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Automati extration of funtional dependeniesÉri Grégoire, Rihard Ostrowski, Bertrand Mazure, and Lakhdar SaïsCRIL CNRS � Université d'Artoisrue Jean Souvraz SP-18F-62307 Lens Cedex Frane{gregoire,ostrowski,mazure,sais}�ril.univ-artois.frAbstrat. In this paper, a new polynomial time tehnique for extrating funtional de-pendenies in Boolean formulas is proposed. It makes an original use of the well-knownBoolean onstraint propagation tehnique (BCP) in a new preproessing approah thatextrats more hidden Boolean funtions and dependent variables than previously pub-lished approahes on many lasses of instanes.Keywords: SAT, Boolean funtion, propositional reasoning and searh.1 IntrodutionReent impressive progress in the pratial resolution of hard and large SAT instanes al-lows real-world problems that are enoded in propositional lausal normal form (CNF) tobe addressed (see e.g. [11, 7, 18℄). While there remains a strong ompetition about buildingmore e�ient provers dediated to hard random k-SAT instanes [6℄, there is also a realsurge of interest in implementing powerful systems that solve di�ult large real-world SATproblems. Many benhmarks have been proposed and regular ompetitions (e.g. [4, 1, 14, 15℄)are organized around these spei� SAT instanes, whih are expeted to enode struturalknowledge, at least to some extent.Clearly, enoding knowledge under the form of a onjuntion of propositional lauses an�atten some strutural knowledge that would be more apparent in more expressive proposi-tional logi representation formalisms, and that ould prove useful in the resolution step [13,8℄. In this paper, a new pre-proessing step is proposed in the resolution of SAT instanes,that extrats and exploits some strutural knowledge that is hidden in the CNF. The teh-nique makes an original use of the well-known Boolean onstraint propagation (BCP) proess.Whereas BCP is traditionally used to produe implied and/or equivalent literals, in this pa-per it is shown how it an be extended so that it delivers an hybrid formula made of lausestogether with a set of equations of the form y = f(x1; : : : ; xn) where f is a standard on-netive operator among f_, ^g and where y and xi are Boolean variables of the initial SATinstane. These Boolean funtions allow us to detet a subset of dependent variables, thatan be exploited by SAT solvers.This paper extends in a signi�ant way the preliminary results that were published in[12℄ in that it desribes a tehnique that allows more dependent variables and hidden fun-tional dependenies to be deteted in several lasses of instanes. We shall see that the setof funtional dependenies an underlie yles. Unfortunately, highlighting atual dependentvariables taking part in these yles an be time-onsuming sine it oinides to the problemof �nding a minimal yle utset of variables in a graph, whih is a well-known NP-hard prob-lem. Aordingly, e�ient heuristis are explored to ut these yles and deliver the so-alleddependent variables.The paper is organized as follows. After some preliminary de�nitions, Boolean gates andtheir properties are presented. It is then shown howmore funtional dependenies than [12℄ anbe dedued from the CNF, using Boolean onstraint propagation. Then, a tehnique allowingus to deliver a set of dependent variables is presented, allowing the searh spae to be reduedin an exponential way. Experimental results showing the interest of the proposed approahare provided. Finally, promising paths for future researh are disussed in the onlusion.



2 Eri Grégoire et al.2 Tehnial preliminariesLet B be a Boolean (i.e. propositional) language of formulas built in the standard way, usingusual onnetives (_, ^, :, ), ,) and a set of propositional variables.A CNF formula � is a set (interpreted as a onjuntion) of lauses, where a lause is aset (interpreted as a disjuntion) of literals. A literal is a positive or negated propositionalvariable. We note V(�) (resp. L(�)) the set of variables (resp. literals) ourring in �. Aunit lause is a lause formed with one unique literal. A unit literal is the unique literal of aunit lause.In addition to these usual set-based notations, we de�ne the negation of a set of literals(:fl1; : : : ; lng) as the set of the orresponding opposite literals (f:l1; : : : ;:lng).An interpretation of a Boolean formula is an assignment of truth values ftrue; falseg toits variables. A model of a formula is an interpretation that satis�es the formula. Aordingly,SAT onsists in �nding a model of a CNF formula when suh a model does exist or in provingthat suh a model does not exist.Let 1 be a lause ontaining a literal a and 2 a lause ontaining the opposite literal:a, one resolvent of 1 and 2 is the disjuntion of all literals of 1 and 2 less a and :a. Aresolvent is alled tautologial when it ontains opposite literals.Let us reall here that any Boolean formula an be translated thanks to a linear timealgorithm into CNF, equivalent with respet to SAT (but that an use additional propositionalvariables). Most satis�ability heking algorithms operate on lauses, where the struturalknowledge of the initial formulas is thus �attened. In the following, CNF formulas will berepresented as Boolean gates.3 Boolean gatesA (Boolean) gate is an expression of the form y = f(x1; : : : ; xn), where f is a standardonnetive among f_, ^, ,g and where y and xi are propositional literals, that is de�ned asfollows :� y = ^(x1; : : : ; xn) represents the set of lauses fy_:x1 _ : : :_:xn;:y_x1; : : : ;:y_xng,translating the requirement that the truth value of y is determined by the onjuntion ofthe truth values of xi s.t. i 2 [1::n℄;� y = _(x1; : : : ; xn) represents the set of lauses f:y _ x1 _ : : : _ xn; y _ :x1; : : : ; y _ :xng;� y =, (x1; : : : ; xn) represents the following equivalene hain (also alled bionditionalformula) y , x1 , : : : , xn, whih is equivalent to the set of lauses fy _ x1 _ : : : _xn; y _ :x1 _ : : : _ :xn;:y _ x1 _ :x2 _ : : : _ :xn; : : : ;:y _ :x1 _ : : : _ :xn�1 _ xng.In the following, we onsider gates of the form y = f(x1; : : : ; xn) where y is a variable orthe Boolean onstant true, only.Indeed, any lause an be represented as a gate of the form true = _(x1; : : : ; xn). Moreover,a gate :y = ^(x1; : : : ; xn) (resp. :y = _(x1; : : : ; xn)) is equivalent to y = _(:x1; : : : ;:xn)(resp. y = ^(:x1; : : : ;:xn) ). Aording to the well-known property of equivalene hainasserting that every equivalene hain with an odd (resp. even) number of negative literals isequivalent to the hain formed with the same literals, but all in positive (resp. exept one)form, every gate of the form y =, (x1; : : : ; xn) an always be rewritten into a gate where yis a positive literal. For example, :y =, (:x1; x2; x3) is equivalent to y =, (x1; x2; x3) and:y =, (:x1; x2;:x3) is equivalent to e.g. y =, (x1; x2;:x3).A propositional variable y (resp. x1; : : : ; xn) is an output variable (resp. are input variables)of a gate of the form y = f(x01; : : : ; x0n), where x0i 2 fxi;:xig.A propositional variable z is an output (dependent) variable of a set of gates i� z is anoutput variable of at least one gate in the set. An input (independent) variable of a set ofgates is an input variable of a gate whih is not an output variable of the set of gates.



Automati extration of funtional dependenies 3A gate is satis�ed under a given Boolean interpretation i� the left and right hand sides ofthe gate are simultaneously true or false under this interpretation. An interpretation satis�esa set of gates i� eah gate is satis�ed under this interpretation. Suh an interpretation is alleda model of this set of gates.4 From CNF to gatesPratially, we want to �nd a representation of a CNF � using gates that highlights amaximalnumber of dependent variables, in order to derease the atual omputational omplexity ofheking the satis�ability of �. Atually, we shall desribe a tehnique that extrats gatesthat an be dedued from �, and that thus over a subset of lauses of �. Remaining lausesof � will be represented as or-gates of the form true = _(x1; : : : ; xn), in order to get a uniformrepresentation.More formally, assume that a set G of gates whose orresponding lauses Cl(G) are logialonsequenes of a CNF �, the set �unovered(G) of unovered lauses of � w.r.t. G is the setof lauses of �nCl(G).Aordingly, � � �unovered(G) [ Cl(G).Not trivially, we shall see that the additional lauses Cl(G)n� an play an important rolein further steps of dedution or satis�ability heking.Knowing output variables an play an important role in solving the onsisteny statusof a CNF formula. Indeed, the truth-value of an y output variable of a gate depends onthe truth value of the orresponding xi input variables. The truth value of suh outputvariables an be obtained by propagation, and they an be omitted by seletion heuristis ofDPLL-like algorithms [3℄. In the general ase, knowing n0 output variables of a gate-orientedrepresentation of a CNF formula using n variables allows the size of the set of interpretationsto be investigated to derease from 2n to 2n�n0 . Obviously, the redution in the searh spaeinreases with the number of deteted dependent variables.Unfortunately, to obtain suh a redution in the searh spae, one might need to addressthe following problems:� Extrating gates from a CNF formula an be a time-onsuming proess in the generalase, unless some depth-limited searh resoures or heuristi riteria are provided. Indeed,showing that y = f(x1; : : : ; xi) (where y; x1; : : : ; xi belong to �) follows from a given CNF�, is oNP-omplete.� when the set of deteted gates ontains reursive de�nitions (like y = f(x; t) and x =g(y; z)), assigning truth values to the set of independent variables is not su�ient todetermine the truth values of all the dependent ones. Handling suh reursive de�nitionsoinides to the well-known NP-hard problem of �nding a minimal yle utset in a graph.In this paper, these two omputationally-heavy problems are addressed. The �rst oneby restriting dedution to Boolean onstraint propagation, only. The seond one by usinggraph-oriented heuristis.Let us �rst reall some neessary de�nitions about Boolean onstraint propagation.5 Boolean onstraint propagation (BCP)Boolean onstraint propagation or unit resolution, is one of the most used and useful lookaheadalgorithm for SAT.Let � be a CNF formula, BCP (�) is the CNF formula obtained by propagating all unitliterals of �. Propagating a unit literal l of � onsists in suppressing all lauses  of � suhthat l 2  and replaing all lauses 0 of � suh that :l 2 0 by 0nf:lg. The CNF obtainedin suh a way is equivalent to � with respet to satis�ability.The set of propagated unit literals of � using BCP is noted UP (�). Obviously, we havethat � � UP (�). BCP is a restrited form of resolution, and an be performed in linear time.



4 Eri Grégoire et al.It is also omplete for Horn formulas. In addition to its use in DPLL proedures, BCP is usedin many SAT solvers as a proessing step to dedue further interesting information suh asimplied [5℄ and equivalent literals [2℄[9℄. Loal proessing based-BCP is also used to deliverpromising branhing variables (heuristi UP [10℄).In the sequel, it is shown that BCP an be further extended, allowing more general fun-tional dependenies to be extrated.6 BCP and funtional dependeniesAtually, BCP an be used to detet hidden funtional dependenies. The main result of thepaper is the pratial exploitation of the following original property: gates an be omputedusing BCP only, while heking whether a gate is a logial onsequene of a CNF is oNP-omplete in the general ase.Property 1. Let � be a CNF formula, l 2 L(�), and  2 � s.t. l 2 . If nflg � :UP (� ^ l)then � � l = ^(:fnflgg).Proof. Let  = fl;:l1;:l2; : : : ;:lmg 2 � s.t. nflg = f:l1;:l2; : : : ;:lmg � :UP (� ^ l).The Boolean funtion l = ^(:fnflgg) an be written as l = ^(l1; l2; : : : ; lm). To provethat � � l = ^(l1; l2; : : : ; lm), we need to show that every model of �, is also a model ofl = ^(l1; l2; : : : ; lm). Let I be a model of �, then1. l is either true in I : I is also a model of � ^ l. As f:l1;:l2; : : : ;:lmg � :UP (� ^ l), wehave fl1; l2; : : : ; lmg � UP (� ^ l), then fl1; l2; : : : ; lmg are true in I . Consequently, I isalso a model of l = ^(l1; l2; : : : ; lmgg);2. or l is false in I : as  = fl;:l1;:l2; : : : ;:lmg 2 � then I satis�es  = f:l1;:l2; : : : ;:lmg 2�. So, at least one the literals li; i 2 f1; : : : ;mg is true in I . Consequently, I is also amodel of l = ^(l1; l2; : : : ; lmgg)Clearly, depending on the sign of the literal l, and-gates or or-gates an be deteted. For ex-ample, the and-gate :l = ^(l1; l2; : : : ; ln) is equivalent to the or-gate l = _(:l1;:l2; : : : ;:ln).Let us also note that this property overs binary equivalene sine a = ^(b) is equivalent toa, b.Atually, this property allows gates to be deteted, whih were not in the sope thetehnique desribed in [12℄. Let us illustrate this by means of an example.Example 1. Let �1 � fy _ :x1 _ :x2 _ :x3;:y _ x1;:y _ x2;:y _ x3g.Aording to [12℄, �1 an be represented by a graph where eah vertex represents a lauseand where eah edge orresponds to the existene of tautologial resolvent between the twoorresponding lauses. Eah onneted omponent might be a gate. As we an see the �rstfour lauses belong to a same onneted omponent. This is a neessary ondition for suha subset of lauses to represent a gate. Suh a restrited subset of lauses (namely, thoseappearing in the same onneted omponent) is then heked syntatially to determine if itrepresents an and/or gate. Suh a property an be heked in polynomial time. In the aboveexample, we thus have y = ^(x1; x2; x3).Now, let us onsider, the following example,Example 2. �2 � fy_:x1 _:x2 _:x3;:y_x1;:x1 _x4;:x4 _x2;:x2 _x5;:x4 _:x5 _x3g.Clearly, the graphial representation of this later example is di�erent and the above teh-nique does not help us in disovering the y = ^(x1; x2; x3) gate. Indeed, the above neessarybut not su�ient ondition is not satis�ed.Now, aording to Property 1, both the and-gates behind Example 1 and Example 2 anbe deteted. Indeed, UP (�1 ^y) = fx1; x2; x3g (resp. UP (�2 ^ y) = fx1; x4; x2; x5; x3g) and



Automati extration of funtional dependenies 59 2 �1, (resp. 0 2 �2),  = (y _ :x1 _ :x2 _ :x3) (resp. 0 = (y _ :x1 _ :x2 _ :x3)) suhthat nfyg � :UP (�1 ^ y) (resp. 0nfyg � :UP (�2 ^ y)).Aordingly, a preproessing tehnique to disover gates onsists in heking the Property1 for any literal ourring in �. A further step onsists in �nding dependent variables of theoriginal formulas, as they an be reognised in the disovered gates. A gate learly exhibitsone dependent literal with respet to the inputs whih are onsidered independent, as far asingle gate is onsidered. Now, when several gates share literals, suh a haraterisation ofdependent variables does not apply anymore. Indeed, forms of yle an our as shown inthe following example.Example 3. �3 � fx = ^(y; z); y = _(x;:t)g.Clearly, �3 ontain a yle. Indeed, x depends on the variables y and z, whereas y dependson the variables x and t. When a single gate is onsidered, assigning truth values to inputvariables determines the truth value of the output, dependent, variable. As in Example 3,assigning truth values to input variables that are not output variables for other gates is notenough to determine the truth value of all involved variables. In the example, assigning truthvalues to z and t is not su�ient to determine the truth value of x and y. However, in theexample, when we assign a truth value to an additional variable (x, whih is alled a yleutset variable) in the yle, the truth value of y is determined. Aordingly, we need to utsuh a form of yle in order to determinate a su�ient subset of variables that determinesthe values of all variables. Suh a set is alled a strong bakdoor in [17℄. In Example 3, thestrong bakdoor orresponds to the set of fxg [ fz; tg. In this ontext, a strong bakdoor isthe union of the set of independent variables and of the variables of the yle utset. Findingthe minimal set of variables that uts all the yles in the set of gates is an NP-hard problem.This issue is investigated in the next setion.7 Searhing for dependent variablesIn the following, a graph representation of the interation of gates is onsidered. More formally,A set of gates an be represented by a bipartite graph G = (O [ I; E) as follows:� for eah gate we assoiate two verties, the �rst one o 2 O represents the output of thegate, and the seond one i 2 I represents the set of its input variables. So the number ofvertex is less than 2�#gates, where #gates is the number of gates;� For eah gate, an edge (o; i) between the two verties o and i representing the left andthe right hand sides of a gate is reated. Additional edges are reated between o 2 O andi 2 I if one of the literals of the output variable assoiated to the vertex o belongs to theset of input literals assoiated to the vertex i.Finding a smallest subset V 0 of O s.t. the subgraph G0 = (V 0 [ O;E0) is ayli is awell-known NP-hard problem.Atually, any subset V 0 that makes the graph ayli is the representation of the set ofvariables, whih together with all the independent ones, allows all variables to be determined.When V 0 is of size , and the set of dependent variables is of size d, then the searh spaeis redued from 2n to 2n�(d�), where n is the number of variable ourring in the originalCNF formula.We thus need to �nd a trade-o� between the size of V 0, whih in�uenes the omputationalost to �nd it, and the expeted time gain in the subsequent SAT heking step.In the following, two heuristis are investigated in order to �nd a yle-ut set V 0. The�rst-one is alledMaxdegree. It onsists in building V 0 inrementally by seleting verties withthe highest degree �rst, until the remaining subgraph beomes ayli.The seond one is alled MaxdegreeCyle. It onsists in building V 0 inrementally byseleting �rst a vertex with the highest degree among the verties that belong to a yle. Thisheuristi guarantees that eah time a vertex is seleted, then at least one yle is ut.



6 Eri Grégoire et al.In the next setion, extensive experimental results are presented and disussed, involvingthe preproessing tehnique desribed above. It omputes gates and uts yles when neessaryin order to deliver a set of dependent variables. Two strategies are explored: in the �rst one,eah time a gate is disovered, the overed lauses of � are suppressed; in the seond one,overed lauses are eliminated at the end of the generation of gates, only. While the �rst onedepends on the onsidered order of propagated literals, the seond one is order-independent.These two strategies will be ompared in terms of number of disovered gates, of the size ofthe yle utsets, of dependent variables and of the �nal unovered lauses.8 Experimental resultsOur preproessing software is written in C under Linux Redhat 7.1 (available at :http://www.ril.univ-artois.fr/�ostrowski/Binaries/llsatprepro).All experimen-tations have been onduted on Pentium IV, 2.4 Ghz. Desription of the benhmarks an befound on SATLib (http://www.satlib.org).We have applied both [12℄ and our proposed tehnique on all benhmarks from the lastSAT ompetition [15, 16℄, overing e.g. model-heking, VLSI and planning instanes. Com-plete results are available at :http://www.ril.univ-artois.fr/�ostrowski/result-llsatprepro.ps. In the follow-ing, we illustrate some typial ones. On eah lass of instanes, average and standard deviationresults are provided with respet to the orresponding available instanes.In Table 1, for eah onsidered lass, the results of applying both [12℄'s tehnique and thetwo new ones desribed above (in the �rst one, overed lauses are not suppressed as soonas they are disovered whereas they are suppressed in the seond one) in terms of the meannumber of disovered gates (#G). The results learly shows that our approah allows oneto disover more gates. Not surprisingly, removing lauses onduts the number of detetedgates to derease.Family of InstanesName (#Inst.,#V[min-Max℄,#C[min-Max℄) [12℄'stehnique#G Our approahNo l. remov. Cl. remov.#G #G #C remov.Bloks (3,484[283-758℄,27423[9690-47820℄) 10[3℄ 236[134℄ 18[5℄ 271[142℄Logistis (8,994[116-3016℄,12706[953-50457℄) 380[265℄ 437[417℄ 169[213℄ 630[585℄Pipe (6,1642[834-2577℄,18624[6695-33270℄) 1312[679℄ 1407[697℄ 1240[639℄ 13898[9083℄Fats (13,3178[2218-4315℄,48737[22539-90646℄) 713[147℄ 1601[541℄ 497[170℄ 1731[510℄Parity (30,1044[64-3176℄,3614[254-10325℄) 568[828℄ 510[594℄ 328[455℄ 663[870℄Qg (10,969[512-1331℄,33747[9685-64054℄) 310[91℄ 1828[652℄ 298[80℄ 1708[601℄Ca (7,637[26-2282℄,1835[70-6586℄) 419[547℄ 459[592℄ 414[542℄ 1233[1615℄Dp (11,1427[213-3193℄,3580[376-8308℄) 1117[856℄ 1468[1211℄ 915[812℄ 2534[2298℄Bm2 (5,1952[316-4089℄,6908[1002-13531℄) 895[714℄ 1025[850℄ 744[623℄ 2082[1824℄Rand (6,2217[2000-2500℄,6568[5921-7401℄) 2133[236℄ 2444[381℄ 2103[252℄ 6212[692℄Ezfat (40,1441[193-3073℄,9169[1113-19785℄) 40[18℄ 268[127℄ 68[33℄ 68[33℄Med (3,761[341-1159℄,20154[5556-36291℄) 66[32℄ 316[162℄ 14[5℄ 319[164℄Avg-heker (4,917[648-1188℄,28661[17087-40441℄) 324[105℄ 1098[375℄ 304[101℄ 1092[373℄nw/n/fw (13,3997[2756-5074℄,15829[10886-20123℄) 89[40℄ 468[136℄ 125[38℄ 125[38℄Am (4,2011[433-4264℄,6925[1458-14751℄) 989[835℄ 772[585℄ 393[276℄ 927[625℄Cnf (2,2424[2424-2424℄,14812[14812-14812℄) 2336[0℄ 3280[0℄ 2301[6℄ 13703[149℄Table 1. #G: Number of gates deteted (average[standard deviation℄)In Table 2, we took the no-remove option. We explored the above two heuristis for uttingyles (Maxdregre and MaxdegreeCyle). For eah lass of instanes, we provide the averagenumber of deteted dependent variables (#D), the size of the yle utsets (#CS) and thesize of the disovered bakdoor (#B), and the umulated CPU time in seonds for disoveringgates and omputing these results. On some lasses, the bakdoor an be 10% of the numberof variables, only.In Table 3, the remove option was onsidered. The number of gates is often lower thanwith the no-remove option. On the other hand, the size of the yle utset is generally lowerwith the remove option.Aordingly, no option is preferable than the other one in the general ase. Indeed, �ndinga smaller bakdoor depends both on the onsidered lass of instanes and the onsideredoption.



Automati extration of funtional dependenies 7Family of Instanes (#V[min-Max℄) Maxdregre MaxdegreeCyle#D #CS #B #D #CS #BBloks (484[283-758℄) 38[13℄ 198[123℄ 353[215℄ 39[9℄ 197[124℄ 352[216℄Logistis (994[116-3016℄ 113[158℄ 245[218℄ 441[532℄ 143[164℄ 214[194℄ 410[522℄Pipe (1642[834-2577℄) 980[768℄ 265[219℄ 582[201℄ 764[449℄ 481[192℄ 798[348℄Fats (3178[2218-4315℄) 738[237℄ 813[256℄ 1964[604℄ 487[124℄ 1064[362℄ 2216[623℄Parity (1044[64-3176℄) 243[388℄ 84[46℄ 573[528℄ 287[410℄ 40[21℄ 528[505℄Qg (969[512-1331℄) 303[202℄ 228[236℄ 228[236℄ 11[6℄ 521[194℄ 521[194℄Ca (637[26-2282℄) 290[434℄ 130[142℄ 344[403℄ 265[341℄ 155[206℄ 369[481℄Dp (1427[213-3193℄) 513[463℄ 451[485℄ 725[625℄ 551[496℄ 412[343℄ 686[498℄Bm2 (1952[316-4089℄) 662[716℄ 27[22℄ 886[874℄ 660[696℄ 30[10℄ 888[893℄Rand (2217[2000-2500℄) 1777[301℄ 357[339℄ 440[343℄ 1152[134℄ 981[111℄ 1064[115℄Ezfat (1441[193-3073℄) 28[35℄ 66[45℄ 1370[1073℄ 55[27℄ 39[18℄ 1343[1060℄Med (761[341-1159℄) 205[102℄ 110[72℄ 110[72℄ 14[4℄ 302[157℄ 302[157℄Avg-heker (917[648-1188℄) 209[357℄ 606[283℄ 606[283℄ 276[94℄ 539[187℄ 539[187℄nw/n/fw (3997[2756-5074℄) 39[48℄ 151[47℄ 3899[854℄ 94[24℄ 96[23℄ 3844[855℄Am (2011[433-4264℄) 327[263℄ 97[68℄ 413[241℄ 298[206℄ 126[99℄ 441[287℄Cnf (2424[2424-2424℄) 472[564℄ 1801[564℄ 1953[564℄ 1170[2℄ 1103[2℄ 1255[2℄Table 2. Size of bakdoor with no remove optionFamily of Instanes (#V[min-Max℄) Maxdegree MaxdegreeCyle#D #CS #B #D #CS #BBloks (484[283-758℄) 18[4℄ 0[0℄ 373[219℄ 18[4℄ 0[0℄ 373[219℄Logistis (994[116-3016℄ 135[147℄ 25[48℄ 419[539℄ 152[178℄ 7[13℄ 401[509℄Pipe (1642[834-2577℄) 1020[735℄ 219[215℄ 543[223℄ 956[513℄ 282[124℄ 606[283℄Fats (3178[2218-4315℄) 488[127℄ 0[0℄ 2214[621℄ 488[127℄ 0[0℄ 2214[621℄Parity (1044[64-3176℄) 318[426℄ 0[0℄ 497[480℄ 318[426℄ 0[0℄ 497[480℄Qg (969[512-1331℄) 122[99℄ 138[87℄ 410[189℄ 181[60℄ 80[25℄ 351[140℄Ca (637[26-2282℄) 317[433℄ 94[113℄ 317[392℄ 302[388℄ 109[151℄ 332[434℄Dp (1427[213-3193℄) 724[643℄ 149[151℄ 513[357℄ 728[641℄ 145[143℄ 509[353℄Bm2 (1952[316-4089℄) 680[706℄ 1[1℄ 868[883℄ 680[705℄ 1[1℄ 868[884℄Rand (2217[2000-2500℄) 1591[418℄ 495[396℄ 625[401℄ 1200[129℄ 886[102℄ 1016[111℄Ezfat (1441[193-3073℄) 48[23℄ 10[5℄ 1350[1064℄ 49[23℄ 9[5℄ 1349[1064℄Med (761[341-1159℄) 14[4℄ 0[0℄ 302[157℄ 14[4℄ 0[0℄ 302[157℄Avg-heker (917[648-1188℄) 302[100℄ 0[0℄ 512[181℄ 302[100℄ 0[0℄ 512[181℄nw/n/fw (3997[2756-5074℄) 73[14℄ 40[22℄ 3864[857℄ 95[24℄ 18[10℄ 3842[856℄Am (2011[433-4264℄) 367[254℄ 0[0℄ 373[239℄ 367[254℄ 0[0℄ 373[239℄Cnf (2424[2424-2424℄) 1988[12℄ 285[12℄ 437[12℄ 2210[6℄ 63[6℄ 215[6℄Table 3. Size of bakdoor with remove optionHowever, in most ases, the remove option and theMaxdegreeCyle heuristi lead to smallerbakdoors.We are urrently experimenting how suh a promising preproessing step an be grafted tothe most e�ient SAT solvers, allowing them to fous diretly on the ritial variables of theinstanes (i.e. the bakdoor). Let us stress that our preproessing step has been implementedin a non-optimized way. However, it shows really viable thanks to good obtained omputingtime (less than 1 seond in most ases), so time is omitted in di�erent tables.9 Future worksLet us here simply motivate another interesting path for future researh, related to the atualexpressiveness of disovered lauses. Atually, our gate-oriented representation of a Booleanformula exhibits additional information that an prove powerful with respet to further stepsof dedution or satis�ability heking. To illustrate this, let us onsider Example 2 again.From the CNF �, the gate y = ^(x1; x2; x3) is extrated. The lausal representation of thegate is given by fy _ :x1 _ :x2 _ :x3;:y _ x1;:y _ x2;:y _ x3g.Clearly, the additional lauses f:y _ x2;:y _ x3g are resolvents from �, whih an onlybe obtained using two and six basi steps of resolution, respetively. Aordingly, the gaterepresentation of � involves non-trivial binary resolvents, whih an ease further dedutionor satis�ability heking steps. Taking this feature into aount either in lausal-based orgate-based dedution of satis�ability solvers should be a promising path for future researh.Also, some of the disovered gates represent equivalenies (x , y), substituting equivalentliterals might lead to further redutions with respet to the number of variables.Another interesting path for future researh onerns the analysis of the obtained graphand the use of e.g. deomposition tehniques. To further redue the size of the bakdoor, wealso plan to study how tratable parts of the formula (e.g. horn or horn-renommable ) an beexploited.
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