberre@cril.univ-artois.fr
2 LRI, Université Paris-Sud

Bâtiment 490, U.M.R. CNRS 8623 – 91405 Orsay Cedex, France
simon@lri.fr

Abstract. For the third consecutive year, a SAT competition was orga-
nized as a joint event with the SAT conference. With 55 solvers from 25
author groups, the competition was a clear success. One of the noticeable
facts from the 2004 competition is the superiority of incomplete solvers
on satisfiable random k-SAT benchmarks. It can also be pointed out
that the complete solvers awarded this year, namely Zchaff, jerusat1.3,
satzoo-1.02, kncfsand march-eq, participated in the SAT 2003 com-
petition (or at least former versions of those solvers). This paper is not
reporting exhaustive competition results, already available in details on-
line, but rather focuses on some remarkable results derived from the
competition dataset.

The SAT 2004 competition is ending a 3-year take-off period that at-
tracted new SAT researchers and provided many new benchmarks and
solvers to the community. The good participation rate of this year (de-
spite the addition of the anti-blackbox rule) establishes the competition
as an awaited yearly event. Some new directions for a new way of thinking
about the competition are discussed at the end of the paper.

1 Introduction

Building efficient SAT solvers is one of the many sides of SAT research. Whether
these solvers are built as a proof of concept for a theoretical result, or are the
result of a careful software engineering process for industrial purposes, they are
useful for the whole community because they provide a snapshot of current
algorithmic performances. Efficient SAT solvers help us estimate which SAT
instances are solvable on current computers, and which methods works on which
kind of problems.

As we’ve done in the previous competitions, we partitioned the set of bench-
marks in three categories. The recent use of SAT solvers as embedded engines in



successful model checkers or planning systems1 created a huge interest in build-
ing efficient SAT solvers especially dedicated to solving SAT benchmarks with
thousands (sometimes millions) of variables. These very large benchmarks are
coming from an automated translation of problems from bounded model check-
ing [2], formal verification [24], planning [11], etc. They may be found in the
industrial category of the competition: they provide an “optimistic” bound of
the kind of problems solvable by current state of the art SAT solvers. However,
if many solvers have been reported to solve most of these large industrial bench-
marks today, it is still possible to build a three-hundred-variable benchmark that
they won’t be able to solve. Most of these benchmarks arise from the theoretical
result of NP-completeness of the satisfiability problem. They may be found in
the crafted category of the contest. Such category often provides a “pessimistic”
bound on the size of brute force solvable problems and may also emphasize
new inference rules for strengthening SAT solvers. At last, the uniform random
k-CNF – formulas containing exactly k different literals per clause – is still a
widely used class of benchmarks, both useful at the theoretical and the practi-
cal level. These benchmarks represent a very particular but still hard challenge
(especially the unsatisfiable random benchmarks) for the SAT community. We
classified them in the random category.

As previously, the competition was based on a two-stage ranking. The dead-
line for submitting both solvers and benchmarks was February, 23rd. Solvers ran
first on randomly generated random k-SAT, then on industrial benchmarks. The
first stage finished early April by running the solvers on the remaining crafted
instances. The authors of the SAT solvers were able to follow almost in real time
the progress of their solver, ensuring the correctness of the collected information.
The timeout for the first stage was only 10 minutes, because of the large number
of solvers competing this year. After this first stage, the solvers were ranked for
each category according to the number of solved series, then according to the
total number of solved benchmarks2. The aim of this ranking is to focus on SAT
solvers able to solve a wide range of SAT benchmarks. From an anonymized ver-
sion of those rankings the judges, João Marques-Silva, Hans Kleine-Büning and
Fahiem Bacchus, decided for each category which solvers were eligible to enter
the second stage. Note that the solvers for which a detailed description was not
available were not eligible to enter the second stage.

These “second stage solvers” were then launched on the benchmarks that
remained unsolved with a longer timeout (40 minutes). Technically, the compe-
tition ran this year on two clusters of Linux boxes. One, from the “Laboratoire
de Recherche en Informatique” (LRI, Orsay, France), was composed of Athlon
1800+ with 1 GB memory. It was used last year for the SAT 2003 competition.

1 SATPLAN04, powered by the SAT solver Siege, got the first place in the 2004
planning competition in the optimal track http://ls5-www.cs.uni-dortmund.de/

~edelkamp/ipc-4/results.html.
2 A series of benchmarks is a collection of similar benchmarks (e.g. for the random

category, benchmarks with the same number of variables and the same number of
clauses). A series is solved if at least one of its benchmarks is solved.



The second one, from “the beta lab” (UBC, Vancouver, Canada), was composed
of Intel Xeon 2.4 GHz with 1 GB memory.

2 The competitors

2.1 Solvers

Due to lack of space, we’ll not describe here each solver. We invite the reader to
take a look at the 2-page descriptions of the solvers available on the competition
results web page3. 25 submitters (see the online solver descriptions for the co-
authors) provided 55 solvers:

– Complete (SAT and UNSAT) solvers:
brchaff (R. Bruni), circush0, circush1 (H. Jin) [9], cls (W. Ruml) [6],
compsat (A. Biere), cquest (I. Lynce), eqube1, eqube2 (M. Narizzano),
forklift , frankensat-high frankensat-low (M. Dufourt) , funex (A.
Biere), isat1, isat2, isat3 (N.S. Narayanaswamy), jerusat1.3 (A. Nadel),
lsatv1.1 (R. Ostrowski) [15], march-001, march-007, march-eq-010,
march-eq-100 (M. Heule), minilearning.jar (D. Le Berre), modoc (A.
Van Gelder) [22], nanosat (A. Biere), oepira, oepirb, oepirc (J. Alfreds-
son), ofsat (O. Fourdrinoy), quantor (A. Biere) [1], sato4.2, sato4.3 (H.
Zhang) [28], satzoo-1.02 (N. Een), tts-2-0 (I. Spence), werewolf (J. Roy),
wllsatv1 (R. Ostrowski), zchaff, zchaff-rand (Z. Fu) [14],

– Incomplete (SAT) solvers:
adaptnovelty, novely35, novely50 (H. Hoos)[8], gasat(F. Lardeux) [10],
qingting (X.-Y. Li) [13], rsaps, saps, sapsnr (D. Tompkins), saprover,
unitwalk (A. Kojevnikov) [7], walksatauto, walksatrnp [8] and walksatsck
[17] (H. Kautz).

– Portfolio (contain both complete and incomplete solvers):
satzilla, satzilla-nr, satzilla-r (E. Nudelman)

The solvers forklift (E. Goldberg and Y. Novikov) and kncfs (Gilles De-
quen and Olivier Dubois [5]) were not submitted by their authors but entered
the contest as last year winners.

2.2 The benchmarks

Uniform random k-SAT 300 benchmarks were generated in 30 series: 15
series with 3-SAT benchmarks, 15 series with k-SAT formulas (k > 3). For
the 3-SAT series, 3 series of most probably SAT (ratio number of clauses over
number of variables equals 4) and UNSAT (ratio 4.5) benchmarks for 500, 700
and 900 variables were generated. The remaining 9 series were generated at
the threshold (ratio 4.25) for 400 to 800 by 50 variables. For the 15 k-SAT
benchmarks, k = 4, 5, 6, 7, 8, the instances were generated at the threshold for
3 http://www.lri.fr/~simon/contest/results/



3 different number of variables (different for each k). Let us emphasize that
the number of variables used were adapted from last year solvers performances:
we needed instances not too easy but not too hard to discriminate the solvers,
considering only last year solvers performances.

Industrial During last year competition, some competitors spotted that their
solvers were behaving much better on the original industrial benchmarks than
on the shuffled version we were using in the competition. The order of the clauses
and the numbering of the variables were supposed to have a meaning in those
benchmarks and some solvers might be able to take that information into ac-
count. As a consequence, the performance of their solver during the competition
did not match their observation in an industrial setting. We took this remark into
account and generated 3 series from one in this category: one with the original
benchmarks, and two with different shuffling of the original benchmarks.

The industrial category benchmark set was composed of 157 original bench-
marks in 18 series. Two of them were dedicated to benchmarks that remained un-
solved since the first competition. Another 7 formed the benchmarks not solved
last year. The 10 new series were proposed by:

Hoonsang Jin 8 benchmarks from BMC using the Vis system [16].
Marijn Heule 1 benchmark from Philips
Allen Van Gelder 12 benchmarks encoding into SAT coloring problems [21].
Miroslav Velev Formal Verification problems in two series, pipe-sat-1.1 [23]

(10 benchmarks) and vliw-unsat-2.0 (8 benchmarks).
Emmanuel Zarpas 5 series from IBM BMC benchmarks [26]: 01-rule, 11-rule-

2, 13-rule, 22-rule and 30-rule.

Crafted Called ”Hand Made” in the previous competition, this category con-
tains 29 series for a total of 228 benchmarks. Four series contained instances un-
solved since the first competition (hgen, ezfact, urquhart, others), 9 series
contained benchmarks that remained unsolved last year (bqwh, chesscolor,
factoring, anton SAT/UNSAT, hirsch, moore, markstrom UNSAT, station
hwb). The new benchmarks were submitted by:

Andrew Slater two series of randomly generated clustered benchmarks.
Hoonsang Jin one Ramsey benchmark.
Ke Xu 2 series from forced satisfiable CSP instances of Model RB [25].
Marijn Heule 2 series of equivalency chains.
Calin Anton 4 series of Random l-clustered k-SAT.
Harold Connamacher 5 series of benchmarks encoding the generic uniquely

extendible constraint satisfaction problem [3].

Note that this year the crafted category contains the “look like random series”
hgen+, hirsch, moore that belonged to the random category in the previous
competition.



3 First stage results

3.1 First stage on Random

The first obvious comment about the results of the first stage in the random
category is that the incomplete solvers outperformed the complete ones this
year. A nice way to see it is to take a look at Figure 1. Incomplete solvers
appear on the right (from saps to saprover): they solve quickly a large number
of benchmarks. Complete solvers are on the left. The complete local search solver
cls lies in between. The satzilla’s solvers that use a local search solver as a
preprocessing step are located with the local search solvers.

Note that the best incomplete solver in number of series solved was able to
solve all the series containing SAT benchmarks (3 series of 3-CNF were generated
to be UNSAT). While all the incomplete solvers were able to solve at least 100
benchmarks, the best complete solver cls was only able to solve 65 of them.
Note that last year winner kncfs was only able to solve 60 benchmarks. So it
looks like we have a good new complete SAT solver for the random category
this year? Not really. cls is a complete local search solver: compared to its local
search siblings, it performs poorly on satisfiable benchmarks. Compared to its
complete siblings, it perform poorly on UNSAT problems (it did not solve one!).

Another obvious fact is that none of the conflict-driven clause-learning algo-
rithms extending zchaff (including the original) succeeded to enter the second
stage. None of them was able to solve an UNSAT instance. The best of them, with
respect to the number of benchmarks solved, satzoo-1.02, was only able to solve
13 instances in the series k3-r4.25-v400 (9), k3-r4-v500 (3), k4-r9.88-v155
(1). satzoo-1.02 solved the first series in 2500 s while the incomplete solvers
solved it in less than a second and specialized complete solver such as kncfs and
march needed respectively 38s and 18s.

The three very strong solvers saps, walksatrnp and adaptnovelty are sim-
ilar to each other. Basically, walksatrnp and adaptnovelty are very similar
in the sense that they are two implementations of the Rnovelty+[8] version of
Walksat. The difference lies in the value of the noise (p): walksatrnp uses a
fixed value of p = 0.5 while adaptnovelty adapts the value of p during the
search. saps is using a different approach (scaling and probabilistic smooth-
ing) but is implemented in the same framework as adaptnovelty: UBCSAT[4].
The series solved by walksatrnp but not solved by adaptnovelty and saps
is k7-r88.7-v110, the collection of 10 7-CNF with 110 variables at ratio 88.7.
gasat also failed to solve that series. Note that gasat solved many series but sig-
nificantly fewer benchmarks than the three best solvers. This may be explained
by either a greater algorithmic complexity or a less efficient implementation of
the solver. This tends to be confirmed in the second stage (Table 2) since gasat
solved 17 new benchmarks while most of the other incomplete solvers solved
only a few (2 to 7), by the shape of gasat in Figure 1 and its crr value of 1.82
(Detailed explanation of this value is given later, when table 5 is introduced).



On the UNSAT instances, only a limited number of series and benchmarks
were solved. As a result, the ranking of the overall category (SAT+UNSAT) is
quite close to that of the SAT category.

At the satisfiability threshold, the generated instances have the same prob-
ability to be SAT or UNSAT, thus one could expect half of the instances to
be SAT and the other ones UNSAT. During the first stage, exactly 150 bench-
marks were proved SAT by the incomplete solvers, which is exactly half of the
benchmarks. In order to check this result, after the competition, we launched
kncfs and adaptnovelty with a 15-hour timeout, on the still-unsolved random
benchmarks, and they were unable to find new SAT ones (kncfs found 18 new
UNSAT benchmarks). Even if such a result may look nice, let us notice that the
number of SAT/UNSAT benchmarks was not uniformly dispatched across the
series.

3.2 First stage on Industrial

The industrial category is a very competitive category, mainly because of its
economic aspect. Some industry-related solvers competed in the previous com-
petitions but authors of last year winner, forklift, declined the invitation to
submit a detailed description of their solver in the conference post proceedings,
due to intellectual property reasons. If this can be easily understood from their
point of view, from the organizers point of view, and with the agreement of
the judges, it was decided not to use the SAT competition to publicize a solver
without providing anything back to the SAT community.

We introduced for that reason the “Anti-Blackbox rule” that prevents SAT
solvers for which the details are not known (no source code available, no publicly
available technical report about it) to participate in the competition. This is a
clear path on which we want the competition to stay. For those reasons, the
popular SAT solver siege4 did not enter the contest this year, but forklift
entered the contest as last year winner. The oepir solvers entered the compe-
tition, an overall description of the solvers being provided, but a more detailed
description was borderline with a non-disclosure agreement. For that reason, the
solvers became ineligible for an award. The following results do include both
forklift and oepirs ones, because we think that awarding a solver and re-
porting its results are different things. It is important for the community to see
where those solvers stand compared to the other ones.

Without any surprise, Conflict-Driven Clause-Learning (CDCL) solvers out-
perform the other ones in that category. All the solvers entering the second stage
either include or extend a CDCL solver. The more robust solver is the last year
winner forklift, which solved 30 series for a total of 81 benchmarks. The best
solver with respect to the total number of benchmarks solved is a variant of
Oepir, oepirc, which solved 24 series for a total of 95 benchmarks. The series
solved by forkliftand not by oepirc are Schuppan l2s and Miroslav Velev
VLIW-UNSAT-2, for a total of 8 benchmarks. Note that oepirc was able to solve

4 http://www.cs.sfu.ca/˜loryan/personal/



them neither under their original form nor after shuffling. Both series contain
huge benchmarks (15 000 to 1M variables for l2s, 25 000 to 500 000 variables
for VLIW).

oepirc outperformed forklift on IBM benchmarks, especially on the orig-
inal series. zchaff-rand is also a strong solver with 27 series and 67 bench-
marks solved. It was not able to solve the l2s benchmarks. brchaff, circush1,
compsat and jerusat1.3 were able to solve more than 50 benchmarks. On
the one hand, oepirc, jerusat1.3 and compsat solved significantly more SAT
benchmarks than the other solvers, but on the other hand, oepirc and forklift
outperformed the other solvers in the UNSAT category, followed by zchaff-rand.
Interestingly, jerusat1.3 was the worst performer in the UNSAT category
(among the second stage solvers).

Twice as many UNSAT than SAT series were solved, same ratio for the
number of benchmarks solved, which emphasizes strong UNSAT solvers in the
overall ranking.

3.3 First stage on Crafted

The results in this “everything not uniform random or industrial” category are
quite close. The incomplete solver sapsnr was the most robust solver with 11 se-
ries solved in the satisfiable category, but all the second stage solvers were quite
close: there is only a difference of 8 benchmarks solved between the first and the
last solver entering the second stage. In the UNSAT category, the most robust
solver with 7 series solved is satzoo-1.02, while the strongest solvers with re-
spect to the number of benchmarks solved are march-007 and march-eq-010.
On the overall ranking, march-eq-010 and satzilla-nr are the most robust
solvers while march-007 and march-eq-100 remain the best solvers with respect
to the number of benchmarks solved. It is worth noting that in the crafted cat-
egory, the three top solvers in the overall ranking are using completely different
technologies.

4 The Second Phase: The Winners

Table 2 summarizes the result of the second stage in the three categories. The
solvers oepirc and forklift do not appear since they were not awardable.
During the second stage, the solvers were ranked according to the number of
benchmarks solved among the benchmarks remained unsolved during the first
stage.

Winners in the industrial category are consistent with the results of the first
stage (once forklift and oepirc have been discarded): zchaff-rand is awarded
in the industrial UNSAT category while jerusat1.3 is awarded in the industrial
SAT category. Since the number of UNSAT benchmarks solved is greater than
the number of SAT benchmarks solved, the overall ranking emphasizes strong
UNSAT solvers. As a results, zchaff-rand is also the winner in the industrial
overall category.



ALL SAT UNSAT
INDUSTRIAL

Solver #series #benchs
Forklift 30 81
zchaff rand 27 67
brchaff 25 58
CirCUsH1 25 53
OepirC 24 95
compsat 23 57
CQuest 22 45
minilearning.jar 22 44
Jerusat1.3 21 56
quantor 21 37
Satzoo 1.02 19 40

Solver #series #benchs
CQuest 10 25
CirCUsH1 10 23
OepirC 9 40
Jerusat1.3 9 39
compsat 9 36
Forklift 9 30
brchaff 9 29
zchaff rand 9 27
minilearning.jar 8 25
Satzoo 1.02 7 22
quantor 6 16

Solver #series #benchs
Forklift 24 51
zchaff rand 18 40
brchaff 17 29
OepirC 16 55
Satzoo 1.02 16 18
CirCUsH1 15 30
quantor 15 21
Jerusat1.3 15 17
compsat 14 21
minilearning.jar 14 19
CQuest 12 20

CRAFTED
Solver #series #benchs
march-eq-100 13 63
satzilla nr 13 48
Satzoo 1.02 12 53
brchaff 12 42
sapsnr 11 39
march-007 10 59
zchaff 10 41
Jerusat1.3 9 45
OepirA 9 41
nanosat 9 39

Solver #series #benchs
sapsnr 11 39
satzilla nr 11 38
march-eq-100 10 36
Satzoo 1.02 9 38
Jerusat1.3 9 37
march-007 9 36
brchaff 9 34
zchaff 8 32
nanosat 8 31
OepirA 7 31

Solver #series #benchs
Satzoo 1.02 7 15
march-eq-100 6 27
brchaff 6 8
satzilla nr 5 10
OepirA 5 10
zchaff 5 9
march-007 4 23
nanosat 4 8
Jerusat1.3 3 8
sapsnr 0 0

RANDOM
Solver #series #benchs
walksatrnp 27 142
saps 26 144
adaptnovelty 26 143
GaSAT 26 111
satzilla nr 20 108
QingTing 19 111
cls 19 65
UnitWalk 17 106
kcnfs 11 60
march-007 9 45

Solver #series #benchs
walksatrnp 27 142
saps 26 144
adaptnovelty 26 143
GaSAT 26 111
satzilla nr 20 108
QingTing 19 111
cls 19 65
UnitWalk 17 106
kcnfs 10 46
march-007 8 36

Solver #series #benchs
kcnfs 4 14
march-007 3 9

Table 1. Results of the first stage for the solvers that entered the second stage by
category plus the results of forklift and oepir

.

For the random category, no solver was able to find a new satisfiable bench-
mark among those remaining unsolved during the first stage. As a consequence,
it was decided with the agreement of the judges, to run the second stage solvers
on all the benchmarks they did not solve during the first stage. It can be viewed
as re-running all the solvers with an increased timeout on the initial benchmark
set. As a consequence, because adaptnovelty was able to solve the 150 bench-
marks proved satisfiable during the first stage, it was declared winner in the
random SAT category. Last year’s winner kncfs is winning again this year in
the UNSAT category. Because of the unbalanced number of proved SAT/UNSAT
benchmarks, adaptnovelty was also declared winner of the overall random cat-
egory.

In the crafted category, march-eq was awarded in the UNSAT and overall
categories while satzoo-1.02 defended successfully his award in the satisfiable
category.



ALL SAT UNSAT
INDUSTRIAL

Solver #benchs
zchaff-rand 20
Satzoo-1.02 10
brchaff 8
Jerusat1.3 6
quantor 6
CQuest 5
CirCUsH1 3
minilearning 3
compsat 3

Solver #benchs
Jerusat1.3 3
CirCUsH1 2
zchaff-rand 2
brchaff 1
compsat 1
Satzoo-1.02 1
quantor 0
CQuest 0
minilearning 0

Solver #benchs
zchaff-rand 18
Satzoo-1.02 9
brchaff 7
quantor 6
CQuest 5
minilearning 3
Jerusat1.3 3
compsat 2
CirCUsH1 1

CRAFTED
Solver #benchs
march-eq-100 10
Satzoo 1.02 10
satzilla nr 3
Jerusat1.3 2
brchaff 1
nanosat 1
sapsnr 0
march-007 0
zchaff 0

Solver #benchs
Satzoo-1.02 2
brchaff 1
nanosat 1
sapsnr 0
satzilla nr 0
march-eq-100 0
Jerusat1.3 0
march-007 0
zchaff 0

Solver #benchs
march-eq-100 10
Satzoo 1.02 8
satzilla nr 3
Jerusat1.3 2
brchaff 0
nanosat 0
sapsnr 0
march-007 0
zchaff 0

RANDOM
Solver #benchs #new
adaptnovelty 150 7
sapsnr 148 4
walksatrnp 145 3
GaSAT 128 17
QingTing 113 2
UnitWalk 112 6
satzilla nr 110 2
kcnfs 90 30
cls 78 13
march-007 63 18

Solver #benchs #new
adaptnovelty 150 7
sapsnr 148 4
walksatrnp 145 3
GaSAT 128 17
QingTing 113 2
UnitWalk 112 6
satzilla nr 110 2
cls 78 13
kcnfs 64 18
march-007 45 9

Solver #benchs #new
kcnfs 26 12
march-007 18 9

Table 2. Second stage results. On the random category, we also report the number of
newly solved benchmarks.

Another interesting data that can be derived from the SAT competition is
the smallest instance (with respect to their number of literals) in both SAT and
UNSAT categories remained unsolved after the second stage. As stated earlier,
those benchmarks should belong to the crafted category, since this is the aim of
that category.

The smallest UNSAT benchmark still unsolved after the second stage remains
last year’s award winner for the smallest unsolved UNSAT benchmark
hgen8-n260-01-S1597732451 (260 variables, 391 clauses, 888 literals) produced
by the hgen8 generator5 submitted last year by Edward A. Hirsch.

Last year’s smallest unsolved satisfiable benchmark hgen2-v400-s161064952
(400 variables, 1400 clauses, 4200 literals) was solved this year by rsaps in 461
seconds during the first stage and sapsnr in 902s during the second stage.

5 Available at http://logic.pdmi.ras.ru/~hirsch/benchmarks/hgen8.html



The new smallest unsolved satisfiable benchmark was also generated by the
hgen2 generator6 submitted by Edward A. Hirsch for the first competition in
2002 with 450 variables instead of 400:
hgen2-v450-s41511877.shuffled-as.sat03-1682.cnf (1575 variables, 450
clauses, 4725 literals).

One can note that the smallest unsolved satisfiable benchmark is significantly
larger than the smallest unsolved UNSAT benchmark.

5 State of the Art Contributors

It may be interesting to put all the solvers in a single entity that can decide for
each SAT benchmark the best solver to solve it (a sort of perfect satzilla).
Such entity is called the State-Of-The-Art (SOTA) solver in [20]. Not all the
solvers are useful to build the SOTA solver, so we name the solvers that are
needed SOTAC (State of the Art Contributor).

Any solver that uniquely solves any benchmark is obviously a SOTAC. Table
3 lists the different solvers that are the only one to solve a given benchmark in
the three categories. We computed those numbers from the first stage results,
with and without the black boxes oepir and forklift. The measure can only
be made on the first stage results because we need exhaustive results to give all
solvers a chance. Thus, some solvers not strong enough to enter the second stage
can be distinguished here.

Note that adding oepirc and forklift does not change much the result:
zchaff looses 3 benchmarks, cquest disappears, jerusat1.3, compsat and
brchaff loose one benchmark. Note also that having variants of solvers mini-
mizes the number of uniquely solved instances: with three variants, oepir solvers
have small numbers of uniquely solved benchmarks compared to the other strong
solvers.

In the random category, kncfs, rsaps, novely50 and sapsnr are three SO-
TAC in the first stage. Note that rsaps, novely50 and sapsnr would not be
SOTAC if we take into account the second stage since adaptnovelty was able
to solve all the SAT benchmarks. It is thus sufficient with a 2400 second time-
out to keep adaptnovelty in our SOTA solver to solve all the satisfiable bench-
marks solved during the competition in the random category. As a consequence,
adaptnovelty would be a SOTAC without being the only one to solve one
benchmark. Moreover, the smallest SOTA is simply composed by kncfs and
adaptnovelty. Both solvers solves all the solved benchmarks in the random
category.

It is more difficult to find the smallest SOTA in the other categories, because
one would have to choose the smallest subset of solvers that solves all the bench-
marks. If all the SOTAC are indeed in this subset, the choice has to be made for
the remaining solvers.

Following the idea of SOTAC, one important issue may be to identify solvers
that are subsumed by another solver. Such solvers would be useless in a SOTA
6 Available at http://logic.pdmi.ras.ru/~hirsch/benchmarks/hgen2.html



Without black-boxes Including black-boxes

Solver Total Random Ind. Crafted

circush0 6 – – 6 (0/6)
kcnfs 6 5 (0/5) – 1 (1/0)
jerusat1.3 5 – 4 (2/2) 1 (1/0)
brchaff 4 – 3 (0/3) 1 (1/0)
zchaff 4 – 4 (4/0) –
quantor 3 – 3 (0/3) –
satzoo-1.02 3 – 1 (0/1) 2 (0/2)
adaptnovelty 2 – – 2 (2/0)
circush1 2 – 2 (2/0)
compsat 2 – 2 (1/1) –
rsaps 2 1 (1/0) – 1 (1/0)
zchaff-rand 2 – 2 (0/2) –
cquest 1 – 1 (0/1) –
march-eq-100 1 – – 1 (1/0)
novelty35 1 – 1 (1/0) –
novelty50 1 1 (1/0) – –
sapsnr 1 1 (1/0) – –
satzilla 1 – 1 (1/0) –

Solver Total Rand. Ind. Craft.

forklift 8 – 8 (1/7) –
circush0 6 – – 6 (0/6)
kcnfs 6 5 (0/5) – 1 (1/0)
jerusat1.3 4 – 3 (1/2) 1 (1/0)
brchaff 3 – 2 (0/2) 1 (1/0)
oepira 3 – 3 (1/2) –
oepirb 3 – 2 (0/2) 1 (0/1)
oepirc 3 – 3 (0/3) –
quantor 3 – 3 (0/3) –
satzoo-1.02 3 – 1 (0/1) 2 (0/2)
adaptnovelty 2 – – 2 (2/0)
circush1 2 – 2 (2/0) –
rsaps 2 1 (1/0) – 1 (1/0)
compsat 1 – 1 (0/1) –
march-eq-100 1 – – 1 (1/0)
novelty35 1 – – 1 (1/0)
novelty50 1 1 (1/0) – –
sapsnr 1 1 (1/0) – –
satzilla 1 – 1 (1/0) –
zchaff 1 – 1 (1/0) –

Table 3. SOTAC ranking: the number indicates the number of benchmarks that sovlers
uniquely solve. Numbers in parenthesis detail the number of SAT/UNSAT benchmarks
respectively.

solver because all the problems solved by such solver would be also solved by
the subsuming solver. However, in some cases, a subsumed solver may be more
efficient on its subset of benchmarks. We represent, in figures 2, 3 and 4, the
subsumption relations for each category. Dotted lines represent a subsumption
relation but with a loss of CPU-time, and plain lines are strong subsumptions,
with CPU-time savings. Each edge is labeled with the number of common solved
benchmarks. For instance, figure 2 told us that novely50 subsumes walksatauto
and qingting by solving respectively all the 122 and 111 benchmarks that the
solvers also solve. In order to obtain clean figures, we only considered solvers that
may solve more than 15 benchmarks in each category and we deleted redundant
edges. Thus, a lot of very-simple subsumption relations are missing but are not
really interesting ones, especially all the relations with inefficient solvers.

One may observe that while there are many subsumption relations between
solvers in the random and crafted category, it is not true in the industrial cat-
egory. Especially, there is no subsumption relation between the second stage
solvers in that category, which is not the case in the random category (qingting,
gasat and satzilla-nr are subsumed by adaptnovelty for instance) and the
crafted category (nanosat is subsumed by march solvers and satzoo-1.02).

6 Other rankings

In order to demonstrate that the competition final results do not change much
when the evaluation rules change, we propose here other ways to analyze the



results, other methods to rank solvers and to compare the rankings. For instance,
in the contest, we tried to forget about the CPU-time, by counting only the
number of series and benchmarks solved. Of course the CPU-time had a direct
impact on the competition due to the timeout, but it is also important to try to
characterize efficient solvers, in terms of CPU-time.

6.1 Ranking à la SatEx

This ranking used in the SatEx web site[18] allows us to give a picture of solver
performances in a very simple but meaningful way. It is not obvious to rank
solvers on a basis of a penalty time when the status (SAT or UNSAT) of some
benchmarks are not known. We chose to only count, on SAT and UNSAT sub-
categories, the subset of benchmarks that have been at least solved by a solver
(including black-boxes here). Thus, the ranking is preserved even if all or none
of the unknown benchmarks are SAT or UNSAT (all solvers will then have to
pay the same penalty in the corresponding category).

The winners of the random categories are ranked first using the ranking, same
thing for the overall ranking and UNSAT ranking in the industrial category. For
the industrial SAT category compsat is ranked first but solves fewer benchmarks
than jerusat1.3 and oepirc. The same thing happens in the overall and UN-
SAT crafted categories, where march-001 is ranked before march-eq-100. Con-
cerning the satisfiable crafted category, the incomplete solver sapsnr is ranked
first closely followed by satzoo-1.02. It is the only case for which the SatEx
ranking does not guess the second stage winner. The consistency of the SatEx
ranking with the contest results also suggests that the time out was large enough
to serve as a penalty.

6.2 Relative efficiency of solvers

One of the hard things to handle for ranking solvers is that only partial informa-
tion is available, because of the timeout. One solution that we adopted last year
[12] was to compare only pairs of solvers (X,Y ) on the subset of benchmarks they
both solve. Let us write s(X) as the set of benchmarks solved by X. Then, we
can compare X and Y on their respective performances on the set s(X)∩ s(Y ).
When doing this, we have a strong way of comparing the relative efficiency (RE)
of X and Y : re(X,Y ) = s(X) ∩ s(Y )/s(Y ) gives the percentage of instances of
Y that X solves too. Let us write now CPU(X, b) the CPU time needed for X
to solve all the benchmarks in b, without any timeout. Because there was a time-
out in the competition, only CPU(X, s′), with s′ ⊆ s(X) are defined here for
the solver X. We can compare the relative efficiency of X with respect to Y by
computing crr(X, Y ) = CPU(X, s(X) ∩ s(Y ))/CPU(Y, s(X) ∩ s(Y )). This last
measure is called here the CPU-time reduction ratio (CRR), and means that, on
their common subset of solved benchmarks, X needs crr(X, Y ) percent of the
time needed by Y . To summarize all the possible values, we average these two
measures over all the possible values for Y , while keeping X fixed, and we thus
defined re(X) and crr(X).



Random benchmarks
All Benchs. SAT UNSAT
(over 300) (over 150) (over 14)

Solver Time (s) Nb.

adaptnovelty 97757 143
saps +747 +1
sapsnr +1091 0
walksatmp +1354 -1
novelty35 +4780 -6
satzilla-nr +18832 -35
qingting +19141 -32
unitwalk +20494 -37
gasat +21722 -32
cls +51259 -78
kcnfs +56281 -83
march-007 +60694 -98

Solver Time (s) Nb.

adaptnovelty 7757 143
saps +747 +1
sapsnr +1091 0
walksatmp +1354 -1
novelty35 +4780 -6
satzilla-nr +18832 -35
qingting +19141 -32
unitwalk +20494 -37
gasat +21722 -32
cls +51259 -78
kcnfs +60615 -97
march-007 +63233 -107

Solver Time (s) Nb.

kcnfs 4066 14
satzilla r +1689 -6
satzilla +1704 -6
march-007 +1795 -5
march-001 +2064 -7
march-eq-010 +2937 -10
march-eq-100 +4027 -11

Industrial benchmarks
All Benchs. SAT UNSAT
(over 477) (over 77) (over 97)

Solver Time (s) Nb.

oepirc 249839 95
forklift +1751 -14
zchaff-rand +7842 -28
compsat +10315 -38
brchaff +12654 -37
jerusat1.3 +13161 -39
circush1 +16176 -42
cquest +18532 -50
minilearning.jar +20066 -51
quantor +21715 -58

Solver Time (s) Nb.

compsat 28269 30
jerusat1.3 +1506 +3
oepirc +1715 +4
forklift +4771 -6
zchaff-rand +4775 -9
brchaff +5011 -7
circush1 +8011 -13
cquest +8687 -11
minilearning.jar +8717 -11
satzoo 1.02 +11296 -13
quantor +11695 -20

Solver Time (s) Nb.

forklift 36333 52
oepirc +1695 +3
zchaff-rand +6477 -12
brchaff +11053 -23
circush1 +11575 -22
cquest +13255 -32
quantor +13430 -31
compsat +13726 -31
satzoo-1.02 +14484 -34
minilearning.jar +14759 -33
jerusat1.3 +15064 -35

Crafted benchmarks
All Benchs. SAT UNSAT
(over 228) (over 69) (over 41)

Solver Time (s) Nb.

march-007 104789 59
march-eq-100 +2611 +4
satzoo-1.02 +5188 -6
jerusat1.3 +8841 -14
brchaff +10941 -17
sapsnr +11235 -20
zchaff +11832 -18
satzilla nr +13280 -11
nanosat +14362 -20
oepira +14583 -18

Solver Time (s) Nb.

sapsnr 20624 39
satzoo-1.02 +472 -1
jerusat1.3 +1472 -2
march-007 +2206 -3
brchaff +2651 -5
zchaff +3843 -7
satzilla-nr +4659 -1
march-eq-100 +4735 -3
nanosat +5444 -8
oepira +6903 -8

Solver Time (s) Nb.

march-007 11159 23
march-eq-100 +82 +4
satzoo-1.02 +6922 -8
jerusat1.3 +9575 -15
oepira +9886 -13
zchaff +10194 -14
brchaff +10495 -15
satzilla-nr +10827 -13
nanosat +11124 -15

Table 4. Cumulative CPU-Time Ranking (SatEx style), given with relative values.
Only second-stage solvers appear here.

However, to have a relevant measure, one have to restrict the set of considered
solvers: an inefficient solver, lucky on one instance, may have a very low re
value. We thus only consider here the set of solvers that participated in the
second stage, in each category. Since the first and second stage were done on
the same computers for the Crafted and Industrial categories (on LRI’s cluster,
while the second stage for the random category ran on beta lab’s cluster), we



Random Industrial Crafted
12 Solvers 11 Solvers 10 Solvers

Solver re crr

adaptnovelty 0.95 0.37
walksatrnp 0.95 0.49

sapsnr 0.95 0.56
saps 0.95 0.67

novelty35 0.93 0.86
qingting 0.81 2.81

satzilla-nr 0.80 0.93
unitwalk 0.79 2.49

gasat 0.78 1.82
cls 0.50 10.81

kcnfs 0.43 280.54
march-007 0.33 284.76

Solver re crr

oepirc 0.86 0.74
forklift 0.77 0.68

zchaff-rand 0.73 0.76
brchaff 0.66 0.89
compsat 0.64 0.70

satzoo-1.02 0.64 1.94
jerusat1.3 0.63 1.55
circush1 0.62 1.05
cquest 0.61 1.17
quantor 0.58 1.43

minilearning.jar 0.56 1.48

Solver re crr

satzoo-1.02 0.89 1.06
march-eq-100 0.86 1.30

march-007 0.84 1.00
satzilla-nr 0.80 1.55
nanosat 0.79 1.95

jerusat1.3 0.77 1.16
oepira 0.74 3.13
brchaff 0.73 1.28
zchaff 0.72 1.80
sapsnr 0.45 0.27

Table 5. Relative Efficiency (re) and CPU-Time Reduction Ration (crr) values for all
solvers that participated the second stage. Values are computed over all the solvers of
the category, for all benchmarks (SAT and UNSAT ).

use extended results (1st stage + 2nd stage + post-competition runs) for those
two categories (the timeout may be considered as 2400 s for all launches). The
direct consequence of that choice is to increase the number of commonly solved
benchmarks. For the random benchmarks, we restrict ourselves to the first stage
results only because the second stage was done on a different cluster of computer
for that category. Results are given in Table 5.

For the Random category, one can see that adaptnovelty solves 95% of
the benchmarks that the other solvers solve too (corresponding to the 150 SAT
benchmarks), but in only 37% of their time: adaptnovelty is definitively the
fastest solver in this category. The crr then grows to 49% for walksatrnp. There
is also a clear partition between complete/incomplete solvers. kncfs can solve
on average 43% of the benchmarks of the other solvers, but in 280 times their
CPU time.

For the Industrial category, oepirc exhibits the best relative efficiency, show-
ing a very strong solver. It is interesting to see that forklift and zchaff-rand
are very close from a relative efficiency point of view and that compsat exhibits
the second best crr values for this table, which certainly results from its very
good running time in the satisfiable category, even if its relative efficiency drops
to 64%.

On the Crafted benchmarks, satzoo-1.02 has the best re value, very close
to march-eq-100. It is interesting to notice the differences between march-001
and march-eq-100 for the crr. This is likely due to the additional equivalency
reasoning used in the latter. The good runtime of sapsnr previously observed on
satisfiable crafted benchmarks is denoted here by the best crr of the category.

6.3 Clustering of solvers according to their performances

We grouped the solver according to their ability to solve each benchmark. Each
solver is represented by a vector of boolean indicating whether or not a given



original first shuffling second shuffling
Solver #series #benchs

Forklift 10 31
zchaff rand 9 23
CirCUsH1 9 22
OepirC 8 38
compsat 8 21
Jerusat1.3 8 17
brchaff 8 17
Satzoo 1.02 8 16
minilearning.jar 8 16
quantor 8 12
CQuest 7 16

Solver #series #benchs

Forklift 10 24
zchaff rand 9 21
OepirC 8 28
brchaff 8 19
CirCUsH1 8 17
CQuest 8 15
compsat 7 19
quantor 7 14
minilearning.jar 7 14
Jerusat1.3 6 19
Satzoo 1.02 5 12

Solver #series #benchs

Forklift 10 26
zchaff rand 9 23
brchaff 9 22
OepirC 8 29
compsat 8 17
CirCUsH1 8 14
Jerusat1.3 7 20
minilearning.jar 7 14
CQuest 7 14
Satzoo 1.02 6 12
quantor 6 11

Table 6. Study of the lisa syndrome

benchmark was solved by that particular solver. Then we use a hamming dis-
tance between those vectors to group the solvers: solvers with similar behavior
(solving the same benchmarks) have a small hamming distance. The clusters are
represented with a tree figure 5.

7 Discussion

7.1 The effect of shuffling

Shuffling the industrial benchmarks was initially introduced in the competition
rules to prevent any cheating. However, two main problems occurred. First, we
noticed that two runs of the same solver on the same –but shuffled differently–
benchmark can lead to very different results (see the lisa syndrome in [12]).
Second, competitors claimed that their solver were behaving much better on
the original benchmarks than on the shuffled versions used for the competition.
It is not a matter of cheating, but seems to be related to clauses and vari-
ables proximity observed in real-world problems encoded into SAT. To observe
this phenomenon, three benchmarks were associated to each original industrial
benchmark: the original one and two shuffled ones. We study here how solvers
behaved on those three benchmarks.

Table 6 details the results of the solvers on the original industrial benchmarks
(left column) and the same ones shuffled twice. Roughly all the solvers performed
better on the original version of the benchmarks, apart brchaff, jerusat1.3 and
quantor. While the most robust solver with respect to shuffling is zchaff-rand,
forklift, circush1 and oepirc are the solvers that were the most sensitive to
the shuffling.

Table 7 focuses on the five series from IBM. oepirc is again quite sensitive to
shuffling while the other solvers look relatively robust (the number of benchmarks
solved is too small to draw any conclusions).

The effect of shuffling the benchmarks in the industrial category is making the
benchmarks harder for most of the solvers. Furthermore, the better the solvers
are, the more sensitive to shuffling they are.



original first shuffling second shuffling
Solver #series #benchs

OepirC 4 22
zchaff rand 4 13
Forklift 4 13
compsat 4 13
CQuest 4 12
brchaff 4 12
CirCUsH1 4 11
Satzoo 1.02 4 9
minilearning.jar 4 9
Jerusat1.3 4 9
quantor 4 8

Solver #series #benchs

OepirC 4 16
brchaff 4 13
compsat 4 12
zchaff rand 4 11
Forklift 4 11
CQuest 4 11
quantor 4 10
minilearning.jar 4 8
CirCUsH1 4 8
Jerusat1.3 3 10
Satzoo 1.02 2 5

Solver #series #benchs

OepirC 4 15
zchaff rand 4 13
Forklift 4 13
brchaff 4 13
CQuest 4 10
compsat 4 10
quantor 4 9
minilearning.jar 4 8
CirCUsH1 4 8
Jerusat1.3 3 10
Satzoo 1.02 3 6

Table 7. The lisa syndrome, focusing on IBM benchmarks

7.2 Progress or not?

While the number of solvers has constantly increased since the first competition
to reach 55 solvers this year, most of the solvers awarded this year are not new.
The very same versions of satzoo-1.02 and kncfs were awarded last year in
the same categories. jerusat1.3 was designed a bit after the first competition
and participated in the the second one. zchaff was one of the first solvers to
be awarded in 2002. march solvers also participated from the very beginning of
the competition. The multi-strategies solvers oepir that demonstrated a great
potential also participated in the 2003 competition.

These solvers have been improved since last year, for sure. However, none of
the strong solvers is a result from a brand new approach.

The good news of this edition lies around local search solvers: the UBCSAT
library demonstrated that it was an efficient platform for building various lo-
cal search solvers. Such a common platform may help developing new efficient
local search algorithms for the next competitions. The original walksat with
Rnovelty+ strategy also demonstrated its strength, which may tend to prove
that Rnovelty+ strategy itself may be viewed as the winner for the random
category.

7.3 Is the competition relevant or not?

Emmanuel Zarpas, from IBM, one of the industrial users embedding SAT solvers
as engines in his tools and contributing many benchmarks to the community,
published some results he obtained on his own computers on his benchmarks 7,
and concluded that it was not possible to tell that Berkmin561 was better than
Zchaff on those benchmarks (while berkmin561 performed better than Zchaff
during the SAT 2003 competition). A recent update of the experiment showed the
Zchaff II (this year winner) was not really better than Zchaff, and performed even
worst when taking into account the total CPU time. The underlying question is

7 http://www.haifa.il.ibm.com/projects/verification/RB Homepage/
bmcbenchmarks illustrations.html



whether or not the result of the SAT competition means anything in an industrial
setting?

In a technical report[27], Emmanuel Zarpas proposed some guidelines for
a good BMC evaluation, among them, “use relevant benchmarks, use relevant
timeout”.

use relevant benchmarks While the aim of IBM is to find the best solver
to solve IBM BMC benchmarks, the aim of the competition is to award a
robust solver, that is a solver able to solve a wide range of benchmarks across
several different kinds of problems split into categories. This different point
of view is alone a reason for the discrepancies observed between the results
of the competition and those on the IBM benchmarks. Note that some of
the IBM benchmarks were part of the SAT 2003 competition benchmarks
and the results on those benchmarks were confirmed.

use relevant timeout In his experiment, Emmanuel Zarpas used a 10000 s
timeout while we used 600 s for the first stage and 2400 s for the second
stage. For practical reasons, we simply cannot afford spending a 10000 s
timeout for the competition with 55 solvers. Figure 6 illustrates the results
of the complete solvers on all the benchmarks of the industrial category.
This representation allows to check the choice of the CPU timeout and to
have clues about solver behavior on all the benchmarks in a given category.
The 600 s timeout (dotted line) is the first stage timeout. Only the second
stage solvers have an extended timeout of 2400 s. Note that this figure was
obtained by launching all the second stage solvers on the benchmarks they
did not solve during the first stage, which is not the current 2nd stage setting.
In our opinion, the first stage results are confirmed for most solvers with that
extended timeout. satzoo-1.02 is the exception: while being ranked 10th
after the 600 s timeout, it would be ranked 4th after 2400 s. So the use of a
“small timeout” is reasonable to isolate the best solvers in a given category.

8 The next competitions

Several remarks concerning the competition arose this year, and we think it is
time to rethink the competition as a whole. For that reason, we already formed
the board of judges for the next competition. It will be composed of Oliver Kull-
mann, Armin Biere and Allen Van Gelder. We already decided that a special
track about certified UNSAT answers will take place during the next competi-
tion.

We designed some rules for the first competition in 2002 and tried to follow
them during the second and third edition of the competition. The major changes
since the beginning were the limitation of the number of variants entering the
second stage and the board of judges that appeared in the second edition, and
the “anti black box rule” and the solver description booklet that was added this
year. Apart from that, the competitions were pretty similar.



One first step was to disallow solvers not fully described -either by a detailed
report or by its source code- from the competition this year (so-called back
boxes). However, it is always difficult to ask both a solver and a detailed report
for the same deadline. It was already difficult to obtain a two-page description
for each solver this year after the solvers were submitted. In order to fulfill both
the aim to open the competition to as many solvers as possible and to award a
good fully described solver, we propose to separate the competition in two steps:

– the first one requires only a 2-page description of the solver to enter the first
stage, that is to see a solver running shortly on the competition benchmarks.

– a more detailed report will be required (or the source code of the solver) to
participate in the second stage and being awardable.

One of the biggest issues for the next competition is to gather adequate
benchmarks for the competition. Some of the benchmarks that remained un-
solved during the first competition are still unsolved. It is time to get rid of
those benchmarks and to find new fresh benchmarks for the competition (or to
use good old ones). Furthermore, the balancing between SAT and UNSAT bench-
marks of similar difficulty remains the main problem (c.f. UNSAT benchmarks
in the industrial category or SAT benchmarks in the random one). Finally, the
idea of a booklet dedicated to the benchmarks is appealing.

Acknowledgments

The authors would like to thank the anonymous reviewers for their help to
improve that paper, the three judges, Fahiem Bacchus, Hans Kleine-Büning and
João Marques-Silva for their help during the competition, and the “Laboratoire
de Recherche en Informatique” (LRI, Orsay, France) and the beta lab (UBC,
Vancouver, Canada) for providing us with clusters of machines. At last, they
thank all the authors of solvers and benchmarks for their participation. The first
author was supported in part by the IUT de Lens, The Région Nord/Pas-de-
Calais and the Université d’Artois.

References

1. Armin Biere. Resolve and expand. In this issue, 2004.
2. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, M. Fujita, and Y. Zhu.

Symbolic model checking using SAT procedures instead of bdds. In Proceedings of
Design Automation Conference (DAC’99), 1999.

3. Harold Connamacher. A random constraint satisfaction problem that seems hard
for dpll. In this issue, 2004.

4. Dave A. D.Tompkins and Holger H. Hoos. Ubcsat: An implementation and ex-
perimentation environment for sls algorithms for sat and max-sat. pages 37–46,
2004.

5. Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient solving
of hard 3-sat formulae. In Proceedings of the Seventeenth International Joint Con-
ference on Artificial Intelligence (IJCAI’01), Seattle, Washington, USA, August
4th-10th 2001.



6. Hai Fang and Wheeler Ruml. Complete local search for propositional satisfiability.
In Proceedings of AAAI’04, 2004.

7. E. A. Hirsch and A. Kojevnikov. UnitWalk: A new SAT solver that uses local
search guided by unit clause elimination. PDMI preprint 9/2001, Steklov Institute
of Mathematics at St.Petersburg, 2001. A journal version is submitted to this issue.

8. Holger Hoos. On the runtime behavior of stochastic local search algorithms for
SAT. In Proceedings of AAAI’99, pages 661–666, 1999.

9. HoonSang Jin and Fabio Somenzi. CirCUs: A Hybrid Satisfiability Solver. In this
issue, 2004.

10. Frédéric Lardeux Jin-Kao Hao and Frédéric Saubion. Evolutionary computing
for the satisfiability problem. In Applications of Evolutionary Computing, number
2611 in LNCS, pages 259–268, University of Essex, England, UK, 14-16 April 2003.

11. Henry A. Kautz and Bart Selman. Pushing the envelope : Planning, propositional
logic, and stochastic search. In Proceedings of the Twelfth National Conference on
Artificial Intelligence (AAAI’96), pages 1194–1201, 1996.

12. Daniel Le Berre and Laurent Simon. The essentials of the SAT 2003 competition.
In Proceedings of the Sixth International Conference on Theory and Applications
of Satisfiability Testing (SAT2003), number 2919 in Lecture Notes in Computer
Science, pages 452–467, 2003.

13. X. Y. Li, M.F. Stallmann, and F. Brglez. QingTing: A Fast SAT Solver Us-
ing Local Search and Efficient Unit Propagation. In Sixth International Confer-
ence on Theory and Applications of Satisfiability Testing, S. Margherita Ligure -
Portofino ( Italy), May 2003. See also http://www.cbl.ncsu.edu/publications/,
and http://www.cbl.ncsu.edu/OpenExperiments/SAT/ .

14. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: En-
gineering an efficient SAT solver. In Proceedings of the 38th Design Automation
Conference (DAC’01), pages 530–535, June 2001.

15. R. Ostrowski, E. Grégoire, B. Mazure, and L. Sais. Recovering and exploiting
structural knowledge from cnf formulas. In Proc. of the Eighth International Con-
ference on Principles and Practice of Constraint Programming (CP’2002), LNCS,
pages 185–199, Ithaca (N.Y.), September 2002. Springer.

16. R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S. -
T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan,
S. Sarwary, T. R. Shiple, G. Swamy, and T. Villa. VIS: a system for verification
and synthesis. In Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of
the Eighth International Conference on Computer Aided Verification CAV, volume
1102, pages 428–432, New Brunswick, NJ, USA, / 1996. Springer Verlag.

17. B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for improving local search.
In Proceedings of the 12th National Conference on Artificial Intelligence, AAAI’94,
pages 337–343, 1994.

18. Laurent Simon and Philippe Chatalic. SATEx: a web-based framework for
SAT experimentation. In Henry Kautz and Bart Selman, editors, Electronic
Notes in Discrete Mathematics, volume 9. Elsevier Science Publishers, June 2001.
http://www.lri.fr/ simon/satex/satex.php3.

19. Laurent Simon, Daniel Le Berre, and Edward E. Hirsch. The sat2002 competition
report. Annals of Mathematics and Artificial Intelligence, 2003. Special issue for
SAT2002, to appear.

20. Geoff Sutcliff and Christian Suttner. Evaluating general purpose automated theo-
rem proving systems. Artificial Intelligence, 131:39–54, 2001.



21. Allen Van Gelder. Another Look at Graph Coloring via Propositional Satisfiability.
In Proceedings of Computational Symposium on Graph Coloring and Generaliza-
tions (COLOR02), IThaca, NY, September 2002.

22. Allen Van Gelder and Yumi K. Tsuji. Satisfiability Testing with More Reasoning
and Less Guessing. In D. S. Johnson and M. A. Trick, editors, Second DIMACS
implementation challenge : cliques, coloring and satisfiability, volume 26 of DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, pages
559–586. American Mathematical Society, 1996.

23. M.N. Velev. Automatic abstraction of equations in a logic of equality. In M.C.
Mayer and F. Pirri, editors, Proceedings of Automated Reasoning with Analytic
Tableaux and Related Methods (TABLEAUX ’03), number 2796 in LNAI, pages
196–213. Springer-Verlag, September 2003.

24. M.N. Velev and R.E. Bryant. Effective use of boolean satisfiability procedures in
the formal verification of superscalar and vliw microprocessors. In Proceedings of
the 38th Design Automation Conference (DAC ’01), pages 226–231, June 2001.

25. K. Xu and W. Li. Many hard examples in exact phase
transitions with application to generating hard satisfiable in-
stances. Technical report, CoRR Report cs.CC/0302001, 2003.
http://www.nlsde.buaa.edu.cn/ kexu/benchmarks/benchmarks.htm.

26. Emmanuel Zarpas. http://www.haifa.il.ibm.com/projects/verification/RB Homepage/bmcbenchmarks.html.
27. Emmanuel Zarpas. Becnhmarking sat solvers for bounded model checking. Tech-

nical report, IBM Haifa Research Laboratory, 2004.
28. Hantao Zhang. SATO: an efficient propositional prover. In Proceedings of the

International Conference on Automated Deduction (CADE’97), volume 1249 of
LNAI, pages 272–275, 1997.



0
50

10
0

15
0

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

← fu
nex ← quantor

← co
mpsa

t
← Je

rusa
t1.3

← O
epirC ← C
Quest ← Forkl

ift ← O
epirB ← zc
haff

rand
← O

epirA ← eqube1 ← eqube2 ← ls
atv1

.1 ← nanosa
t

← m
inile

arning.ja
r

← sa
to4.2 ← w
lls

atv1 ← brch
aff ← sa

to4.3 ← zc
haff ← IS
AT1 ← S
atzo

o
1.02

← IS
AT2 ← IS
AT3 ← m
arch

−eq−100

← m
arch

−001

← m
arch

−eq−010

← m
arch

−007

← kc
nfs ← cl
s

← sa
prove

r
← sa

tzi
lla

r
← sa

tzi
lla ← U

nitW
alk

← sa
tzi

lla
nr ← G

aSAT ← Q
ingTing

← w
alks

atsk
c

← nove
lty

35
← w

alks
atauto

← w
alks

atm
p

← adaptnove
lty

← nove
lty

50
← rs

aps ← sa
psn

r ← sa
ps

#S
ol

ve
d

CPU−Time needed (s)

R
an

do
m

: A
LL

 o
n 

S
A

T

fu
ne

x 
(2

)
qu

an
to

r 
(2

)
co

m
ps

at
 (

3)
Je

ru
sa

t1
.3

 (
3)

O
ep

irC
 (

3)
C

Q
ue

st
 (

5)
F

or
kl

ift
 (

5)
O

ep
irB

 (
5)

zc
ha

ff ran
d 

(5
)

O
ep

irA
 (

6)
eq

ub
e1

 (
8)

eq
ub

e2
 (

8)
ls

at
v1

.1
 (

8)
na

no
sa

t (
8)

m
in

ile
ar

ni
ng

.ja
r 

(9
)

sa
to

4.
2 

(1
0)

w
lls

at
v1

 (
10

)
br

ch
af

f (
11

)
sa

to
4.

3 
(1

1)
zc

ha
ff 

(1
1)

IS
A

T
1 

(1
2)

S
at

zo
o 1.0

2 
(1

3)

IS
A

T
2 

(1
5)

IS
A

T
3 

(1
9)

m
ar

ch
−

eq
−

10
0 

(2
6)

m
ar

ch
−

00
1 

(3
4)

m
ar

ch
−

eq
−

01
0 

(3
4)

m
ar

ch
−

00
7 

(3
6)

kc
nf

s 
(4

6)
cl

s 
(6

5)
sa

pr
ov

er
 (

10
3)

sa
tz

ill
a r (

10
3)

sa
tz

ill
a 

(1
04

)
U

ni
tW

al
k 

(1
06

)
sa

tz
ill

a nr 
(1

08
)

G
aS

A
T 

(1
11

)
Q

in
gT

in
g 

(1
11

)
w

al
ks

at
sk

c 
(1

22
)

no
ve

lty
35

 (
13

7)
w

al
ks

at
au

to
 (

13
8)

w
al

ks
at

m
p 

(1
42

)
ad

ap
tn

ov
el

ty
 (

14
3)

no
ve

lty
50

 (
14

3)
rs

ap
s 

(1
43

)
sa

ps
nr

 (
14

3)
sa

ps
 (

14
4)

Fig. 1. # of instances solved vs. CPU time for all solvers on SAT instances



Fig. 2. Subsumptions relations on random instances.

Fig. 3. Subsumptions relations on industrial instances.



Fig. 4. Subsumptions relations on crafted instances.



0
20

40
60

80
10

1
12

1
14

1
16

1
18

1

IS
A

T
1

IS
A

T
2

IS
A

T
3

tts
−

2−
0

m
od

oc
of

sa
t

W
er

ew
ol

f
ls

at
v1

.1
w

lls
at

v1
sa

to
4.

2
sa

to
4.

3
kc

nf
s

cl
s

br
ch

af
f

C
Q

ue
st

co
m

ps
at

fu
ne

x
qu

an
to

r
m

in
ile

ar
ni

ng
.ja

r
na

no
sa

t
eq

ub
e1

eq
ub

e2
Je

ru
sa

t1
.3

S
at

zo
o_

1.
02

F
or

kl
ift

zc
ha

ff
zc

ha
ff_

ra
nd

C
irC

U
sH

1
C

irC
U

s
C

irC
U

sH
0

O
ep

irA
O

ep
irB

O
ep

irC
m

ar
ch

−
00

1
m

ar
ch

−
00

7
m

ar
ch

−
eq

−
01

0
m

ar
ch

−
eq

−
10

0
G

aS
A

T
ad

ap
tn

ov
el

ty
no

ve
lty

50
no

ve
lty

35
w

al
ks

at
m

p
rs

ap
s

sa
ps

sa
ps

nr
w

al
ks

at
au

to
w

al
ks

at
sk

c
Q

in
gT

in
g

sa
pr

ov
er

U
ni

tW
al

k
sa

tz
ill

a
sa

tz
ill

a_
r

sa
tz

ill
a_

nr

Solvers

D
is

ta
nc

e 
(#

B
en

ch
s 

ov
er

 9
99

)

S
A

T
 2

00
4 

C
lu

st
er

in
g 

of
 a

ll 
so

lv
er

s 
on

 a
ll 

be
nc

hm
ar

ks

 1
3

 1
5

 2
0

 1
1

 6 0 2
2

 3
0

 3
6

 6
6

 4
5

 8
2

 8
9

 1
11

 8
5

 9
1

 7
0

 7
1

 9
2

 9
5

 7
6

 6
1

 1
04

 1
06

 1
24

 1
17

 1
05

 8
9

 8
9

 8
7

 1
34

 1
34

 1
33

 1
14

 1
24

 1
13

 1
08

 1
11

 1
79

 1
77

 1
68

 1
70

 1
85

 1
86

 1
88

 1
68

 1
56

 1
33

 1
18

 1
13

 1
71

 1
70

 1
68

 1
7,

 1
1

 6
, 0  2

3,
 1

1

 1
83

, 1
73

 1
92

, 1
82

 1
5,

 0

 1
95

, 1
77

 1
23

, 1
08

 9
7,

 8
1

 1
85

, 1
64

 7
7,

 6
0

 1
20

, 1
01

 1
87

, 1
56

 2
8,

 0

 1
81

, 1
60

 1
30

, 1
08

 1
39

, 1
08

 8
3,

 5
8

 5
0,

 0

 1
05

, 7
1

 1
97

, 1
60

 5
4,

 0

 2
05

, 1
46

 1
88

, 1
47

 1
05

, 7
1

 6
6,

 0

 7
4,

 3
7

 1
30

, 9
2

 1
16

, 5
3

 2
05

, 1
34

 1
48

, 8
7

 1
29

, 5
2

 1
40

, 5
1

 1
43

, 3
9

 1
58

, 1
10

 1
53

, 8
5

 1
72

, 9
4

 1
58

, 3
9

 1
33

, 7
7

 1
07

, 0

 1
80

, 3
7

 1
97

, 1
03

 2
10

, 3
7

 2
05

, 9
5  2
32

, 2
6

 2
59

, 2
6

 1
51

, 0

 2
55

, 7
6  1

82
, 0

 3
31

, 0

 3
48

, 0

 4
44

, 0

Fig. 5. Clusters of all solvers on all benchmarks. Solvers that closely solve sets of
benchmarks are close together in the cluster. The height of nodes in the tree indicates
the average distance of the two clusters at each considered branch of the tree. The
number on the left indicates the number of instances solved for each solver, and the
couple of numbers at each cluster link indicates respectively the number of common
benchmarks solved by at least one member of the cluster and the number of benchmarks
solved by all the members of the cluster.



0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
0

50
0

10
00

15
00

20
00

25
00

← cl
s

← w
lls

atv1
← m

arch
−eq−010

← sa
tzi

lla
nr ← sa

to4.3
← sa

tzi
lla

← sa
tzi

lla
r ← m

arch
−eq−100

← m
arch

−001 ← m
arch

−007 ← eqube2 ← fu
nex

← sa
to4.2

← eqube1 ← nanosa
t ← C

irC
Us

← C
irC

UsH
0 ← zc

haff
← m

inile
arning.ja

r

← quantor ← C
Quest

← co
mpsa

t ← brch
aff

← C
irC

UsH
1 ← O

epirA
← Je

rusa
t1.3 ← O

epirB
← S

atzo
o
1.02 ← zc

haff
rand ← Forkl

ift
← O

epirC

#S
ol

ve
d

CPU−Time needed (s)

cl
s 

(8
)

w
lls

at
v1

 (
11

)
m

ar
ch

−
eq

−
01

0 
(1

2)
sa

tz
ill

a nr 
(1

2)

sa
to

4.
3 

(1
3)

sa
tz

ill
a 

(1
3)

sa
tz

ill
a r (

13
)

m
ar

ch
−

eq
−

10
0 

(1
6)

m
ar

ch
−

00
1 

(1
9)

m
ar

ch
−

00
7 

(2
0)

eq
ub

e2
 (

25
)

fu
ne

x 
(3

4)
sa

to
4.

2 
(3

4)
eq

ub
e1

 (
36

)
na

no
sa

t (
48

)
C

irC
U

s 
(5

2)
C

irC
U

sH
0 

(5
4)

zc
ha

ff 
(6

5)
m

in
ile

ar
ni

ng
.ja

r 
(6

6)
qu

an
to

r 
(6

9)
C

Q
ue

st
 (

71
)

co
m

ps
at

 (
74

)
br

ch
af

f (
84

)
C

irC
U

sH
1 

(8
6)

O
ep

irA
 (

87
)

Je
ru

sa
t1

.3
 (

88
)

O
ep

irB
 (

92
)

S
at

zo
o 1.0

2 
(9

6)

zc
ha

ff ran
d 

(1
25

)

F
or

kl
ift

 (
14

8)
O

ep
irC

 (
16

5)

Fig. 6. # of instances solved vs. CPU time for complete solvers on all industrial benchs.
Two timeouts were used here, 600s and 2400s, which explain that some curve are
stopped before the 600s horizontal limit.


